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Executive Summary 

Objective 

The research project Electricity markets and trade in Switzerland and its neighbouring countries 
(ELECTRA) ran from July 2011 to January 2015. Its main goal was to create coupled modeling 
frameworks for energy policy analysis in Switzerland which can be employed to answer research 
questions such as 

• How do EU climate and energy policies with implications for the European electricity mix 
affect Switzerland? 

• How do global climate policy and fossil fuel scenarios affect substitution between energy 
carriers and especially electricity demand in Switzerland?  

• What are the effects of political decisions which influence technology choices in electricity 
generation on the rest of the Swiss economy?  

• How do long-term electricity pricing and sectoral profits depend on cost structure and 
technology mix? 

• Given the advanced stage of integration of the European electricity market, does the view 
on Swiss energy dependence in electricity supply change when we endogenously model 
imports and exports on an hourly basis? 

More generally, the objective was to include international and multisectoral feedbacks as well as 
general equilibrium effects in the modeling of electricity markets in order to improve model-based 
energy policy analysis in Switzerland.  

The new modeling frameworks 

During this project, we finalized two major model developments: 

• The technology-rich multiregional Cross Border TIMES Electricity Model (CROSSTEM), of 
five countries (Austria, France, Germany, Italy and Switzerland), which uses the TIMES 
cost optimization framework. The model minimizes the cost of supply of electricity for an 
exogenously given electricity demand. It covers long time horizons and hourly intra-annual 
temporal resolution to account for variability in electricity supply and demand. Electricity 
trade between Switzerland and its four neighbouring countries is endogenous based on 
marginal costs of supply, subject to technical and environmental constraints. Hence, 
CROSSTEM generates insights on transition pathways for the Swiss electricity system by 
taking into account developments in the neighbouring countries.  

• The coupled framework ELECTRA-CH, which consists of the Swiss region of the CROSSTEM 
model (CROSSTEM-CH) and of the dynamic computable general equilibrium (CGE) model 
for the Swiss economy GENESwIS. ELECTRA-CH integrates a multisectoral general 
equilibrium representation of the Swiss economy with a detailed technology-based model-
ing of electricity supply. In the coupled framework, the representation of electricity supply 
from the CROSSTEM-CH model is prioritized over that of the GENESwIS model. The endoge-
nous demand variations of the GENESwIS model are then prioritized over the fixed demand 
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assumptions of the CROSSTEM-CH model. Moreover, sectoral prices feedback from the 
GENESwIS model is used to modify capital and operational costs of technologies in 
CROSSTEM-CH. ELECTRA-CH is designed to analyze the Swiss electricity market under 
environmental and energy policies, and its link to the Swiss economy.   

We have also undertaken major steps towards linking CROSSTEM with GEMINI-E3, which is a multi-
regional CGE model of the global economy, in order to create the coupled ELECTRA framework 
consisting of CROSSTEM, GEMINI-E3 and GENESwIS. The goal of this coupling is to enable an even 
more integrated analysis, especially concerning the impact of global and EU climate and energy 
policies on Switzerland.    

Scenarios 

The scenarios analyzed for this report have been designed to test and illustrate the functioning of the 
model frameworks. Three domestic scenarios deserve to be highlighted: A baseline scenario, a 
market instrument scenario (TAX), and a scenario putting forward technological restrictions with the 
prohibition of gas power plants (NoGAS). These scenarios were chosen to illustrate one of the 
central advantages of coupled bottom-up top-down frameworks: They are suitable for analyzing 
the effects of both market instruments and technology-oriented restrictions and policies.  

Coupling lessons learned 

Much of the progress made has been on methodological issues which arise when different types of 
models should be robustly coupled with the best consistency achievable. The experience of the 
design, implementation and testing of the ELECTRA-CH framework provided the following insights: 

• A careful harmonization of the models is crucial for framework convergence and for 
producing dependable results. 

• Bottom-up and top-down models are based on different methodologies and different 
logics. The variables to be linked must be meticulously selected and interpreted, not to 
introduce inaccuracies or logic flaws in the framework. 

• Demand dampening (Gauss-Seidel) is an essential approach for achieving convergence. 

• Assumptions on the future evolution of electricity market regulation change the 
interpretation of variables during coupling and thus have an impact on the results. 

In addition, the effort on coupling CROSSTEM and GEMINI-E3 unfolded methodological issues due to 
the different treatment of trade, both regarding each model’s definitions of import and export prices 
and the diverging optimization approaches that determine endogenous trade decisions: GEMINI-E3 
has one representative household per region, each of which optimizes its utility, while CROSSTEM 
minimizes total electricity system cost for the five countries, which implies that the solution is not 
necessarily optimal for each of the five countries.  

Energy economic lessons learned 

The simulations with the two existing new frameworks confirm the importance of including all 
relevant effects in model-based energy policy analysis. When we adequately integrate technologi-
cal, intersectoral, international, and general equilibrium feedbacks, the economic effects of 
policies differ not just slightly, but fundamentally, at least for some scenarios. This conclusion can 
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safely be drawn even on the basis of the few scenarios that we have already simulated, because we 
see the large impacts that structural model changes can have on the results. The direction and 
magnitude of these differences is hard to predict before the simulations are performed, which is 
evidence for the need to use models that are sufficiently complex. When the investigated issue is 
complex, the model needs to incorporate this complexity, if it is not to lead to wrong conclusions. 
Then, the well-known challenge is to ensure that the more complex models still produce dependable 
results and that the individual effects remain traceable.  

In the simulations with the coupled ELECTRA-CH framework, we witnessed how technology-based 
cost functions introduced profits into the zero-profit world of the CGE model GENESwIS and thus 
significantly altered equilibrium prices and demands as well as economic welfare. For example, the 
demand reduction that is prompted by an electricity tax is much more pronounced in ELECTRA-CH 
than in a stand-alone version of GENESwIS, which also has wider economic consequences in the 
model. This result is directly related to the technological options in the Swiss electricity system for 
the particular scenario and not transferable to other scenarios. This singularity only confirms that it 
is important to explicitly simulate the technological options to be able to understand the working 
of market instruments in energy policy. On the other hand, a pure supply-side bottom-up approach 
would clearly not be suitable for studying market instruments, because the demand-side would be 
missing.    

Another striking example of the importance of technology rich cost modeling is the welfare improve-
ment that results in ELECTRA-CH from a prohibition of natural gas when net electricity imports are 
allowed – which at the most correspond to the energy content of the gas that had previously been 
imported (NoGAS scenario). The favorable outcome of the scenario challenges narrow interpreta-
tions of supply security. Interestingly, the reduction in total system cost in the NoGAS scenario trans-
lates into a welfare gain of roughly only half the size, which highlights the importance of modeling 
the interaction of electricity supply with other sectors of the economy. The diminished welfare gain is 
attributable to a combination of microeconomic and general equilibrium effects which are explained 
in 3.1.3.6.  

The policy-relevant effects that we have sketched here cannot be investigated with either stand-
alone model, because CROSSTEM-CH operates with fixed demands and does not consistently trans-
late costs into prices, while GENESwIS’s cost functions do not adequately capture the differences 
between average and marginal costs of electricity supply. Thus, it takes a coupled framework to 
analyze electricity markets adequately. Even more, the innovative feature of coupling with 
marginal cost pricing in competitive markets is indispensible for producing the insights provided by 
the ELECTRA-CH framework. The usual procedure to couple top-down prices to bottom-up average 
costs may be simpler to implement and convenient for model convergence, but it is inconsistent with 
the microeconomic theory for competitive markets, and it neglects the formation of profits due to 
differences between average and marginal costs. As a result, it miscalculates both the impacts on the 
rest of the economy and the implications for electricity producers.  

For the long-term electricity supply mix, the results in this report reveal many significant feedbacks 
from the rest of the economy as well as from developments abroad. International electricity trade 
that is endogenously based on marginal costs, as realized in CROSSTEM, has shown to be especially 
influential for the results. The representation of the neighbouring countries in CROSSTEM does not 
only determine the lowest-cost electricity supply configuration. Its hourly time resolution enables 
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CROSSTEM to account for the temporal variations in supply and demand, which is critical for evalua-
ting the long term deployment of intermittent renewables.  

Further research  

The coupling of CROSSTEM, GEMINI-E3 and GENESwIS remains a worthwhile task, mostly to further 
improve the representation of international influences on the Swiss electricity sector. Next to this, 
more scenarios should be explored in the future to further test and elaborate the existing modeling 
frameworks. This would enable the frameworks to unfold their full potential to generate better-
informed answers when investigating the influence of Swiss and foreign energy policies on the 
electricity supply mix, electricity prices, and economic welfare, just to name a few. Future simula-
tions with these frameworks can also contribute to a better understanding of the long-term role of 
Swiss electricity producers in the European electricity system and the implications of this role for 
policy-makers and consumers. Based on the lessons from additional scenario runs, the two existing 
modeling frameworks CROSSTEM and ELECTRA-CH can be further enhanced.  
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Résumé 

Objectifs 

Le projet de recherche Marchés et commerce de l’électricité en Suisse et dans les pays voisins 
(ELECTRA) a été mené de juillet 2011 à janvier 2015. Son but principal a été de créer des structures 
de modélisation couplées pour l’analyse de politiques énergétiques en Suisse qui puisse être 
employé pour répondre à des questions comme: 

• Comment des politiques climatiques et énergétiques de l’UE ayant des implications pour la 
production d’électricité européenne affectent la Suisse? 

• Comment des scénarios de politique climatique mondiale et de développement des 
énergies fossiles vont-ils affecter la substitution de vecteurs énergétiques et en particulier 
la demande d'électricité en Suisse? 

• Quels sont les effets pour le reste de l’économie suisse des décisions politiques qui 
influencent les choix technologiques concernant la production d’électricité? 

• Comment la tarification de l’électricité et les profits sectoriels dépendent-ils à long terme 
de la structure des coûts et du mix technologique? 

• Compte tenu de l’intégration avancée du marché européen de l’électricité, l’analyse de la 
dépendance énergétique suisse dans l'offre d’électricité change-t-elle quand on utilise une 
modélisation endogène des importations et des exportations sur une base horaire? 

Plus généralement, l'objectif a été d'inclure des effets de retour internationaux et multisectoriels 
ainsi que des effets d'équilibre général dans la modélisation des marchés de l'électricité, afin 
d'améliorer l'analyse de politiques énergétiques basée sur des modèles en Suisse. 

Les nouvelles structures de modélisation 

Au cours de ce projet, nous avons finalisé deux importants développements de modèles: 

• Le modèle électrique multirégional, riche en technologies et transfrontalier TIMES 
Electricity Model (CROSSTEM) pour cinq pays (Autriche, France, Allemagne, Italie et 
Suisse), un modèle qui repose sur la structure d'optimisation des coûts TIMES. Le modèle 
minimise le coût de la fourniture d’électricité pour une demande d’électricité exogène 
donnée. Il couvre des horizons de temps longs et une résolution temporelle intra-annuelle 
horaire pour prendre en compte la variabilité de l’offre et la demande d’électricité. Les 
échanges d’électricité entre la Suisse et ses quatre voisins est endogène, basée sur les coûts 
de production marginaux sous contraintes techniques et environnementales. Par 
conséquent, CROSSTEM informe sur des sentiers de transition pour le système électrique 
suisse, en tenant compte des évolutions dans les pays voisins.  

• La structure couplée ELECTRA-CH, qui se compose de la région suisse du modèle 
CROSSTEM (CROSSTEM-CH) et du modèle dynamique d'équilibre général calculable (EGC) 
de l'économie suisse GENESwIS. ELECTRA-CH intègre une représentation multisectorielle 
en équilibre général de l'économie suisse avec un model détaillé de l'approvisionnement 
électrique basé sur les technologies. Dans cette structure couplée, la représentation de la 
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fourniture d'électricité à partir du modèle CROSSTEM-CH est prioritaire par rapport à celle 
du modèle GENESwIS. Les variations endogènes de la demande d'électricité du modèle 
GENESwIS priment à leur tour sur les hypothèses de la demande fixe du modèle 
CROSSTEM-CH. En outre, l'ajustement des prix sectoriels calculé par le modèle GENESwIS 
est renvoyé dans le modèle CROSSTEM-CH pour y modifier les coûts fixes et variables des 
technologies. ELECTRA-CH est conçu pour analyser le marché suisse de l’électricité soumis à 
des politiques de l’énergie et de l’environnement, ainsi que ses liens avec l’économie 
Suisse. 

Nous avons également entrepris des mesures importantes en vue de relier CROSSTEM avec GEMINI-
E3, un modèle EGC multi-régions de l'économie mondiale, afin de créer la structure couplée ELECTRA 
composée de CROSSTEM, GEMINI-E3 et GENESwIS. Le but de ce grand couplage est de permettre 
une analyse encore plus intégrée, en particulier concernant l'impact des politiques climatiques et 
énergétiques mondiales et de l'UE sur la Suisse 

Scenarios 

Les scénarios analysés pour ce rapport ont été conçus pour tester et illustrer le fonctionnement des 
structures de modélisation. Trois scénarios nationaux méritent d'être soulignés: un scénario de base, 
un scénario d’instrument de marché (TAX), et un scénario mettant en avant les restrictions 
technologiques avec l'interdiction des centrales à gaz (NoGAS). Ces scénarios ont été choisis pour 
illustrer l'un des avantages centraux de structures couplées bottom-up/top-down: Ils sont adaptés 
pour analyser les effets à la fois des instruments de marché et des restrictions et politiques axées 
sur les technologies. 

Leçons apprises par le couplage 

Une grande partie des progrès réalisés ont porté sur les questions méthodologiques qui se posent 
lorsque différents types de modèles devraient être solidement  couplés dans la meilleure cohérence 
possible. L'expérience de la conception, la mise en œuvre et les tests de la structure ELECTRA-CH a 
livré les leçons suivantes: 

• Une harmonisation soigneuse des modèles est cruciale pour la convergence de la structure 
d'analyse et pour la production de résultats fiables. 

• Les modèles bottom-up et top-down sont basés sur des méthodologies et logiques 
différentes. Les variables à relier doivent être soigneusement sélectionnées et 
interprétées pour éviter d'introduire des inexactitudes ou des défauts de logique dans la 
structure d'analyse. 

• L'atténuation des fluctuations de la demande (Gauss-Seidel) est essentielle pour obtenir la 
convergence. 

• Les hypothèses sur l'évolution future de la réglementation du marché de l'électricité 
modifient l'interprétation des variables lors du couplage et ont donc un impact sur les 
résultats. 

En outre , l'effort de couplage de CROSSTEM et GEMINI -E3 a révélé des enjeux méthodologiques dus 
aux différences dans le traitement des échanges commerciaux, à la fois en ce qui concerne la 
définition des prix à l'importation et à l'exportation dans chaque modèle et les approches 
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d'optimisation divergentes utilisées pour déterminer les décisions d'échange endogènes: GEMINI -E3 
utilise un ménage représentatif par région qui maximise son bien-être, alors que CROSSTEM 
minimise le coût total du système électrique pour les cinq pays, ce qui implique que la solution n’est 
pas nécessairement optimale pour chacun des cinq pays. 

Leçons apprises pour l’économie de l’énergie 

Les simulations avec les deux nouvelles structures de modélisation confirment l'importance 
d'inclure tous les effets pertinents dans l'analyse de politiques énergétiques basée sur des 
modèles. Lorsque nous intégrons de manière adéquate les effets de retour technologiques, 
intersectoriels, internationaux et d'équilibre général, les effets économiques des politiques ne 
diffèrent pas juste un peu, mais fondamentalement, au moins pour certains scénarios. Cette 
conclusion peut être tirée en toute sécurité même sur la base des quelques scénarios que nous avons 
déjà simulés, parce que nous voyons les grands impacts que les changements structurels des 
modèles peuvent avoir sur les résultats. La direction et l'amplitude de ces différences est difficile à 
prévoir avant d'effectuer les simulations, ce qui démontre la nécessité d'utiliser des modèles 
suffisamment complexes. Lorsque la question examinée est complexe, le modèle doit intégrer cette 
complexité, sinon il conduit à des conclusions erronées. Ensuite, le défi bien connu est d'assurer que 
les modèles plus sophistiqués continuent de produire des résultats fiables et que les effets 
individuels restent traçables. 

Dans les simulations avec la structure couplée ELECTRA-CH, nous avons découvert comment les 
fonctions de coût reposant sur les technologies font apparaître des profits dans le monde à profits 
nuls (concurrence parfaite) du modèle EGC GENESWIS et donc modifient de manière significative les 
prix et consommation à l'équilibre ainsi que le bien-être économique. Ainsi par exemple, la réduction 
de la demande provoquée par une taxe sur l'électricité est beaucoup plus prononcée dans ELECTRA-
CH que dans une version autonome de GENESwIS, ce qui a également des conséquences 
économiques plus larges dans le modèle. Ce résultat est directement lié aux options technologiques 
dans le système électrique suisse pour ce scénario spécifique; il ne se laisse pas généraliser pour 
d'autres scénarios. Cette singularité ne fait que confirmer qu'il est important de simuler 
explicitement les options technologiques pour être en mesure de comprendre le fonctionnement 
des instruments de marché dans la politique énergétique. D'autre part, une approche purement 
bottom-up de l'offre ne serait clairement pas adaptée à l'étude des instruments du marché, puisqu'il 
manquerait le côté de la demande. 

Un autre exemple flagrant de l’importance d’un modèle doté d'une représentation des coûts riche en 
technologies est l’amélioration du bien-être obtenue avec ELECTRA-CH lorsque les importations 
nettes d’électricité sont autorisées mais pas le gaz naturel, importations qui correspondent au 
maximum à la teneur énergétique du gaz qui avait été importé précédemment (scenario NoGAS)  

L’issue favorable du scénario défie les étroites interprétations de la sécurité d’approvisionnement. 
Fait intéressant, la baisse du coût total du système dans le scénario NoGAS se traduit en gain de bien-
être divisé plus ou moins par deux, ce qui met en évidence l'importance de la modélisation de 
l'interaction entre l'approvisionnement en électricité et les autres secteurs de l’économie. Cette 
baisse du gain en bien-être est attribuable à une combinaison d'effets microéconomiques et 
d'équilibre général expliqués dans le paragraphe 3.1.3.6. 
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Ces effets pertinents pour les politiques publiques que nous avons esquissées ici ne peuvent pas être 
étudiés da façon autonome par l'un des modèles utilisés. En effet, CROSSTEM-CH fonctionne avec 
des demandes fixes et ne traduit pas de façon cohérente les coûts dans les prix, alors que les 
fonctions de coût de GENESwis ne reflètent pas de manière adéquate les différences entre les coûts 
moyens et marginaux de l'approvisionnement électrique. Ainsi, il faut une structure couplée pour 
analyser de façon adéquate le marché de l’électricité. Plus encore, la caractéristique innovante du 
couplage avec tarification au coût marginal dans les marchés concurrentiels est indispensable pour 
obtenir leçons apprises avec la structure ELECTRA-CH. L'approche usuelle pour coupler les prix top-
down aux coûts moyens bottom-up peut être plus simple à mettre en œuvre et plus commode pour 
faire converger les modèles, mais elle est incompatible avec la théorie microéconomique des 
marchés concurrentiels et néglige la formation de bénéfices en raison des différences entre coûts 
moyens et marginaux. En conséquence, cette approche calcule mal à la fois les impacts sur le reste 
de l’économie et les implications pour les producteurs d’électricité. 

Pour le mix d'approvisionnement électrique à long terme, les résultats de rapport révèlent de 
nombreux effets de retour provenant aussi bien du reste de l’économique que de développements à 
l’étranger. Le commerce international d’électricité qui repose de façon endogène sur les coûts 
marginaux, comme modélisé dans CROSSTEM, a démontré son influence particulière sur les 
résultats. La représentation des pays voisins dans CROSSTEM ne détermine pas seulement la 
configuration d'approvisionnement électrique la moins coûteuse. Sa résolution temporelle horaire 
permet à CROSSTEM de tenir compte des fluctuations de l’offre et de la demande, ce qui est crucial 
pour évaluer le déploiement à long terme des énergies renouvelables intermittentes. 

Recherches à venir 

Continuer de travailler sur le couplage de CROSSTEM, GEMINI-E3 et GENESWIS reste une tâche digne 
d’intérêt, en particulier pour améliorer encore la représentation des influences internationales sur le 
secteur de l’électricité suisse. A côté de ceci, plus de scénarios devraient être explorés dans le futur 
pour continuer de tester et améliorer les structures de modélisation existantes. Cela permettrait à 
ces structures de déployer tout leur potentiel pour générer des réponses mieux informées lorsqu’on 
examine l’influence de politiques énergétiques suisses et étrangères sur le mix d’approvisionnement 
électrique, les prix de l’électricité et le bien-être économique, pour ne citer que ceux-ci. Des 
simulations futures avec ces structures peuvent aussi contribuer à une meilleure compréhension du 
rôle à long terme des producteurs suisses d’électricité dans le système électrique européen et des 
implications de ce rôle pour les autorités et les consommateurs. Les simulations de scenarios 
additionnels montrent que les deux structures de modélisation CROSSTEM et ELECTRA-CH peuvent 
ncore être enrichies. 
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Zusammenfassung 

Projektziel 

Das Forschungsprojekt Electricity markets and trade in Switzerland and its neighbouring countries 
(ELECTRA) lief von Juli 2011 bis Februar 2015. Sein Hauptziel war es, gekoppelte Computermodelle 
für die Analyse der Energiepolitik in der Schweiz zu erstellen. Forschungsfragen, die mit diesen 
Modellen beantwortet werden können, sind z.B.: 

• Wie beeinflusst die EU-Klima- und Energiepolitik die Situation in der Schweiz z.B. mittels 
ihrer Auswirkungen auf den europäischen Strommix? 

• Welchen Einfluss haben verschiedene Szenarien zur internationalen Klimapolitik und zu 
fossilen Brennstoffvorkommen auf die Substitution zwischen Energieträgern und vor allem 
auf die Schweizer Stromnachfrage? 

• Wie wirken sich politische Entscheidungen, die die Technologiewahl bei der Stromerzeu-
gung beeinflussen, auf den Rest der Schweizer Wirtschaft aus? 

• Wie beeinflusst der Technologiemix die Kostenstruktur, die langfristige Strompreisgestal-
tung und die Gewinne der Stromwirtschaft? 

• Wie ändert sich der Blick auf die Schweizer Energieabhängigkeit in der Stromversorgung 
angesichts der fortgeschrittenen Integration des europäischen Strommarkts, wenn endogen 
modellierte Ein- und Ausfuhren auf Stundenbasis einbezogen werden? 

Allgemeiner gesagt, war es das Ziel, internationale und sektorübergreifende Rückwirkungen sowie 
allgemeine Gleichgewichtseffekte in der Modellierung von Strommärkten zu berücksichtigen, um 
die modellbasierte Analyse der Energiepolitik in der Schweiz zu verbessern. 

Die neuen Modelle 

Im Rahmen dieses Projektes konnten zwei große Modellentwicklungen abgeschlossen werden: 

• Das technologiedetailreiche multiregionale CROSs Border TIMES Electricity Model 
(CROSSTEM), das  fünf Länder umfasst (Schweiz, Österreich, Frankreich, Deutschland, 
Italien) und auf dem TIMES Kostenoptimierungsmodell aufbaut. Es minimiert die Kosten 
der Elektrizitätsbereitstellung für eine exogen vorgegebene Stromnachfrage. Der Zeithori-
zont ist langfristig, bei stündlicher Auflösung der Stromnachfrage innerhalb eines Jahres, 
um die Veränderlichkeit von Stromangebot und -nachfrage zu berücksichtigen. Der Strom-
handel zwischen der Schweiz und ihren vier Nachbarländern ist endogen, basierend auf den 
Grenzkosten des Angebots, unter Berücksichtigung technischer und ökologischer Restriktio-
nen. CROSSTEM ermöglicht so ein besseres Verständnis von Entwicklungspfaden für die 
Schweizer Stromwirtschaft unter Berücksichtigung der Entwicklungen in den Nachbarlän-
dern. 

• Das gekoppelte Modell ELECTRA-CH, das aus der Schweizer Region des CROSSTEM 
Modells (CROSSTEM-CH) und dem dynamischen allgemeinen Gleichgewichtsmodell für 
die Schweiz (GENESwIS) besteht. ELECTRA-CH vereint die Abbildung eines multisektoralen 
allgemeinen Gleichgewichts mit einer detaillierten technologiebasierten Darstellung der 
Stromversorgung. Im gekoppelten Gesamtmodell wird, was das Stromangebot betrifft, die 
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detaillierte Modellierung von CROSSTEM-CH gegenüber GENESwIS priorisiert. Die endoge-
nen Nachfrageänderungen aus GENESwIS werden dagegen den exogenen Stromnachfragen 
des CROSSTEM-CH-Modells vorgezogen. Darüber hinaus werden sektorale Preisverände-
rungen aus GENESwIS zur Korrektur von Investitions- und Betriebskosten in CROSSTEM-CH 
verwendet. ELECTRA-CH wurde entwickelt, um den Schweizer Strommarkt sowie dessen 
Verknüpfung mit dem Rest der Schweizer Volkswirtschaft unter dem Einfluss verschiedener 
umwelt- und energiepolitischer Massnahmen zu analysieren. 

Über diese beiden Modelle hinaus haben wir wesentliche Schritte im Hinblick auf eine Verknüpfung 
von CROSSTEM mit GEMINI-E3, einem multiregionalem Welthandelsmodell vom Typ des allgemeinen 
Gleichgewichts, erreicht, mit dem Ziel ein gekoppeltes ELECTRA-Modell, bestehend aus CROSSTEM, 
GEMINI-E3 und GENESwIS zu schaffen. Das Ziel dieser Kopplung ist es, eine noch umfassendere 
Analyse zu ermöglichen, insbesondere was die Auswirkungen der globalen und EU-Klima- und 
Energiepolitik auf die Schweiz betrifft. 

Szenarien 

Die Szenarien für diesen Bericht wurden entwickelt, um die Funktionsfähigkeit der Modelle zu testen 
und zu zeigen. Drei inländische Szenarien sind dabei hervorzuheben: Ein Basisszenario, ein Markt-
instrumentszenario (TAX) und ein Szenario, das mit einem Verbot von Gaskraftwerken zusätzliche 
Entscheidungen zu technologischen Restriktionen annimmt (NoGAS). Diese Szenarien wurden ausge-
wählt, um einen der zentralen Vorteile des gekoppelten Bottom-up-Top-down-Modells zu veran-
schaulichen: Es ist für die gleichzeitige Analyse der Auswirkungen sowohl marktwirtschaftlicher 
Instrumente als auch technologieorientierter Restriktionen und Massnahmen geeignet. 

Lehren aus der Kopplung 

Wesentliche Forschungsbeiträge des Projekts beziehen sich auf methodische Fragen, die aufkom-
men, wenn verschiedene Modelle auf möglichst konsistente Weise gekoppelt werden sollen. Bei der 
Entwicklung, Umsetzung und konsolidierenden Prüfung von ELECTRA-CH haben wir folgende Erfah-
rungen gemacht: 

• Eine sorgfältige Harmonisierung der Modelle ist entscheidend für die erfolgreiche Kopp-
lung und die Herstellung zuverlässiger Ergebnisse. 

• Bottom-up- und Top-down-Modelle basieren auf verschiedenen Methoden und Logiken. 
Die zu verknüpfenden Variablen müssen sorgfältig ausgewählt und interpretiert werden, 
damit nicht Ungenauigkeiten oder logische Fehler im Modell entstehen. 

• Nachfragedämpfung (Gauß-Seidel) ist ein wesentlicher Ansatz um die Konvergenz des 
Kopplungsalgorithmus zu erreichen. 

• Annahmen über die künftige Entwicklung der Strommarktregulierung verändern die öko-
nomischen Implikationen von Kopplungsvariablen und beeinflussen so die Ergebnisse. 

Das Vorhaben der Kopplung von CROSSTEM und GEMINI-E3 führte zu weiteren Fragen. Grund dafür 
ist vor allem die unterschiedliche Modellierung des internationalen Handels, sowohl hinsichtlich der 
Grundlagen für Einfuhr- und Ausfuhrpreisen als auch in Bezug auf die divergierenden Optimierungs-
ansätze, mit denen die endogenen Handelsentscheidungen bestimmt werden: GEMINI-E3 hat einen 
repräsentativen Haushalt pro Region, von denen jeder seinen Nutzen maximiert; CROSSTEM 
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minimiert die gesamten Stromsystemkosten für die fünf Länder gemeinsam, was bedeutet, dass die 
Lösung nicht unbedingt optimal für jedes einzelne der fünf Länder ist. 

Energieökonomische Lehren 

Die Simulationen mit den beiden neuen Modelle bestätigen, wie wichtig es ist, alle relevanten 
Effekte in die modellbasierte Energiepolitikanalyse einzubeziehen: technische, intersektorale, 
internationale und allgemeine Gleichgewichtseffekte. Dies verändert die wirtschaftlichen Auswir-
kungen von Politikmassnahmen nicht nur leicht, sondern grundlegend, zumindest für einige 
Szenarien. Diese Schlussfolgerung kann zuverlässig gezogen werden, auch auf der Grundlage der 
wenigen Szenarien, die wir simuliert haben. Schliesslich sind die bedeutenden Auswirkungen verän-
derter Modellstrukturen auf die Ergebnisse sichtbar geworden. Die Richtung und das Ausmass dieser 
Unterschiede ist vor der jeweiligen Simulation schwer vorherzusagen, was ein Beleg für die Notwen-
digkeit ist, Modelle einzusetzen, die nicht unterkomplex sind. Wenn die untersuchte Fragestellung 
komplex ist, muss das Modell diese Komplexität abbilden, wenn es nicht zu falschen Schlussfolgerun-
gen führen soll. In diesem Fall besteht die bekannte Herausforderung darin sicherzustellen, dass die 
komplexeren Modelle noch zuverlässige Ergebnisse produzieren und die einzelnen Wirkungen nach-
vollziehbar bleiben. 

In den Simulationen mit dem gekoppelten ELECTRA-CH-Modell haben wir erfahren, wie technologie-
basierte Kostenfunktionen Gewinne in die Null-Gewinn-Welt des CGE-Modells GENESwIS einführten 
und damit Gleichgewichtspreise und -mengen sowie die Wohlfahrtseffekte signifikant veränderten. 
Zum Beispiel ist die Reduzierung der Nachfrage, die durch eine Stromsteuer ausgelöst wird, in 
ELECTRA-CH viel ausgeprägter als in den eigenständigen Versionen von GENESwIS, was im Modell 
weiterreichende wirtschaftliche Konsequenzen nach sich zieht. Dieses Ergebnis hängt eng mit den 
technologischen Optionen im Schweizer Stromsystem im simulierten Szenario zusammen und ist 
nicht auf andere Szenarien übertragbar. Diese Besonderheit bestätigt, dass es wichtig ist, die tech-
nologischen Alternativen explizit zu simulieren, wenn man die Wirkungen von Marktinstrumenten 
in der Energiepolitik verstehen möchte. Auf der anderen Seite wäre auch ein rein angebotsseitiger 
Bottom-up-Ansatz eindeutig nicht geeignet für die Analyse von Marktinstrumenten, weil die Nach-
frageseite nicht dargestellt würde. 

Die Bedeutung technologiebasierter Kostenmodellierung erschliesst sich auch, wenn man die Verbes-
serungen der Wohlfahrt betrachtet, die in ELECTRA-CH aus einem Verbot von Gaskraftwerken ent-
stehen, wenn Nettostromimporte erlaubt werden, die dem Energiegehalt der vorigen Erdgasimporte 
entsprechen (NoGAS-Szenario). Die Vorteilhaftigkeit dieses Szenarios stellt übermässig vereinfachte 
Interpretationen von Versorgungssicherheit in Frage. Interessanterweise führt die Reduzierung der 
Gesamtsystemkosten im NoGAS-Szenario aber nur zu einem etwa halb so grossen Wohlfahrtsgewinn, 
was die Notwendigkeit der Modellierung der Interaktion der Stromerzeugung mit anderen Wirt-
schaftssektoren hervorhebt. Der geringere Wohlfahrtsgewinn ist auf eine Kombination mikroökono-
mischer und allgemeiner Gleichgewichtseffekte zurückzuführen, die in Abschnitt 3.1.3.6 erläutert 
werden. 

Die politikrelevanten Effekte, die wir hier skizziert haben, können mit keinem der beteiligten Modelle 
eigenständig untersucht werden. CROSSTEM-CH operiert mit exogenen Nachfragen und übersetzt 
Kosten nicht auf mikroökonomisch konsistente Weise in Preise. Andererseits erfassen die Kosten-
funktionen von GENESwIS die Unterschiede zwischen Durchschnittskosten und Grenzkosten der 
Stromerzeugung vollkommen unzureichend. Die adäquate Analyse der Strommärkte verlangt inso-
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fern nach einem gekoppelten Modell. Mehr noch, die hier skizzierten Erkenntnisse zu wettbewerb-
lichen Strommärkten sind ohne den innovativen Ansatz der Kopplung über Grenzkosten nicht zu 
erzielen. Das sonst übliche Verfahren der Kopplung von Top-down-Preisen mit Bottom-up-Durch-
schnittskosten mag einfacher zu implementieren sein, vor allem weil es bequem für die 
Modellkonvergenz ist; es ist aber unvereinbar mit der mikroökonomischen Theorie für Wettbewerbs-
märkte und vernachlässigt Firmengewinne, die aufgrund der Differenz von Grenzkosten und Durch-
schnittskosten entstehen. Demzufolge berechnet man mit diesem verbreiteten Verfahren falsche 
Auswirkungen sowohl auf die Stromwirtschaft als auch auf die übrige Volkswirtschaft. 

Für den langfristigen Stromerzeugungsmix offenbaren die Ergebnisse in diesem Bericht viele Zusam-
menhänge mit der übrigen Schweizer Volkswirtschaft und dem Ausland. Der internationale Strom-
handel hat sich als besonders relevant für die Ergebnisse erwiesen, wenn er wie in CROSSTEM auf 
der Basis der Grenzkosten endogenisiert ist. Durch die Abbildung der Nachbarländer in CROSSTEM 
wird die kostengünstigste Konfiguration für die Stromerzeugung ermittelt. Darüber hinaus ermöglicht 
die stündliche Zeitauflösung, die Schwankungen von Angebot und Nachfrage im Zeitablauf zu 
erfassen, was z.B. bei der Beurteilung der Einsatzmöglichkeiten ungleichmässig liefernder erneuerba-
rer Energien hilfreich ist. 

Forschungsausblick 

Die Kopplung von CROSSTEM, GEMINI-E3 und GENESwIS bleibt eine lohnende Aufgabe, hauptsäch-
lich um die Berücksichtigung von internationalen Einflüssen auf den Schweizer Elektrizitätssektor 
weiter zu verbessern. Darüber hinaus sollten in der Zukunft weitere Szenarien erforscht werden, um 
den bestehenden Modellrahmen weiter zu testen und fortzuentwickeln. So können die Modelle ihr 
volles Potenzial entfalten und besser fundierte Antworten gefunden werden bezüglich des Einflusses 
der in- und ausländischen Energiepolitik auf den Strommix, die Strompreise und die Wohlfahrt, um 
nur einige zu nennen. Solche Simulationen tragen auch zu einem besseren Verständnis der lang-
fristigen Rolle der Schweizer Stromproduzenten im europäischen Stromsystem bei und beleuchten 
die Implikationen dieser Rolle für politische Entscheidungsträger und Verbraucher. Die Lehren aus 
zusätzlichen Simulationen helfen gleichzeitig dabei, die beiden bestehenden Modelle CROSSTEM und 
ELECTRA-CH weiter zu verbessern. 
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1 Introduction 

1.1 The ELECTRA research program 

This is the report for the 3 ½ year research project Electricity markets and trade in Switzerland and its 
neighbouring countries (ELECTRA). It was carried out from July 2011 to January 2015 by three 
institutions and involved two PhD students and six senior researchers and modelers. The main goal of 
the project has been to create new coupled modeling frameworks for energy policy analysis in 
Switzerland which can be employed to answer research questions such as 

• How do EU climate and energy policies with implications for the European electricity mix 
affect Switzerland? 

• How do global climate policy and fossil fuel scenarios affect substitution between energy 
carriers and especially electricity demand in Switzerland?  

• What are the effects of political decisions which influence technology choices in electricity 
generation on the rest of the Swiss economy?  

• How do long-term electricity pricing and sectoral profits depend on cost structure and 
technology mix? 

• Given the advanced stage of integration of the European electricity market, does the view 
on Swiss energy dependence in electricity supply change when we endogenously model 
imports and exports on an hourly basis? 

The simulations described in this report do not fully answer all of these research questions. They 
have been designed to test and illustrate the functioning of the new model frameworks. With more 
simulations in the future, more aspects of these research questions can be explored. 

As could be expected for a major modeling and coupling endeavor, a lot of the tasks in this project 
have been rather technical. Because of this, much of the progress made has been on methodological 
issues which arise when different types of models should be robustly coupled with the best 
consistency achievable. Hence, it does not come as a surprise that major parts of the project output 
in terms of scientific publications are going to apply to this area. At this early point of the report, we 
don’t want the explanations to become too technical, so we merely mention some of the related 
fields of interest: 

• How can bottom-up and top-down model logic and data be reconciled to achieve maximum 
consistency of a coupled framework? 

• In a coupled framework, which model’s representation should be prioritized over the 
others’ for which kind of relationships? 

• What variables need to be exchanged and how should they be interpreted by the receiving 
model? 

• What does the shadow price of electricity in a bottom-up model exactly represent in 
equilibrium economic terms?  

• How to couple costs and prices given a market environment that is characterized by gradual 
liberalization (see also the working paper in chapter 3.1.2)?  

• How to help the framework reach convergence?  
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During this project, we finalized two major model developments: 

• The technology-rich multiregional Cross Border TIMES Electricity Model (CROSSTEM), of five 
countries (Austria, France, Germany, Italy and Switzerland), which uses the TIMES cost 
optimization framework. 

• The coupled framework ELECTRA-CH, which consists of the Swiss region of the CROSSTEM 
model (CROSSTEM-CH) and of the dynamic CGE model for the Swiss economy GENESwIS. 
ELECTRA-CH integrates a multisectoral general equilibrium representation of the Swiss 
economy with a detailed technology-based representation of electricity supply.    

We have also taken important steps towards linking CROSSTEM with GEMINI-E3, which is a multi-
regional CGE model of the global economy, in order to create the coupled ELECTRA framework 
consisting of CROSSTEM, GEMINI-E3 and GENESwIS. The goal of this coupling is to enable an even 
more integrated analysis, especially concerning the impact of global and EU climate and energy 
policies on Switzerland.   

1.2 CROSSTEM 

In order to understand the future development pathways and technology options for the Swiss 
electricity system, it is necessary to analyze the transition in conjunction with the development of the 
EU electricity market, most importantly the four countries bordering Switzerland. Thus, we 
developed an electricity model of Switzerland and its four neighbouring countries - the CROSs border 
Swiss TIMES Electricity Model (CROSSTEM). The model minimizes cost of electricity supply for an 
exogenously given electricity demand. It covers a long time horizon (to account for long term policy 
goals and investment decisions), while simultaneously representing sufficient intra-annual detail (i.e., 
seasonal, weekly and hourly) to account for temporal variations in electricity supply and demand. It is 
an extension of the Swiss TIMES Electricity model (STEM-E), which was proven to be very useful in 
addressing  Switzerland-specific policies, but has limitations due to relying on exogenous assump-
tions on electricity import/export prices, uncertainties on sources of electricity import and market for 
electricity exports.  Some of these limitations have been addressed in CROSSTEM, in which electricity 
trade between Switzerland and its neighbouring countries becomes endogenous based on marginal 
costs of supply, subject to technical and environmental constraints. Hence, CROSSTEM generates 
insights into transition pathways for the Swiss electricity system by taking into account developments 
in the neighbouring countries. To showcase the usefulness of this new tool, a limited set of scenarios 
is presented in this report.  

1.3 ELECTRA-CH 

ELECTRA-CH is a coupled bottom-up top-down framework designed to analyze the Swiss electricity 
market under environmental and energy policies, and its link to the Swiss economy.  It is composed 
of two component models: 

1. The Swiss region of the technology-rich bottom-up model Cross Border TIMES Electricity 
Model, CROSSTEM-CH; 

2. The dynamic multi-sectoral Computable General Equilibrium (CGE) model of the Swiss 
economy GENESwIS. 
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These two models are coupled through an iterative soft link. The advantage of a soft link is to 
prioritize each model’s strengths, while keeping each model’s full structure, detail and integrity. In 
ELECTRA-CH, the representation of electricity supply from the CROSSTEM-CH model is prioritized 
over that of the GENESwIS model. The endogenous demand variations of the GENESwIS model are 
then prioritized over the fixed input demand of the CROSSTEM-CH model. Moreover, sectoral prices 
feedback from the GENESwIS model is used to modify capital and operational costs of technologies in 
CROSSTEM-CH. This way, results are better informed (from the prioritization), and detailed (due to 
the fact that we have two specialized models). They include both technological detail and general 
equilibrium feedback of the economy.  

1.4 Scenarios 

The scenarios analyzed for this report have been designed to test and illustrate the functioning of the 
modeling frameworks. They include domestic and international scenarios. 

1.4.1 Domestic scenarios 

Three domestic scenarios are analyzed: A baseline scenario, a market instrument scenario (TAX), and 
a scenario putting forward technological restrictions with the prohibition of gas power plants 
(NoGAS). These scenarios were chosen to illustrate one of the central advantages of coupled bottom-
up top-down frameworks: They are suitable for analyzing the effects of both market instruments and 
technology-oriented restrictions and policies. A comparison of the main instruments of the domestic 
scenarios can be found in Figure 1. 

 

Figure 1: ELECTRA domestic scenarios: comparison of the policy instruments. 

The baseline scenario is based on the “weiter wie bisher” (i.e. business as usual) scenario of the 
Energy Perspectives 2050 (Prognos 2012). It includes current policies: 

• An Emissions Trading Scheme (for ETS sectors, including air transport from 2020 onwards). 
CO2 permit prices are exogenously set on Prognos 2012 projections (Table 11, page 70). 
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• A CO2 tax on heating fuels for the non-ETS sectors. Tax rates are set at 36 CHF/t in 2010, 60 
CHF/t in 2015 and at 72 CHF/t from 2020 to 2050.  

• A subsidy program for the energy refurbishment of buildings (280 mio CHF/year from CO2 
tax revenue). 

A constraint on net trade of electricity is implemented such that, on annual average, Switzerland may 
not import more than it exports in quantity terms. 

The TAX scenario represents more stringent climate and energy policies: 

• A tax is levied on electricity consumption at a rate of 10%1 in 2020 and increasing linearly to 
50% in 2050.  

• The Emissions Trading Scheme is the same as in the baseline scenario. It also has the same 
assumed permit prices. 

• The CO2 tax on heating fuels is increased linearly from the 2020 level to 200 CHF/t in 2050.  

• A CO2 tax on transport fuels is introduced at 50 CHF/t in 2035, reaching 200 CHF/t in 2050. 

The NoGAS scenario features the same market instruments as the TAX scenario. The difference lies in 
the prohibition of gas-fired power plants in the Swiss electricity sector. Additionally, the annual net 
trade constraint is relaxed. Net imports are allowed, with an upper limit equivalent to the quantity of 
gas (in PJ) imported by gas-fired power plants in the TAX scenarios. This is a rather simplistic attempt 
at keeping a similar level of overall energy supply security, even if imports of electricity and natural 
gas do not imply the same level of security risks. The relaxation of the net electricity trade constraint 
was necessary, because the domestic renewable potentials are not adequate to supply the baseline 
demand, and hence the framework did not converge to a single solution for an even more restrictive 
scenario.  

The phase-out of nuclear power plants at the end of their lifetime is included in all scenarios. 

1.4.2 International scenarios  

The international scenarios include a current policy “Baseline” and a “Moderate stringency” climate 
change mitigation scenario. These scenarios are analyzed in section 2.3.4 with the GEMINI-E3 model 
and have been developed so they can also be simulated with the ELECTRA framework. The scenarios 
follow a review of selected MiniCAM – BASE scenarios2 (see Calvin et al. 2009, Clarke et al. 2008).  

For the Baseline scenario, MiniCAM scenario S1_3p7_OS3 was selected as a starting point. To 
account for existing policies in the EU until 2050, the allocation of the global emissions trajectory was 

                                                            
 

1 This tax is levied on retail electricity consumption. Retail electricity prices include transport and distribution costs as well 
as value added tax.  
2 MINICAM, which has recently be renamed GCAM, is a dynamic-recursive, technology-rich integrated assessment model by 
the Joint Global Change Research Institute, which is based in Maryland, USA. The MINICAM-BASE scenarios were developed 
for EMF22, more specifically for its international scenarios study, which analyzed carbon concentration pathways with the 
possibility to overshoot concentration limits before drastically abating as well as the possible delayed participation of some 
countries to mitigation efforts. 
3 “S1” refers to global participation; “3p7” refers to a radiative forcing target of 3.7 Wm-2; “OS” indicates a temporary 
overshoot of the target 
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adjusted to match the estimated emissions in the EU under “Current Policy” as defined in the EU 
Roadmap (European Commission 2011a).   

For the Moderate stringency case, the global emissions trajectory in MiniCAM scenario S1_3p7_S4 
was selected as consistent with a more ambitious Swiss policy to 2050. To account for additional 
abatement activity in the EU, this global trajectory was adjusted as above to match the additional 
nearer-term (to 2030) EU Roadmap emissions pathway (European Commission 2011a), but not the 
more normative/aspirational 2050 EU mitigation goals.  

The emissions trajectories for the EU and the rest of the world are presented in Figure 2 and Figure 3.  

  

Figure 2: CO2 emissions in Gt from fossil fuel & industry for the EU (incl. Croatia) and Norway 

 

Figure 3: CO2 emissions in Gt from fossil fuel & industry for the World minus EU (incl. Croatia) 
minus Norway minus Switzerland 

                                                            
 

4 “S” indicates a stabilization target (rather than an overshoot). It should be noted that while both S1_3p7_OS and 
S1_3p7_S were developed to achieve similar long-term climate targets (of 3.7 Wm-2 radiative forcing), the selection of these 
scenarios should not be viewed as necessarily implying similar long-term trajectories in the Baseline and Moderate 
stringency cases in ELECTRA.   
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1.5 Report structure 

Chapter 2 presents model descriptions of the three models that we have further developed and 
employed. It also contains a few illustrative simulations performed with these models, i.e. 
simulations with single models without any coupling to the other models. We start by presenting 
CROSSTEM (section 2.1), which has largely been developed within this project, especially the 
representation of electricity supply systems for the neighbouring countries of Switzerland. The 
computable general equilibrium models GENESwIS and GEMINI-E3 follow in sections 2.2 and 2.3, 
respectively. 

Chapter 3 concerns the bottom-up top-down coupling that has taken place in this project. Section 3.1 
deals with the coupled ELECTRA-CH framework. It includes details on the coupling methodology 
(3.1.1), a draft paper on linking costs and prices in changing market environments (3.1.2), and an 
analysis of simulation results for three energy policy scenarios (3.1.3). Section 3.2 reports on the 
current state of the coupling efforts for the international ELECTRA framework. It includes the 
motivation for the coupling (3.2.1), an overview of the coupling methodology developed for ELECTRA 
(3.2.2), the state of the coupling at the time of the report writing (3.2.3), and steps in view of further 
research (3.2.4). 

Chapter 4 concludes with respect to the lessons learned and the new opportunities for energy policy 
analysis in Switzerland that this project has created. 
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2 The three models 

2.1 CROSSTEM 

2.1.1 Background 

In 2011, the Swiss Federal Council decided to phase out nuclear energy (FASC 2011; UVEK 2010). 
With a view on the new Swiss Energy Strategy 2050, a report was commissioned regarding the 
energy perspectives until 2050 for Switzerland (Prognos 2012). This report forecasts three electricity 
demand scenarios and a number of electricity supply variants. New natural gas-fired power plants, 
extensive deployment of domestic renewables, and/or imported electricity are seen as possible 
future electricity supply options. There are several trade-offs between these supply options in terms 
of costs, climate change mitigation policies, electricity supply-demand balancing, electricity supply 
security etc. In particular, the source of imported electricity is a source of great uncertainty and 
highly depends on political and technological development in the four countries bordering 
Switzerland and the European electricity market, given that a stronger integration of the EU energy 
market has been proposed for improving economic efficiency and security of supply across the 
member countries (European Commission 2010). The policies within Europe are also aimed at 
moving towards an energy system with larger contribution from renewable sources of energy 
(European Commission 2011a), likely increasing the share of decentralized/intermittent renewable 
technologies, which would make the supply and demand balancing even more complex.5 Accordingly, 
to understand the plausible future development pathways of the Swiss electricity system, it is 
necessary to analyze it in conjunction with the development of the EU electricity market in general 
and the bordering countries in particular. 

There are several Swiss specific analytical tools (Atukeren et al. 2008; Laurent et al. 2005; Ochoa/van 
Ackere 2009; Operations Research Decisions and Systems (ORCDECSYS) 2011; Prognos 2010; 
Schlecht/Weigt 2014; Weidmann et al. 2012) that have helped in understanding the development of 
the Swiss electricity system in one way or the other. But these models either consider only shorter 
term impacts (i.e., pure dispatch models such as SwissMod by Schlecht/Weigt 2014), or focus solely 
on the long-term development without having detailed intra-annual time resolutions (e.g. Swiss 
Markal Model by Weidmann et al. 2012). The Swiss TIMES Electricity Model (STEM-E) developed at 
PSI (Kannan/Turton 2011) was the first attempt at combining these features, and has enabled the 
understanding of plausible transition pathways for the electricity sector. The model has a very 
detailed depiction of the Swiss electricity system, but being a single region model, has a very 
simplified representation of electricity import and export, thereby falling short when addressing 
some of the uncertainties associated by technology deployment or electricity import from the neigh-
bouring countries.  

On the other hand, there exist numerous European electricity models (DLR 2013; EWI 2008; Gutschi 
et al. 2009; Johnsson 2011; Lohwasser/Madlener 2009; Reiter 2010; Simoes et al. 2013; von 
Weizsäcker/Perner 2001; Voogt 2001). Despite their usefulness, these EU models have their limita-

                                                            
 

5 However, Switzerland with its large dam hydro resources and the potential for pumped hydro storage may be well placed 
to exploit opportunities presented by a more renewable-intensive European electricity system. 
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tions in addressing Swiss-specific electricity, climate and energy policies because in almost all cases 
the representation of Switzerland is highly aggregated or simplified. Moreover, most of these existing 
tools do not combine long time horizons with detailed electric load curve representations (see Figure 
4). Combining a high level of intra-annual details and horizons in a technologically explicit model at 
the EU level would be complex and challenging to solve (Connolly et al. 2009; Johnsson 2011; 
Pfenninger et al. 2014; Welsch et al. 2014). 

 

Figure 4: European electricity models 

Given the availability of the STEM-E model and its proven usefulness in addressing Swiss specific 
policies (Kannan/Turton 2012), the idea of extending the STEM-E model to include the four neigh-
bouring countries has been undertaken in the ELECTRA project. This new model, CROSSTEM (CROSs-
border Swiss TIMES Electricity Model), addresses most of the aforementioned uncertainties and, as 
Switzerland’s four neighbours account for over half of the EU electricity generation, impacts of EU-
wide policies on Switzerland can be captured (Pattupara/Kannan 2014a and 2014b).  

2.1.2 Analytical framework 

The analytical framework used to develop the CROSSTEM model is TIMES (The Integrated 
MARKAL6/EFOM7 System framework) (Loulou et al. 2005). TIMES is a perfect foresight, cost 
optimization modeling framework, which identifies the “least-cost” combination of technologies and 
fuel mix based on the operational characteristics and availabilities of the technologies, to satisfy 
exogenously given energy (or in our case electricity) demands. Technology characteristics such as 
investment costs, operational and maintenance costs, fuel resource costs and availability, energy 
conversion efficiencies, availability factors, construction times/costs, decommissioning costs etc. can 

                                                            
 

6 MARKAL – MARKet ALlocation. 
7 EFOM – Energy Flow Optimisation Model 
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be incorporated into the model (Loulou et al. 2005). TIMES allows for prospective analysis over a long 
time horizon (50+ years), while at the same time being able to represent a high level of intra-annual 
detail in demand and supply (e.g. load curves). It also has an enhanced storage algorithm, enabling 
the modeling of pumped (and other electricity) storage systems (ETSAP 2008). The TIMES framework 
is particularly suited to explore possible energy futures based on contrasted “what-if” scenarios. An 
overview of the TIMES framework is shown in Figure 5. 

 

Figure 5: TIMES model flow diagram (Source: Gargiulo 2013) 

2.1.3 Model development 

CROSSTEM is developed using a TIMES input data interface known as VEDA (Versatile Data Analyst). 
The data flow of the VEDA interface is shown in Figure 6. Data and scenario assumptions are fed into 
the TIMES code via the VEDA-Front End (FE), which converts inputs from Excel files to a GAMS 
readable format. The TIMES equations are solved in the GAMS environment with the CPLEX solver, 
producing a text output which is imported in the VEDA-Back End (BE) to analyze model outputs 
(Kanors 2008). 

2.1.4 Model structure 

The basic model structure consists of the number of regions, time horizon, number of inter-annual 
time slices, currency units etc. which are described in the following subsections. 

2.1.4.1 Regions 

CROSSTEM is an extension of the STEM-E model, covering the whole electricity system of Switzerland 
(CH) and its four neighbouring countries, viz. Austria (AT), France (FR), Germany (DE) and Italy (IT). In 
addition to this, there is an implicit external region termed “Fringe”, which represents the fringe 



30/174 

 
 

countries of the CROSSTEM regions (see Figure 7). This region is defined to account for the electricity 
trade between the CROSSTEM countries and their neighbours (e.g. electricity trade of Germany with 
Denmark, Poland etc.). This external region (also referred to as the rest of the world) also accounts 
for imports and exports of energy commodities (e.g. gas, uranium). 

 

 
                                                                                                 Source: Kanors 2008 

Figure 6: VEDA system for TIMES modeling  

 

Figure 7: CROSSTEM and "FRINGE" regions 

2.1.4.2 Time horizon 

CROSSTEM has a time horizon of 60 years (2010-2070) divided into 14 unequal time periods. The first 
two periods consist of one (2010) and two (2011-2012) years, respectively, for model calibration 
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purposes, while the rest of the time horizon has 12 five-year periods (see Table 1). All years within a 
time period are considered identical, with all the quantities (capacities, commodity flows, operating 
levels etc.) applying to each year in the period, except capacity investment which is usually made 
only once in a period (Loulou et al. 2005). The middle year of a time period is known as the milestone 
year and results are displayed for the milestone years. For example, the year 2015 represents the 
time period 2013-2017 (see Figure 8 and Table 1). The TIMES framework is flexible to modify the 
length of the periods and milestone years. 

Table 1: Modeling time horizons in CROSSTEM 

Period number Period length (years) Actual time periods Milestone year 

1 1 2010 2010 

2 2 2011-2012 2011 

3 5 2013-2017 2015 

4 5 2018-2022 2020 

↕ ↕ ↕ ↕ 

13 5 2063-2067 2065 

14 5 2068-2072 2070 

 

2.1.4.3 Time slices 

In addition to time periods, the model also has time divisions within a year, and these are known as 
(intra-annual) time slices (see Table 2). The CROSSTEM model represents 4 seasons in a year (Spring, 
Summer, Fall and Winter) and three different types of days in a week (Weekdays, Saturdays and 
Sundays), to model the variations in electricity demand and supply patterns of the regions (see also 
Kannan/Turton 2011). Each day is further split into 24 hours, thereby enabling the representation of 
hourly load-curves for demand and supply (see Figure 8). Thus, the 8760 hours of a year are repre-
sented in the model with 288 representative hours (time slices). 

Table 2: Definition of seasonal and inter-annual time slices in CROSSTEM 

Seasonal Weekly days Diurnal hours 

Summer (SUM-): June – August Weekdays (WK-): Monday – Friday 

Saturdays (SA-): Saturdays 

Sundays (SU-): Sundays and Swiss 
national holidays 

D01, D02, D03, 
……………… D24 

Spring (SPR-): March – May 

Winter (WIN-): December – February 

Fall (FAL-): September – November 
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Figure 8: Intra-annual details in CROSSTEM 

2.1.4.4 Currency unit 

The objective function of the model is the discounted sum of all the annual electricity systems costs 
over the entire time horizon (discounted to the base year 2010). All cost data is given in Swiss Francs 
from 2010 (CHF2010). 

For the analysis presented in this report, a discount rate of 4.5% has been used for the entire model 
horizon, in conjunction with the discount rate used in the GENESwIS and GEMINI-E3 models (see 
section 2.2.4.1). This discount rate is used to calculate the annuities on capital investments, as well as 
to discount the future costs. Technology specific discount rates could be applied, but have not been 
used for this project. The discount rate is a parameter for future sensitivity analysis. 

2.1.5 Reference Energy System (RES) 

A reference energy system connects all the different elements in the electricity system, from primary 
energy resource supply to end use electricity demand, and is represented in CROSSTEM for all the 
five regions. There are around 200 technologies8 interconnected by more than 60 commodities9 to 
define the whole electricity system. The technologies in the model include a range of electricity 
power plants, interconnectors for electricity trade between regions, ad-hoc electricity distribution 
grid, storage technologies (pumped hydro storage), etc. Commodities include primary energy 
resources (natural gas, oil, hydro etc.) to end use demands and emissions, which connect the various 
technologies. Figure 9 shows a section of the RES from CROSSTEM.   

                                                            
 

8 Process technologies in TIMES include a range of technologies, which are classified into the following groups according to 
their role in the energy system: Electric power plants (ELE), Storage plants (STG), inter-regional exchange (IRE), demand 
devices (DMD), renewables (RNW), mining (MIN), imports/resources (IMP).  
9 Commodities can also be classified as: Energy (NRG), emissions (ENV), demand (DEM), material (MAT) and financial (FIN). 
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Primary resources are modeled as either renewables or imported fuels, which feed into electricity 
generation technologies. Electricity generated from these technologies can be used at the end-use 
sectors, exported to other regions in the model, or stored. CO2 from fossil fuels are tracked at the 
resource consumption level. The following sections describe the various RES components in detail. 
Only aspects common to all regions are described in the following subsections, with country-wise 
specifics given in the appendix (see Appendix A).  

 

Figure 9: Illustration of the Reference Energy System (RES) in CROSSTEM 

2.1.6 Electricity end use sectors 

Electricity demand is modeled as energy service demand (ESDs). The Swiss region has five end use 
sectors viz. residential (R), service (S), transport (T), industry (I) and agriculture (A) so as to be 
synchronized with the end use sectors in the CGE model. The other four regions (Austria, Germany, 
France and Italy) have one aggregated electricity end use sector each.  

Electricity demand is one of the key exogenous10 inputs to the model. Literature is abundant with 
projections of different electricity demand trajectories using various modeling frameworks and 
demand drivers such as population growth, economic development, national and EU policies, 
technology spillover etc. (Andersson et al. 2011; Prognos 2012; Densing et al. 2014; European 
Commission 2013).  

Figure 10 shows the electricity demand assumptions in CROSSTEM for the scenario analysis pre-
sented in section 2.2.4.1. The electricity demand for Switzerland is taken from the weiter wie bisher 
scenario of the Energy Perspectives 2050 (Prognos 2012). For the four surrounding countries, electri-

                                                            
 

10 Although the electricity demand is taken from the CGE and GEMINI-E3 models in the coupled framework, a reference 
demand is given exogenously for the first iteration to produce a reference price for the top-down model. 
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city demands are taken from the reference scenario of the EU Trends to 2050 study (European 
Commission 2013), which incorporates all binding targets set out in the EU legislation regarding 
development of renewable energy and reductions of greenhouse gas (GHG) emissions, as well as the 
legislated energy efficiency measures.  

 

Figure 10: CROSSTEM Electricity demand evolution 

For the intra-annual variations in electricity demand, electricity load curves from the year 2010 
(ENTSO-E) are adopted for all countries for the entire model horizon. For example, Figure 11 shows 
the average electricity demand curves for Italy in 2010 (refer to Appendix A for other countries). 
However, the assumption of using 2010 load curves for future years does not take into account for 
instance the increasing electrification in the transport sector or space heating applications in the 
future (e.g. electric vehicles, heat pumps), which could significantly alter the shape of the load 
curves.  

 

 

Figure 11: Electricity load curve 2010 (Italy) 
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2.1.7 Electricity generation technologies  

Electricity supply to the end-use sector(s) can be produced with a range of existing and new electri-
city generation technologies, which are described in the following subsections. Since there is no 
representation of heat demand in CROSSTEM, combined heat and power (CHP) technologies are not 
modeled. For model calibration purposes, existing CHP technologies are added to an equivalent fuel-
based electricity generation technology. For example, natural gas CHP generation is allocated to gas 
power plants.  

2.1.7.1 Existing technologies 

All the existing electricity generation technologies in 2010 from the five countries have been included 
at an aggregated level by fuel and technology. A list of existing technology categories with their 
capital stock and technical characteristics for each country is given in Appendix A. The model is 
calibrated for 2010 (see Figure 12) using OECD & ENTSO-E databases (ENTSO-E 2013; OECD iLibrary), 
as well as data from the respective national statistics (BFE 2010; BMLFUW 2009; BMWi 2011; 
European Energy Exchange 2014; Réseau de transport d'électricité 2012; TERNA 2014). 

 

Figure 12: Electricity statistics 2010  

All the existing technologies have fixed and variable operation and maintenance (O&M) costs, which 
are assumed to be the same as for the corresponding future technologies (see Table 5). Capital costs 
have been included for certain technologies11, purely for purposes of coupling with the CGE model, 
which requires annuities of existing capital stock. Thus, we assumed capital costs similar to the values 
used for new technologies. However, this assumption does not affect the model solution, because (a) 

                                                            
 

11 Mainly for capital intensive technologies like hydro, nuclear, solar PV and wind technologies. 
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electricity generation from existing technologies is based on their O&M and fuel costs; and (b) when 
two scenarios are compared, the annuity of existing stock would balance out. Capacity factors12 and 
efficiencies have been calculated for the last decade (2000-2010), at the aggregated technology level, 
and their statistical averages are applied across the technologies for the future years. 

2.1.7.2 Hydro power 

Hydro power plants are classified into three categories – dam-, river- and pumped storage hydro. The 
river hydro is further split into two sub categories (small and large) for countries where data is 
available (namely Switzerland and Italy). All hydro plants are assumed to have a lifetime of 80 years, 
with existing plants having to be retired or refurbished at the end of their life. Refurbishment is 
assumed to be the replacement/repair of existing equipment (turbine/generator) and/or desilting 
the reservoir. The cost of refurbishment is assumed to be 35% of the investment cost of a new hydro 
power plant (Kannan/Turton 2011). 

Since there are no large variations within daily or weekly outputs of river hydro plants, they have 
been modeled as seasonal base-load power plants, i.e. output within a season remains stable, sub-
jected to their seasonal availability factors. Monthly river-hydro availability factors of Switzerland and 
the four neighbouring countries are shown in Figure 13, based on which the seasonal availability 
factors are estimated (BFE 2010; E-Control 2014; ENTSO-E 2013; personal communication with M. 
Gaeta, ENEA Italy 2014). Swiss data was adopted from the STEM-E model (see Appendix A).  

 

Figure 13: Monthly availability factors for river run-off plants  

Dam and pumped hydro plants are modeled as flexible (i.e. dispatchable) electricity generation 
technologies, subjected to seasonal availability of reservoirs. Similar to river hydro plants, dam hydro 
plants also have seasonal variations13, which are represented by seasonal maximum availability 
factors and are shown in Table 3 (BFE 2010; E-Control 2014; ENTSO-E 2013; TERNA 2014). A mini-
mum and maximum availability factor has also been implemented at the daily level to prevent the 

                                                            
 

12 Capacity factors are used as availability factors of the existing technologies for the future years. 
13 Seasonal variations are estimated based on monthly electricity generation and installed capacity. 
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dam hydro plants from running only during weekdays, when the electricity demand and costs are 
higher than on Saturdays and Sundays.  

Table 3: Seasonal availability factors for dam hydro plants  

 Summer Winter Fall Spring 

Austria 29% 25% 37% 9% 

Switzerland 32% 22% 38% 9% 

Germany 28% 23% 23% 26% 

France 26% 28% 19% 29% 

Italy 31% 21% 23% 25% 

 

The pumped storage system is modeled as an intra-annual storage technology (STGTSS). Electricity 
can be stored at hourly or daily levels, while seasonal storage (storage of summer electricity for 
winter supply) is not enabled. A storage and conversion loss of 20% is assumed for the pumped 
hydro plants (Kannan/Turton 2011). 

2.1.7.3  Nuclear power 

Nuclear power plants are characterized as seasonal base-load plants. For Switzerland, all five nuclear 
plants are modeled individually, whereas for Germany and France, the total capacity is represented 
at an aggregated level. Figure 14 shows the retirement schedule of nuclear plants in the three 
countries. All the existing plants in Switzerland and France are assumed to have a lifetime of 50 
years, whereas plants in Germany are phased out by 2022 according to their national strategy (World 
Nuclear Association 2014).  

 

 

Figure 14: Retirement schedule of existing nuclear capacity 

All the nuclear plants have an annual availability factor, as well as seasonal availability factors. 
Seasonal variability of nuclear plants arises mainly due to varying demands between seasons, as well 
as scheduled maintenance operations carried out during low demand seasons (typically summer). 
Seasonal (ENTSO-E) and annual (OECD iLibrary) availability factors are estimated based on historical 
generation, and are given in Table 4. 
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Uranium for the nuclear power plants is modeled as an imported fuel. The spent fuel from the 
nuclear reactor is not traced, which implies that there are no cost data for spent fuel reprocessing or 
nuclear waste disposal in the model. However, a federal levy of 0.2 Rappen/kWh for the decommis-
sioning funds (Stilllegungsfonds für Kernanlagen) and 0.8 Rappen/kWh for the disposal funds 
(Entsorgungsfonds für Kernkraftwerke) are modeled as tax on electricity from nuclear plants in 
Switzerland (BFE 2014; Kannan/Turton 2011). For consistency, the same approach has been adopted 
for France and Germany. 

Table 4: Nuclear park availability factors 

 Germany Switzerland France 

Annual 85% 93%14 81.5% 

Summer 76% 68% 69% 

Winter 95% 98% 98% 

Spring 79% 96% 80% 

Fall 91% 84% 79% 

 

2.1.7.4 Thermal power  

All large thermal power plants other than nuclear (i.e. gas, coal, oil, and biomass/waste) are modeled 
as base load power plants. The model also has provisions for a flexible gas power plant to operate as 
a dispatchable or load following plant. These flexible power plants are assumed to have an efficiency 
penalty to reflect ruptured/part-load operational characteristics.  

As mentioned before, since there is no heat demand, CHP technologies are not modeled and electri-
city generation from the existing CHP generation is allocated to the respective electricity generation 
technology. Historical average capacity factors are applied as the availability factors (of existing 
technologies) for the future years. 

2.1.7.5 Renewables 

New renewable technologies (non-hydro) such as solar photovoltaic (PV) and wind (onshore and off-
shore) are characterized with country specific hourly availability factors. All other renewable techno-
logies such as geothermal and tidal are modeled as seasonal base-load plants. Efficiency is assumed 
to be 100% for all the renewable technologies, but capacity and availability constraints are applied to 
reflect resource and engineering potentials (see Table 6 in section 2.1.8). The following sections 
describe the renewable technologies in detail.  

                                                            
 

14 Average of the five nuclear plants in the model. See Appendix for individual plant availability factors. 
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Solar Photovoltaic (PV) 

Monthly and hourly solar irradiations were analyzed for selected locations from each country, for a 
tilt angle of 35 degrees from the azimuth (JRC 2013). The hourly and monthly availabilities are 
normalized to annual capacity factors for solar PV, and the hourly capacity factors are implemented 
as hourly availability factors. An example for Germany is shown in Figure 15 (see Appendix A for 
other locations). 

 

Figure 15: Hourly solar irradiation and solar PV availability factors (Berlin & Munich, 
Germany) 

Wind Energy 

Hourly wind based electricity generation profiles from all the countries, for the years 2010-2013 were 
used to estimate the aggregated hourly capacity factors, and were implemented as hourly availability 
factors in the model. An example of the wind profile for Austria (Austrian Power Grid 2014) is given 
in Figure 16. It can be seen that the wind based electricity generation is usually higher during the 
night time than during the day. One can also notice seasonal variability, with the availabilities 
generally lowest during the summer. It is important to note that the wind turbines are not forced to 
follow this wind profile. Instead, the maximum output from wind turbines is restricted by the 
availability factor. Thus, the model could curtail generation from wind turbines in order to balance 
electricity supply and demand.  

 

Figure 16: Availability factors for wind turbines (Austria) 
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Others 

Geothermal, tidal and concentrated solar power (CSP) plants are characterized as seasonal base-load 
plants. Biomass, wood and waste incinerators are characterized as base-load plants. Although these 
existing plants are mainly CHP, we modeled them as electricity plants (since CROSSTEM does not 
cover the heat sector). Since total installed capacity of CHP is relatively low (for example in 
Switzerland, CHP accounts for less than 3% of the total electricity generation capacity), this assump-
tion is not significant. 

2.1.7.6 New and future technologies 

A range of new and future technologies have been included to supplement the existing technologies. 
All existing technology categories are included for future technologies. In addition, some newer 
technologies such as Carbon Capture and Storage (CCS) and Solar CSP are also introduced. The 
techno-economic characteristics of the new technologies are given in Table 5, page 41. The 
technologies also have a learning curve with vintages, reflecting capital cost reduction and efficiency 
improvements over time. Figure 17 shows capital cost reduction for selected renewable techno-
logies. For large scale power plants, construction times are included to factor in lead times and 
interest costs during construction. Similarly, decommissioning time and costs are also incorporated. 
Most of the technical and cost data for the new technologies are adopted from estimates by the PSI 
Technology Assessment group (Paul Scherrer Institute 2010), with other sources (IRENA 2012; Lako 
2010; Resch et al. 2006; Schröder et al. 2013) used for updates and cost comparisons. It is worth 
noting that CROSSTEM is a spatially aggregated model and therefore the interconnectors between 
the regions and transmission and distribution networks within each region are not explicitly 
modeled. However, to account for these capacities, an ad-hoc interconnector and T&D grid is 
included with a simplified cost function. Investment costs of interconnectors were taken from Oden-
berger/Unger 2011, while their O&M costs were based on Swissgrid network usage charges. 

 

Figure 17: Investment costs of renewable technologies 
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Table 5: Technical characteristics and cost of new technologies 

Technology 
Description 

Vintage 
Year 

Life 
time 

(year) 

Eff 
(%) 

AF+ 
(%) 

Capital 
Cost 

(CHF/kW) 

FOM Cost 
(CHF/kW/

year) 

VOM Cost 
(CHF/GJ) 

Lead 
time 

(year) 
Hydro (River) 2015 80 80% 63% 6'560 18.2 1.67 3 
Hydro (Dam) 2015 80 80% 27% 10'000 9.7 1.84 3 
  2030 80 80% 27% 8'000 9.7 1.84 3 
Nuclear: Gen2 (LWR) 2010 50 32% 80% 4'250 22.5 3.25 6 
                Gen3 (EPR) 2030 60 35% 80% 4'250 11.6 1.92 6 
                Gen4 (FBR) 2050 40 40% 80% 4'750 55.1 0.18 6 

Coal: SCPC* 2010 30 43% 80% 2'350 40.3 0.69 3 
  2030 35 50% 87% 2'150 45.1 0.79 3 
  2050 35 54% 87% 2'050 45.1 0.79 3 
Coal: SCPC with CCS 2030 35 43% 87% 3'200 69.3 0.92 3 
  2050 35 49% 87% 2'900 69.3 0.92 3 
Lignite$: SCPC 2010 40 40% 86% 2'450 52.0 0.69 3 
  2030 40 43% 86% 2'241 58.2 0.79 3 
  2050 40 49% 86% 2'137 58.2 0.79 3 
Lignite$: SCPC with 
CCS 
  

2030 40 33% 86% 4'480 95.0 0.92 3 
2050 40 41% 86% 4'060 95.0 0.92 3 

Natural Gas: GTCC# 
Base load 
  
  

2010 25 58% 82% 1'150 7.8 6.72 3 
2030 25 63% 82% 1'050 7.8 6.72 3 
2050 25 65% 82% 1'050 7.8 6.72 3 

Natural Gas: GTCC 
with CCS 
  

2030 25 56% 82% 1'700 15.6 13.44 3 
2050 25 61% 82% 1'500 15.6 13.44 3 

Solar: PV 
  
  

2010 40 100% 11% 6'500 5 1 0 
2030 40 100% 11% 2'850 5 1 0 
2050 35 100% 11% 1'950 5 1 0 

Wind: Onshore 2010 20 100% 14% 2'150 44 14 0 
  2030 20 100% 14% 1'750 28 9 0 
  2050 20 100% 14% 1'750 28 9 0 

Wind: Offshoreβ 2010 20 100% 44% 3'350 87 9 2 
  
  

2030 20 100% 44% 2'350 58 6 2 
2050 30 100% 48% 2'100 22 14 2 

Geothermal 2020 30 100% 80% 13'825 134 12 3 
  2030 30 100% 80% 6'650 87 29 3 
Waste Incinerator 2020 30 15% 15% 2'350 40 1 3 
Pump hydro 2010 80 80% 27% 7'000 10 2 3 
Tidal Power plant ^ 2010 25 100% 30% 2'850 49 - 3 

Solar: CSP& 2010 25 100% 33% 6'449 65 2 3 
  2030 25 100% 33% 3'702 65 2 3 
 2050 25 100% 33% 3'295 65 2 3 
 Interconnector 2010 50 100% 90% 434 1.2 0.4 0 

+ All renewable availability factors given in this table are for Switzerland. AFs vary across different regions, 
especially those for renewable technologies, as detailed in the appendix.  
* Supercritical pulverized coal. 
$ Technology only available in Germany. 
# Gas turbine combined cycle – The data given is for base-load plants. For flexible gas plants (merit order), 
the same cost numbers have been used, but a 20% penalty is applied to efficiency and availability factor to 
account for interrupted operation. 
β Technology only available for Germany, France, and Italy. 
& Technology only available for Italy. 
^ Technology only available in Italy, France. 
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Non-fossil fuels, including electricity imported from fringe countries15 are assumed to be carbon free. 
Carbon capture and storage (CCS) technologies are assumed to have a capture efficiency of 90% and 
to be available from 2030 onwards. A capacity reserve margin of 30% is assumed throughout the 
model horizon, and all technologies with the exception of wind and solar technologies contribute to 
the reserve calculation. Transmission and distribution losses of 5-7% are assumed based on historical 
values of each country. 

2.1.8 Energy resources 

Energy resources are modeled in three broad categories viz. imports (which include all fuels as well 
as electricity import), exports (electricity exports) and renewables (all renewables resources, inclu-
ding hydro). Energy resources are characterized with resource availability and cost. There are no 
specific resource constraints for the fossil fuels, and their cost numbers are adopted from the World 
Energy Outlook 2010 (IEA 2010). Cost of uranium fuel rods for nuclear power plants are adopted 
from Paul Scherrer Institute 2010 (see Figure 18). 

Renewable resource potentials implemented in CROSSTEM are based on various national and EU-
wide studies (Akademien der Wissenschaften Schweiz 2012; BMLFUW 2009; Chamorro et al. 2014; 
Ess et al. 2012; European Commission 2013; Kannan/Turton 2011; Beurskens et al. 2011; Lako 2010; 
Lanati/Gelmini 2011; DLR et al. 2012; Resch et al. 2006; Réseau de transport d'électricité 2012). The 
potentials are linearly interpolated from the actual deployment in 2010 to the 2050 values. There are 
high uncertainties regarding the renewable resource potentials, and it is an area for parametric 
sensitivity analysis, such as scenarios enabling an early uptake of the full renewable potential (which 
would make sense for a stringent climate target scenario).  

 

Figure 18: Fuel costs – WEO 2010 

                                                            
 

15 Fringe countries are the countries surrounding the five regions in CROSSTEM. They are modeled as one external region, 
with the imports and exports between a CROSSTEM region and fringe region being limited to historical upper limits on an 
annual basis.  
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Table 6: Renewable resource potentials 

Energy resource Resource potentials (2050) (PJelc) 
AT             CH             DE            FR               IT 

Waste & biogas 3 8.1 21 16 18 
Biomass (wood) 23 13 191 65 76 
Solar PV 11 36 230 159 288 
Solar CSP - - - - 29 
Wind (onshore) 25 14 475 234.8 64 
Wind (offshore) -  461 332.2 129 
Geothermal 1 16 69 5 57 
Hydro (reservoir) 31 75 3.6 131 50 
Hydro (run of river) 117 58 86 117 145 
Tidal power - - - 5.2 0.03 

 

2.1.9 Electricity trade 

As a multi-region model, CROSSTEM has the option to trade electricity endogenously between the 
five countries based on their marginal generation costs. In addition, the model has the option to 
trade with the external fringe region as well. The model has the possibility to invest into new inter-
connector capacities. CROSSTEM is allowed full freedom with respect to the timing of the imports 
and exports at the time slice levels. However, constraints are applied at annual levels to keep 
historical trends in electricity trade. For example, Italy and Austria are traditionally net importers of 
electricity while France, Switzerland and Germany are net exporters. For the scenarios analyzed in 
section 2.1.11.1, these boundary conditions on trade are not allowed to change, i.e. net exporting 
countries cannot become net importers in the future and vice versa16. To avoid excessive import to 
circumvent stringent low carbon scenarios, net trade with the external fringe region is also bounded 
to the historical maxima. Import/export prices with the fringe region have been adopted from the 
ADAM project (Tyndall Centre for Climate Change Research 2010; Kannan/Turton 2012). An example 
is shown in Figure 19, which shows the exogenous import/export prices for fringe regions in the year 
2050.  

Table 7: Electricity trade matrix 

Trade CH AT FR DE IT OT* 
CH             
AT             
FR             
DE             
IT             
OT*             

 
* Denoting Fringe (external) region  

 
  Interconnector available 

  
 

  Interconnector unavailable 
   

                                                            
 

16 The trade constraints are introduced to prevent the model making investments in just one country and all other countries 
importing from that country. 
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The CROSSTEM countries can only trade with their adjacent neighbours, as shown in the matrix in 
Table 7. The interconnectors are assumed to have no energy loss and an annual availability of 90%, 
to account for annual maintenance (own assumption). 

 

Figure 19: Electricity trade prices to and from fringe regions in 2050 

2.1.10 Carbon dioxide emissions 

Carbon dioxide (CO2) emissions from fossil fuels are traced at the resource consumption level, with 
CO2 emission factors assigned to each fuel type given in Table 8. Non-fossil fuels, including imported 
electricity from fringe countries are assumed to be carbon-free. A CO2 emissions tax is applied based 
on the Emission Trading Scheme (ETS) price assumptions from the Energy Perspectives 2050 
(Prognos 2012), and ranges from 15 CHF/t CO2 in 2010 to 57 CHF/t CO2 by 2050. 

Table 8: CO2 emission factors 

Energy commodity CO2 emission (t/TJ) 

Lignite 116 

Coal 91 

Oil 78 

Gas 56 

 

2.1.11 Application of the CROSSTEM model 

In this section, some illustrative results are presented to demonstrate the features and capabilities of 
the CROSSTEM model and highlighting its advantages over the single region STEM-E model (also 
referred to as the CROSSTEM-CH model17). A set of scenarios with different boundary conditions on 
electricity trade and technology development in Switzerland and the neighbouring countries are 
defined and analyzed here. 

                                                            
 

17 CROSSTEM-CH is the Swiss module of the CROSSTEM model, where trade with the neighbouring countries is exogenous.  
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2.1.11.1 Scenario overview 

Three electricity supply scenarios have been analyzed in this section using the weiter wie bisher 
electricity demand of the Swiss Energy Strategy 2050. The scenarios are consistent with earlier 
studies analyzed using the STEM-E model (Paul Scherrer Institute 2012). However, with the 
CROSSTEM model, we have an improved framework that better represents international boundary 
conditions regarding source of electricity import and market for electricity export based on marginal 
costs of electricity generation in the neighbouring countries. The three scenarios comprise of a 
common set of assumptions and scenario specific boundary conditions, which are chosen to 
generate insights on the influences of policies in the neighbouring countries on the Swiss electricity 
system. Figure 20 provides an overview of the scenarios. Assumptions common to all scenarios 
include: 

• Electricity demand: Swiss demand is adopted from the weiter wie bisher scenario in the 
Energy Perspectives 2050 (Prognos 2012), and neighbouring countries’ demands are taken 
from the EU Trends to 2050 study (European Commission 2013)(See section 2.1.6.). 

• Nuclear power:  phase-out of existing nuclear plants in Switzerland and Germany, no new 
investments in nuclear technology except in France, where maximum new investment is 
capped to 2010 installed capacity. 

• Coal power: No investment in coal power is allowed in Switzerland. For neighbouring 
countries, a growth constraint is applied for new investments in coal and lignite18 fired 
power plants based on the coal capacity in the last 5 years, to prevent unrealistic capacity 
expansions in coal based power plants. 

• Electricity import/export: Traditional net importers of electricity (i.e. Italy and Austria) 
cannot become net exporters and traditional net exporters (France and Germany) cannot 
become net importers. These market/boundary conditions are very crucial assumptions, 
and small changes to these conditions would significantly affect the results. At the same 
time, it is also a strength of CROSSTEM that different boundary conditions can be analyzed 
under a what-if framework. 

• International energy and CO2 price assumptions: As described in sections 2.1.7 and 2.1.10 
respectively. 

Scenario 1 (Sc1)  

This scenario can be described as a business as usual scenario without any carbon constraints, and is 
comparable to the Gas scenario in Energie Spiegel 21 (Paul Scherrer Institute 2012), i.e. Switzerland 
has the option to build gas power plants while the neighbouring countries have a much wider range 
of electricity supply sources. Sc1 directly corresponds to the Baseline scenario in the coupled frame-
work (see sections 1.4.1 and 3.1.3.1). Switzerland is assumed to be self-sufficient in supply over the 
year, i.e. we do not allow net electricity imports/exports.  

                                                            
 

18 Available for Germany only. 
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 Framework  Coupled framework 

(GENISwIS + CROSSTEM-CH)# 

CROSSTEM## 

Scenario 
name 

 Baseline TAX NoGAS 
(imports) 

Sc.1 Sc.2 Sc.3 

Scenario 
description 

 Baseline TAX NoGAS 
(imports) 

Baseline  Baseline 
—LCEU 

Baseline 
NoGas 
—LCEU 

Sw
itz

er
la

nd
 

Electricity 
demand 

 WWB WWB* WWB* WWB WWB WWB 

Electricity 
supply 
variants 

Gas 
plants 

Yes Yes No Yes Yes No 

Imports No (S.S) No (S.S) Yes** No (S.S) No (S.S) Yes** 

CO2 cap  No No No*** No No Yes^ 

EU
 b

ou
nd

ar
y 

Electricity demand 

Not applicable 
(electricity import/export price 

are exogenously given) 

WWB WWB WWB 

CO2 cap  No Yes 
(95%  by 
2050)^ 

Yes 
(95%  by 
2050)^ 

     
# Only the CH region of CROSSTEM is coupled and the other regions (neighbouring countries) are turned off. 
## Endogenous trade among the regions is enabled (but not coupled with GENESwIS). 
* Converged demand differs from WWB. 
** Import is allowed up to an equivalent gas-based supply from the Baseline. 
*** An indirect cap applies, because gas plants are restricted. 
^ Applied on all 5 countries together. 
S.S - Self-sufficiency constraint for CH. 
Sc.1 → Sc.2, price of imported electricity is expensive, because the EU shifts towards low carbon/clean 
sources of electricity. 
Sc.2 → Sc.3, CH does not have cheap electricity from gas and relies on imported electricity to meet the 
demand.  
CO2 price – EU ETS prices as given in WWB, for all scenarios. 

Figure 20: CROSSTEM scenario matrix  

Scenario 2 (Sc2) 

This scenario is a variant of Sc1, where a decarbonization of the entire power sector is envisaged in 
Switzerland and the neighbouring countries. The CO2 emissions from all the five CROSSTEM countries 
are to be reduced by 95% of 1990 levels (or about 94% of 2010 levels) by 2050. Note that the CO2 cap 
is applied across all five regions in the model and is not country specific. Thus the model identifies 
least cost sources of low carbon electricity supply subjected to the technical, resources and trade 
constraints. This scenario highlights the influence of the neighbouring countries’ electricity system on 
electricity supply and operational patterns. 
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Scenario 3 (Sc3) 

This scenario is the same as the Sc2 scenario, with an additional constraint included in Switzerland 
that restricts investment in new gas power plants. Since the assumed renewable resource potential 
in Switzerland is not adequate to meet its electricity demand, the self-sufficiency constraint has been 
relaxed so that Switzerland can become a net importer of electricity. However, the level of net 
electricity imports is limited to the level (in PJ) of gas imports in the TAX scenario of the coupled 
framework (see section 1.4.1, Figure A 28 in Appendix A), to prevent exorbitant imports of electricity 
from other regions. It is worth noting that relaxing the self-sufficiency constraint enables the model 
to import cheap electricity from the neighbouring counties, if cost effective. This scenario is 
analogous to the NoGAS scenario in the coupled framework. 

2.1.11.2 Results 

This section details the results of the CROSSTEM scenarios described above. The results discussed 
here mainly focus on Switzerland, with results of the neighbouring countries given in Appendix B. In 
section 2.1.12, results from the CROSSTEM model are compared to results from the single region 
CROSSTEM-CH model to highlight the benefits from the new framework.  

2.1.11.2.1 Electricity generation mix 

The Swiss electricity generation mix and installed capacity for the three scenarios are given in Figure 
21 and Figure 22, respectively. In the Sc1 scenario, new gas power plants (both base-load and flexible 
plants) gradually replace the existing nuclear plants. By 2020, 365 MW of nuclear capacity is retired 
(Mühleberg in 2019), while the electricity demand increases by 5%. In this time, the model invests in 
around 1.9 GW of base load type natural gas generation capacity. By 2035, the remaining nuclear 
capacity19 is replaced by a combination of base-load (4.2 GW) and flexible (3.2 GW) gas power plants. 
The flexible gas generation capacity enables better supply-demand balancing in conjunction with the 
imports/exports from the neighbouring countries, which also enables Switzerland to generate more 
trade revenue by exporting more electricity during peak hours (see section 2.1.11.2.2). By 2050, 51% 
of the generated electricity is from hydro, 46% from gas power plants and the remaining 3% from 
new renewables (primarily waste and biogas). 

In Sc2, the electricity generation mix in the near term (2020) appears identical to that in Sc1, but the 
total installed capacity of gas plants is 3 GW compared to 1.9 GW in Sc1. The higher installed capacity 
is because of the higher costs of imported electricity in Sc2, especially in winter due to the CO2 
constraints. I.e. sources of zero carbon electricity in winter are limited partly due to expensive 
renewable technology costs during the earlier periods. Hence the model minimizes imports during 
certain hours (see section 2.1.11.2.2) by generating more electricity locally, especially in winter, 
which in turn reduces the total capacity factor of the gas plants. By 2035, investments in gas CCS 
(carbon capture and storage) as well as wind technology are required to comply with the CO2 
emission cap. By 2050, all thermal power is produced by gas CCS power plants (3.1 GW, 29% of total 
generation), while solar PV, wind and other renewables contribute to around 20% of the generation 
mix. Investments in renewable technologies are required due to the CO2 emission cap as well as the 

                                                            
 

19 Although the last nuclear power plant in Switzerland (KKW Leibstadt) goes offline in 2034, 2035 still shows that 2.5% of 
the total electricity generation comes from nuclear. This is because the milestone year displays an average of all the years 
within that time period. 
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self-sufficiency constraint. The emission cap prevents more investments in gas CCS plants due to 
residual emissions (CCS plants capture only 90% of the total emissions), while the self-sufficiency 
constraint prevents the import of cheap electricity from the neighbouring countries. The higher cost 
of electricity also means a reduced pumped hydro usage compared to Sc1, due to the associated 
energy losses in pumped hydro.  

 
Figure 21: Electricity generation mix (Switzerland) 

 
Figure 22: Installed capacity (Switzerland) 

In Sc3, with the restriction on investments in gas plants and the relaxation of the self-sufficiency 
constraint, the cost optimal option for Switzerland is to replace the existing nuclear capacity with 
imported electricity. By 2035, almost 40% of the electricity demand is imported, and by 2050 the 
share of imported electricity increases to 46%. By relaxing the self-sufficiency constraint, Switzerland 
is able to let the neighbouring countries invest in cheaper technologies and import the electricity, 
rather than having to build expensive gas CCS plants or renewables which have less favourable 
conditions (e.g. lower capacity factors for renewables) in Switzerland. Where this additional invest-
ment is made is shown in Figure 23. 
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The figure shows the relative shares in the electricity generation mix for the five countries in the base 
year (2010) and in the year 2050 for all three scenarios. Since the boundary conditions for the 
neighbouring countries are identical for both Sc2 and Sc3, the difference in the electricity generation 
mix between these two scenarios is caused by the relaxation of the self-sufficiency constraint in 
Switzerland. It is observed that for Italy, Austria and Germany, there are no visible variations in the 
electricity generation mix between the two scenarios. France on the other hand has an increased 
share of renewables in Sc3 compared to Sc2. As the total installed capacity and production from 
nuclear and hydro plants in France is constant across three scenarios (see Figure B 1 and Figure B 2 in 
Appendix B), the increasing share of renewables shown in Figure 23 means an increase in the 
installed capacity of renewables. In fact, France invests in an extra 15 GW of wind capacity and 2 GW 
of solar PV capacity. Both wind and solar PV are more cost competitive than gas CCS plants by 2050, 
which prompts Switzerland to import the cheaper electricity from France. At the same time, France 
has to invest in higher renewable capacity, but generates additional trade revenue by exporting the 
electricity to Switzerland (see section Figure B 3 in Appendix B). It is worth recalling that due to the 
trade constraints (see 2.1.11.1), only France and Germany can be net exporters, which limits other 
regions from investing in higher renewable capacities. It is also important to note that the ‘no gas 
plants’ constraint is not affecting the results for Switzerland (the constraint is loose) and the 
relaxation of the self-sufficiency constraint is enough to obtain the results discussed above. This indi-
cates that the limits on net imports is quite generous (120 PJ in 2050, see Figure A 28 in Appendix A), 
as there is still unexploited renewable potential in Switzerland. Nonetheless, the restriction on gas 
plants is still applied to be consistent with the coupled framework scenarios (NoGas, see section 
1.4.1).  

 

 
Figure 23: Electricity generation mix of CROSSTEM countries (2050) 
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2.1.11.2.2 Generation schedule  

One of the main features of the CROSSTEM model is its ability to depict hourly electricity load 
patterns. The hourly supply and demand balance curves of Switzerland for a winter weekday in 2050 
for all three scenarios are shown in Figure 24. The supply profile of other seasons and days are given 
in Appendix C. In the figure, electricity demand (blue line) and supply mix are shown in the upper 
panel, while the lower panel depicts electricity export (grey shade), and consumption by pumped 
hydro (light blue shade). The red line in the upper panel is the marginal cost of electricity supply.  
Unlike dispatch-type models, the marginal cost from CROSSTEM is not the short-run marginal cost of 
generation, but the long-run marginal cost of electricity by accounting for required capacity. 

 

 
Figure 24: Electricity generation schedule of Switzerland on a winter weekday in 2050 

In Sc1, electricity supply from base load generation plants (natural gas and river hydro) covers almost 
84% of the demand. The rest of the demand is met with a combination of imported electricity (during 
early morning hours 00:00-08:00) and flexible gas and dam hydro plants (scheduled during 08:00-
22:00). Some of the imports are stored via pumped hydro during 03:00-05:00. The surplus electricity 
production from the gas and hydro plants is exported. In addition, the pumped hydro is also 
scheduled during 8:00-22:00 and exported.  
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In Sc2, due the CO2 constraint, Switzerland does not have similar levels of base load capacities as for 
Sc1, with only around 39% of the demand covered by base load gas CCS plants and river hydro (vs. 
84% in Sc1). There is a higher reliance on imported electricity throughout the day, with solar PV and 
dam/pumped hydro plants reducing the level of imports during peak hours (08:00 – 00:00). Exports 
in winter are greatly reduced in this scenario compared to Sc1. The source of electricity import and 
market for the export for Sc2 is further elaborated in section 2.1.11.2.3 below. 

In Sc3, in the absence of gas plants (due to the constraint) and renewable technologies (due to high 
costs compared to imported electricity), electricity imports are required throughout the day, with 
only 16% of the demand covered by base-load river hydro plants. As observed with Sc2, flexible 
hydro plants are scheduled during peak hours to reduce imports. A part of the outputs from 
dam/pumped hydro is also exported from 16:00-00:00.  

While comparing the marginal costs in Figure 24, Sc2 displays the highest marginal costs amongst the 
three scenarios. This is due to a combination of the CO2 emissions cap which increases cost of 
imported electricity compared to Sc1, and the self-sufficiency constraint which forces investments in 
expensive gas CCS technology. The latter is inferred from insights obtained from Sc3. Surprisingly, Sc3 
has the lowest marginal costs – even lower than the Sc1 scenario which does not have any CO2 
emission constraints. This indicates that Switzerland has to pay a high cost for the gas based genera-
tion to fulfil the self-sufficiency constraint. Otherwise, cheaper import options are available else-
where in the neighbouring countries.  

2.1.11.2.3 Electricity trade – source of import and market for export 

As will be explained in section 2.1.12, one of the main advantages of CROSSTEM over a single region 
electricity model is that the trade is endogenous and based on marginal cost of generation. This 
means that in order to import electricity in one region, there has to be a surplus electricity genera-
tion in at least one of the other regions. Hence in CROSSTEM the source of electricity import and 
market for export can be traced to understand the underlying drivers. To illustrate this, Figure 25 
shows electricity generation schedule on a winter weekday in 2050 for Sc2, for all five countries with 
their source of import and market for export. The top panel shows the electricity generation 
schedule while the middle and lower panels show countries from/to which electricity is 
imported/exported.  

We start with the generation schedule for Switzerland, which has already been described above (see 
Figure 24). Electricity is imported almost throughout the day.  The majority of the imports are coming 
from Germany, with minor supply from France, Italy and Austria during the early morning hours 
(00:00-07:00). Switzerland exports electricity during the evening hours (16:00-00.00) to Italy. 

The German electricity schedule shows that there is indeed overproduction of electricity throughout 
the day from its large wind and thermal base-load capacity. This is further supplemented by solar PV 
during the day time, with flexible hydro dispatched during evening hours. Electricity is imported only 
for a few hours in the evening (18:00-20:00), with imports coming from France. Exports are primarily 
to Switzerland, Austria, France and the fringe (Other) regions.  

In France, the demand is fully covered by a combination of nuclear, river hydro, coal CCS and 
waste/biogas based electricity generation. Solar PV and dam hydro complement these base-load 
plants, resulting in continuous exports throughout the day, primarily to Italy.  



52/174 

 
 

 

 

 

Figure 25: Electricity generation schedules for all countries on winter weekday 2050 (Sc2) 

Italy has a high investment in solar PV due to its high availability factor in the region, which is supple-
mented by wind, coal CCS, waste/biogas and river hydro based generation. However, total supply 
from these sources is lower than the demand and therefore imports are required throughout the 
day. Most of the imports come from France. The output from solar PV is favorable to the steep 
increase in demand during daytime. In the evening (17:00-00:00), flexible hydro plants are scheduled 
to manage the second peak in demand. However, Italy still requires substantial imports to meet the 
evening peak demand and the imported electricity is supplied from France, Austria and Switzerland. 
Italy also imports more than its demand during 01:00-14:00 from France, which is eventually ex-
ported to Austria during the first half of the day (01:00-14:00).  

Austria has a profile similar to Switzerland. Imports are happening throughout the day, coming main-
ly from Italy and Switzerland, with the flexible hydro plants dispatched during the evening hours to 
reduce imports at peak price hours. 

Similar electricity generation schedules for the other scenarios, other seasons and other days of the 
week are given in Appendix C. 
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2.1.11.2.4 Cost of electricity supply 

Figure 26 shows the annual undiscounted electricity system costs for Switzerland for the three scena-
rios. The costs are broken down to various cost components such as capital costs (annuities on 
investments), taxes (levy on nuclear spent fuel and CO2), fixed and variable operation and mainte-
nance costs, fuel costs and trade balances, which refer to net profits if negative or cost if positive 
from electricity import or export. The net system cost is also shown in Figure 26 (blue marker). 

 

Figure 26: Undiscounted system costs (Switzerland) 

The electricity system cost increases from 2010 to 2050 in all three scenarios in line with the electri-
city demand assumption (Figure 10). For Sc1, in the near to long term (2020-2050) the main increase 
is in capital and fuel cost due to the investment and operation of new natural gas power plants. The 
higher share of gas based generation (Figure 21) as well as increasing natural gas price assumptions 
(Figure 18) increase the total cost of fuel in the energy system. The increasing CO2 emissions (see 
Figure 29, page 55) result in an increase in tax payments (CO2 taxes). At the same time, the relatively 
high quantity of electricity trade (see Figure 24) generates surplus revenue. Nevertheless, the total 
system cost increases. 

In Sc2, the generation mix in the near term is similar to Sc1 resulting in similar costs. By 2035 
however, the ‘total’ cost is slightly lower in Sc2 compared to the Sc1 scenario. Relatively lower 
installed capacity (see Figure 22) in gas based generation results in a decrease in capital and fuel 
costs, as well as CO2 taxes. However, the level of the capital cost component is similar to the Sc1 
scenario, because (see Figure 27) Sc2 requires capital intensive technologies like gas CCS plants, solar 
PV and wind turbines (Figure 22). By 2050, investments in renewables technologies (solar PV and 
wind) increase the capital costs further, but the fuel costs and CO2 taxes reduce due to lower gas CCS 
based electricity generation (see Figure 22). Although the ‘total’ system costs are lower in Sc2 
compared to Sc1 for years 2035 and 2050, the ‘net’ system costs (obtained by subtracting the surplus 
trade revenues from total system cost) are higher in Sc2 due to lower trade revenue. This is because 
average cost of electricity supply is expensive in Switzerland compared to other CROSSTEM countries 
in Sc2, making it less attractive for other countries to import from Switzerland, thereby reducing the 
trade revenue. Figure 28 shows the average cost of electricity Sc2 and Sc3 relative to Sc1, and we see 
that the cost for Sc2 is around 8% higher in 2050 compared to Sc1. 
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Figure 27: Undiscounted system costs (Switzerland): Technology breakup 

 

Figure 28: Average cost of electricity (Switzerland) 

The Sc3 scenario has the lowest system cost amongst the three scenarios. The cost of imported 
electricity (i.e. trade balance) makes up the major share of the total system costs – 27% of the total 
costs in 2020, 63% in 2035 and 57% in 2050, because imported electricity constitutes a major part of 
electricity supply in Switzerland as a result of the relaxation of the self-sufficiency constraint.  In 
2020, costs of import are still cheap giving the Sc3 the lowest net system costs and thus average 
electricity cost among the three scenarios (see Figure 28). As the CO2 constraints become more 
stringent by 2035, cost of imported electricity becomes high due to capital intensive investments in 
renewable and CCS technologies in the neighbouring countries. By 2050, cost of electricity imports 
reduces further owing to lowering costs of renewables and CCS plants due to technology learning, 
thereby making Sc3 the cheapest in terms of average costs by 2050 (by around 8% by 2050 compared 
to Sc1, Figure 28).  It is worth noting that the system is optimized for the all five regions together, and 
the relaxed self-sufficiency constraint makes it feasible for Switzerland to import cheap low carbon 
electricity.  
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2.1.11.2.5 CO2 emissions 

Figure 29 shows the CO 2 emissions from the five countries for all three scenarios. In the Sc1 scenario, 
the total emission increases in the short term (till 2020) due to increased coal based electricity supply 
in Germany to replace the existing nuclear capacity. In the later years, the CO2 tax becomes suffi-
ciently high to make investment in renewables and CCS technologies competitive and hence reduce 
the emissions. The figure also shows the extent to which each country reduces their CO2 emissions to 
meet the emission targets in the low carbon scenarios. In Sc2, Switzerland still contributes to the 
total CO2 emissions, while there are no emissions from Switzerland in Sc3 due to the restriction on 
investments in gas plants. This results in slightly higher emissions in Germany, which invests slightly 
more in normal gas plants than in the more expensive gas CCS plants. 

 

Figure 29: CO2 emissions: regional disaggregation 

2.1.12 Advantages of CROSSTEM over CROSSTEM-CH 

This section highlights some of the strengths of a multi-region model like CROSSTEM with endoge-
nous electricity trade, over a single region Swiss electricity model like STEM-E or CROSSTEM-CH with 
exogenous electricity trade price assumptions. To illustrate the differences, the Sc1 scenario of 
CROSSTEM is compared with the ‘Sc.1 equivalent’ Baseline scenario from the coupled framework 
(presented in section 1.4.1), as they have identical electricity demand and supply options for Switzer-
land. The results are compared with respect to the electricity generation mix and generation sche-
dules to understand the underlying drivers. 

2.1.12.1 Electricity generation mix 

Figure 30 shows the electricity generation mix for Switzerland from both models. Although the tech-
nology mix is similar in the near term (2020), there are significant differences in the long run. In 2035 
for instance, both models have around 100 PJ from gas-based electricity generation. However, in the 
Baseline scenario from the CROSSTEM-CH model, around 80% of the gas-based electricity generation 
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originates from base-load type plants, whereas in the CROSSTEM model only around 45% is gene-
rated by base-load plants, with the majority share from flexible plants. An even larger difference is 
observed in the year 2050 in terms of generation mix and type of gas plants. While CROSSTEM-CH 
chooses a considerable quantity of solar PV in the generation mix, no solar PV investments are made 
in CROSSTEM. Moreover, as seen in 2035, most of the gas plants in CROSSTEM-CH are base-load type 
(80%), whereas the major part comes from flexible gas plants (54%) in CROSSTEM.  There are two 
main reasons for this difference in technology choice, viz. “load dumping” in the single region model 
which is not possible in CROSSTEM, and uncertainties in the exogenous import/export prices assump-
tion in CROSSTEM-CH. 

 

Figure 30: Electricity generation mix (Switzerland): CROSSTEM-CH (Baseline) vs CROSSTEM 
(Sc1) 

“Load dumping” is a term used to describe the phenomenon of dumping excess electricity to neigh-
bouring countries without any knowledge of their markets. In a single region model like CROSSTEM-
CH, the electricity imports/exports are exogenously defined.  Although there are bounds on total 
trade volume as well as market share constraints to replicate historical trading patterns with neigh-
bouring countries, there is no restriction on the timing of the imports or exports. This means that 
imported electricity is assumed to be available whenever there is a demand, and electricity can be 
exported whenever there is an excess generation. In reality, neither of these two conditions are true, 
but it is a common compromise made in single region models. This issue is partly addressed in the 
CROSSTEM model, wherein electricity can be imported only when there is excess generation in the 
surrounding countries. Similarly, the exports are only possible when there is a market (i.e. demand) 
in the surrounding countries. This is why in the Baseline scenario of CROSSTEM-CH, most of the gas-
based generation is produced from base-load plants, which are more efficient (and hence cheaper) 
than flexible gas plants.  In contrast, Switzerland in CROSSTEM has to invest more in flexible gas 
plants to be able to optimize the trading patterns with the real market of the neighbouring counties 
(and vice versa).   
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The second driver is the assumption on electricity trade price. Figure 31 shows the exogenously given 
electricity import/export price assumptions20 in the CROSSTEM-CH model versus the marginal cost of 
electricity in the surrounding countries of Switzerland obtained from CROSSTEM. As can be seen 
from the figure, the exogenous import/export price assumptions in CROSSTEM-CH are relatively 
higher in all time slices than in CROSSTEM except for winter weekdays21. This implies that exporting 
electricity in summer or spring is as attractive for CROSSTEM-CH as in the winter season, since it fully 
ignores the source of import and/or market for export. Whereas in the CROSSTEM, electricity prices 
in winter are much higher than in the other seasons reflecting high demand across all regions in 
winter. The differences in trade prices partly explain the reason for the cheap base-load type gas 
plants and investments in solar PV in CROSSTEM-CH.  The high electricity price assumption during the 
peak hours in summer is based on the historical market trend. Thus, the solar PV becomes an 
attractive option in CROSSTEM-CH to generate excess electricity since it is assumed that there is a 
market to export the electricity from solar PV.  However, the full framework (CROSSTEM) indicates 
that there is no market to import the summer electricity generated from solar PV in Switzerland. This 
was validated by running the CROSSTEM-CH model using the marginal costs from the Sc1 scenario of 
CROSSTEM. In this case, the generation mix from CROSSTEM-CH resembles that of the Sc1 scenario – 
i.e. no solar PV based electricity generation due to lower summer electricity prices. However, trade 
volumes and trade patterns in the CROSSTEM-CH model were still very different compared to 
CROSSTEM, reasons for which are explained in the following subsection.        

 

Figure 31: Electricity import/export costs for Switzerland - CROSSTEM (endogenous) vs CROSSTEM-CH 
(exogenous) 

2.1.12.2 Electricity generation schedule 

Figure 32 shows the differences in the electricity generation schedules in Switzerland between the 
two models on a summer (Figure 32a) and winter (Figure 32b) weekday in 2050. As mentioned 
before, the import/export trade profiles in CROSSTEM-CH are purely driven by the exogenous trade 
price assumptions, whereas in CROSSTEM, the trade is endogenous, and import/export patterns are 
highly dependant on supply options and demand in neighbouring countries (Figure 25). 

 

                                                            
 

20 An hourly price assumption is estimated based on annual cost of electricity supply from the ADAM model. The 
methodology is explained in Kannan/Turton 2011. 
21 It should be noted that the import prices adopted from the ADAM model were for a stringent climate scenario, resulting 
in high import prices (Fraunhofer 2010). 
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                                      (a)                                                                               (b) 

Figure 32: Electricity generation schedules - CROSSTEM-CH vs CROSSTEM 

In the summer, CROSSTEM-CH dispatches all the flexible hydro from 08:00-16:00, supplementing to 
the solar PV generation to export maximum electricity during these peak hours, with imports re-
quired to meet the demand in early morning and late evenings. In CROSSTEM on the other hand, 
most of the imports occur during the early morning hours which is simultaneously also exported (see 
Figure B 13 in Appendix B for more details), with no export during the daytime hours 08:00-16:00. 
Dam/pumped hydro and flexible gas plants are scheduled during the evening hours to be exported 
from 16:00-00:00.  

In winter (b), electricity is imported almost throughout the day in CROSSTEM-CH, except for the two 
peak hours between 09:00-12:00 and 17:00-19:00, where electricity price is assumed to be high. All 
the flexible generation is scheduled for these hours, thereby maximizing export trade revenue. In 
CROSSTEM, marginal costs of electricity in winter are very high, which makes it very attractive for 
Switzerland to export electricity. Hence, full capacity of the installed gas plants is scheduled in 
winter, supplemented by dam and pumped hydro. As mentioned before, this import/export pattern 
for Switzerland in CROSSTEM is only possible because of matching conditions in the surrounding 
countries (see Figure B 14 in Appendix B). Hence, the profiles from CROSSTEM are more consistent 
than those obtained from CROSSTEM-CH, which would have similar import/export patterns for all 
scenarios (see Figure 58 in section 3.1.3.4). 

The limited set of scenarios presented in Section 2.1.11.1 (Figure 20) with the assumed set of 
boundary conditions shed powerful insights on the development of the Swiss electricity system, 
which would not have been possible with a single region model. Thus, the CROSSTEM is very a 
powerful tool to explore different boundary conditions of the neighbouring countries to generate 
insights for policy decisions. 
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2.1.13 Model limitations and uncertainties 

Although we tried to implement consistent datasets (e.g. future electricity demand assumptions, 
technology cost curves, resource cost and potentials etc.) wherever possible, they are potential 
sources of uncertainties and affect model results. Some limitations and uncertainties are described 
below. 

• The future electricity demands are highly uncertain, and depend on their underlying drivers 
such as population growth, economic development, electrification of end use sectors, etc. It 
is a potential parameter for sensitivity analysis. 

• Future technology cost assumptions depend on technology breakthroughs, which are highly 
uncertain. 

• Resource potential of new renewables varies across literature, and is constantly updated. 
The renewable resource potentials in CROSSTEM are currently linearly interpolated bet-
ween the 2010 level and 2050 potentials (Table 6, page 43), which limits an early/accelera-
ted uptake of renewables. 

• Some of the scenario specific user constraints are arbitrary assumptions. For example, 
future trading patterns, especially with fringe regions are highly uncertain. Countries that 
are currently net exporters could become net importers depending on national policies as 
well as developments in surrounding countries. Also, trade with the fringe regions is 
modeled as a flexible technology, but the source of supply or market for export is highly 
uncertain. 

• Although CROSSTEM has an hourly representation, it is not a dispatch model. Technology 
availability factors specified in the model represent a yearly technical availability factor, 
which includes outages due to scheduled maintenance, refuelling etc. However, unplanned 
outages are not captured in the model. Neither are issues such as start-up time nor ramp 
up rates incorporated. The reserve margin is assumed to cope with such issues. 

• The representation of the average day is an oversimplification in CROSSTEM, although such 
simplifications are common in many analytical frameworks due to computational con-
straints. For example, wind and solar PV availability factors are averaged over a season and 
week, and hence short term intermittency are not fully captured. However, the simplified 
intra-annual resolution largely complements the long model horizon of CROSSTEM. 

• Transmission and Distribution (T&D) networks are not modelled in any detail, i.e. the coun-
tries are modelled as single copper plate regions. There are some costs assigned to the 
transmission system (network tariff), but no explicit transmission lines are considered. Even 
though costs of interconnectors between countries are represented, losses are not included 
and are assumed to be captured by general assumptions on T&D losses (see section 
2.1.7.6). 

• Finally, the model assumes perfect information, perfect foresight, well-functioning markets 
and economically rational decisions, which is not always true in the real world. Moreover, 
the cost is optimised (minimised) for all the five countries together, and it may not repre-
sent the optimal solution for each country individually. 
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2.2 GENESwIS 

2.2.1 Introduction 

GENESwIS is a dynamic computable general equilibrium (CGE) model of the Swiss economy designed 
to analyze energy and environmental policies (Vöhringer 2012). 

In GENESwIS, agents act rationally and have perfect foresight over the entire time-horizon (2010-
2050). Households maximize their utility under a budget constraint. They earn wages by providing 
labor and receive a rate of return by renting out capital. As a further element of income, they receive 
social benefits from the Government. Firms maximize profit under technology constraints and the 
assumption of perfect competition. Non-satiation in consumption implies that demand equals supply 
in all markets. The Government collects taxes (income tax, value added tax, mineral oil tax, CO2 tax) 
and uses the revenue for lump-sum transfers (social benefits) and public goods provision. Equal yield 
is assumed, hence the income tax rate is modified to keep public goods provision constant. Domestic 
and foreign goods are assumed to be imperfect substitutes and are aggregated following 
Armington’s description of a small open economy. Capital is modeled as putty-clay to incorporate the 
rigid character of investment decisions and crowding out of investments.  Thus, free capital invested 
into one sector (Industry, Services or Electricity) cannot be transformed back into capital for another 
sector. Investments are treated as solely domestic. GENESwIS exhibits flexible labor supply such that 
agents can choose between labor and leisure. Relative prices are adjusted until every agent reach 
their optimal demand or supply. 

GENESwIS is based on the 2005 Energy related disaggregation of the Swiss Input-Output Table, 
Nathani et al. 2011. 

GENESwIS has been modified with the purpose of being coupled with the Cross-Border TIMES 
Electricity Model (CROSSTEM).  

2.2.2 Model structure 

2.2.2.1 Production 

The GENESwIS model is designed to analyze energy and environmental policies. This is represented in 
the modeling structure, which gives special attention to the use and production of energy. The 
nesting structure for the production functions, with the exemption of Electricity, Electricity Transport 
and Distribution, and Rail Transport, is displayed on Figure 33. The top structure, linking capital, 
labor, energy and other inputs is a standard and recognized structure (see for example Paltsev et al. 
2009 and Böhringer et al. 2010). The energy nest, more disaggregated, was designed with the idea 
that not much substitution would happen between the three different types of energy use: trans-
port, appliances and heat. Whereas, within these types of energy uses, different fuels, or types of 
production can be substituted to each other. 

Transport is separated between own transport and transport services. Own transport is constituted 
of transport fuels and electro-mobility (see section 2.2.3.1). Transport services are disaggregated by 
mode: Road, Rail, and Air and Other transports (incl. water and pipelines). It is assumed that different 
modes of land transport have a greater chance to be substituted for each other than for non-land 
transports (air, water or pipeline). 
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The heating nest is composed of inputs of natural gas, light heating oil, district heating, and retail 
electricity (ETD). The input from Construction (CON) is included to model insulation. Thus, energy use 
can be substituted, to a certain extent, by better insulation. 

The input of retail electricity (ETD) into the top energy nest mostly represents the use of electric 
appliances. 

Sectoral disaggregation 

GENESwIS’ sectoral disaggregation is designed for the analysis of energy and environmental policies 
with an emphasis on the electricity sector. Non-energy industries are separated into aggregates 
taking into account their possible importance in the formation of capital for the electricity sector and 
their affiliation to different CO2 taxation schemes (ETS, CO2 tax). The sectoral disaggregation is 
displayed in Table 9 and the commodities demanded in the model in Table 10.  

The goods produced by the refinery sector are disaggregated between transport fuels (TFU), i.e. 
Diesel and petrol, and light heating oil (HFU); non-fuel products are allocated to the Rest of Industry 
commodity. Hence, the uses and emissions of different fuels can be tracked and taxed separately. To 
reflect some flexibility existing in the refinery production, the output of the refinery sector is 
transformed into TFU, HFU and ROI through a constant elasticity of transformation (CET) function 
(see Figure 34) with an elasticity of transformation of 0.2.  

Table 9: GENESwIS’ sectors 

 

Table 10: GENESwIS’ commodities 
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Figure 33: Nesting structure for GENESwIS’ production functions. 
 

 

 

Figure 34: Constant elasticity of transformation (CET) function’s structure for the Refinery 
sector (RFU). 

Note: Electricity Generation (Figure 45), Electricity 
Transport and Distribution (Figure 47) and Rail 
Transport (Figure 36) display different structures. 
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2.2.2.2 Consumption 

Households can choose between consuming goods and services, and enjoying leisure time. They opti-
mize their consumption choice between different periods, which determines saving behavior. 

Households can substitute between the different goods and services with an elasticity of substitution 
of one. Energy consumption is specified precisely (as it is for sectoral production) to permit energy 
and environmental analysis. However, transport is modeled differently than for production, as 
households have a more flexible choice between land and air transport. 

The nesting structure for consumption is given in Figure 35. 

 

Figure 35: Nesting structure of the GENESwIS model for household consumption. 

2.2.2.3 Government and taxes 

The Government collects taxes and uses the revenue for lump sum transfers (social benefits) to the 
households, and for public goods provision. 

Social benefits (transfer to households) are set, in the model, to be equal to the remaining of the 
household budget balance. The "Compte global des assurances sociales (CGAS) par branches 
d’assurances sociales" (table T13.3.1.1, OFS) gives a social benefit of 57’471 mio CHF in 2005, which 
coincides with the value obtained balancing the household budget with the Swiss input-output table 
data. 
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An equal yield condition is introduced into the model such that public goods provision stays constant. 
As we assume that the public budget needs to balance in all simulations, the income tax adjusts to 
keep Government revenue constant.  

The model includes two types of taxes and subsidies: (1) benchmark and (2) baseline (section 2.2.4.3) 
and scenario taxes and subsidies (section 1.4.1). 

Benchmark taxes 

Benchmark taxes exist already in the initial equilibrium. Taking them into account allows for the 
consideration of possible efficiency gains of scenario policies. Efficiency gains can appear if policies 
recycle revenues in a way that reduces the excess burden of the tax system. 

In the energy related disaggregation of the Swiss Input-Output Table, labor and capital taxes are not 
specified, but form the Value Added (VAD) aggregate along with capital and labor while the other 
taxes are aggregated into "Net Commodity Taxes". The Value Added Tax (VAT) is specified for inter-
mediate and final consumption in a separate table of the Swiss IOT.  

The IO table tax payments are disaggregated to model the following benchmark taxes in GENESwIS: 

• Income and capital taxes. Source: OECD. 

– Income tax (on a gross basis, adding 1.2% for family allowance): 22.1%. 
– Capital tax (on a gross basis, taxation of corporate and capital income): 21.3%. 
– The income tax is constrained to induce equal yield. 

• Value Added Tax (VAT): non deductible VAT, and VAT on household consumption. Source: 
Nathani et al. 2011. 

• Mineral Oil Tax. The mineral oil tax payments by sectors are given by Nathani et al. 2011. 
Mineral oil tax rates are calculated by fuels (transport fuels, heating fuels and gas) and by 
group of users and levied as quantity based taxes. 

• Remaining taxes (= NCT – VAT – mineral oil tax). 

– Remaining taxes on domestic production. 
– Remaining taxes on household consumption. 
– Remaining taxes on government consumption. 
– Remaining taxes on investments. 

2.2.2.4 Trade 

The Armington representation of trade treats domestic and foreign goods and services as imperfect 
substitutes. Armington elasticities are taken from GTAP and GTAP-E data (Hertel 1997 and Burni-
aux/Truong 2002, see Table 13, page 72). 

No natural gas is extracted in Switzerland: all natural gas is imported. However, the IOT displays 
some domestic production in the gas sector (GAS) that accounts for transport and distribution ser-
vices. In order to keep the right technology (mere fuel in proportion to transport and distribution 
costs), the Armington elasticity of GAS is set to zero. 

Crude oil (CRU) and nuclear fuels (NUC) are solely imported goods, when District heating (DHT) is 
only domestic. 
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The IOT reports imports for Electricity transport and distribution (ETD), and not for Electricity genera-
tion (ELE). However, imports of ETD are actually priced only to the border (C.I.F. prices). This situation 
is identical to electricity being produced at the border (i.e. generated at a plant located on the 
border). In order to obtain a better representation of the pricing of the transport and distribution of 
these imports (from border to users), the electricity imports are attributed to ELE. All ELE production 
enters ETD as intermediate input, hence, transport and distribution costs are added to the C.I.F. price 
of electricity imports. 

When coupling GENESwIS to the CROSSTEM model, electricity trade is governed by the CROSSTEM 
model.  

2.2.3 Electricity supply and demand 

Given that CROSSTEM allows for a precise optimization of electricity supply, based on extensive tech-
nology data, the structure and price of electricity supply acquired through the CROSSTEM model is 
used to specify GENESwIS’ electricity generation production function. However, as the CROSSTEM 
model does not specify transport and distribution costs with as much detail as it does electricity 
generation, the electricity sector in GENESwIS is separated into Electricity generation (ELE) and 
Electricity transport and distribution (ETD). Electricity generated (ELE) is demanded solely by the ETD 
sector. Electricity transported and distributed (ETD), i.e. retail electricity, is then demanded for inter-
mediate and final consumption. 

To model electricity demand the most accurately possible within the GENESwIS model, electricity 
(ETD) was disaggregated into three different uses with the help of Prognos 2012 data: 

• electricity used for heating, 

• electricity used for transport, 

• electricity used for appliances. 

This disaggregation permits to model substitution opportunities between ETD and other energy 
carriers more realistically: Electricity used for heating enters the heating nest and can be substituted 
against other heating commodities. Electricity used for transport is modeled as electro-mobility in 
the transport nest (see section 2.2.3.1), and electricity used for appliances enters the top energy nest 
(see Figure 33 and Figure 35). 

2.2.3.1 Electro-mobility 

Electro-mobility is modeled as a sub-nest in transport (see Figure 33 or Figure 35), where it can be 
substituted with transport fuels through an elasticity of substitution of 10. This very high elasticity of 
substitution was chosen for calibration purposes due to the very small current share of electro-
mobility and the high penetration projections. 

Electro-mobility is composed of Retail Electricity (ETD) and Rest Of Industry (ROI) in fixed shares. In 
the calibration stage, substitution with Transport Fuels (TFU) is induced by changing the quantity of 
ROI in the production function of electro-mobility with the help of an efficiency index, which reduces 
the cost of electro-mobility over time. 
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This permits to calibrate the electro-mobility demand to the projections of Prognos 2012. This crude 
representation is a first less-than-perfect attempt to reflect the increasing importance of e-mobility, 
matching existing projections.  

In the Rail transport sector, e-mobility is not modeled as such, as a large share of the fleet is already 
electrified (see Figure 36). 

 

 

Figure 36: Nesting structure of the production function for Rail Transport (RLT). 
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2.2.4 Baseline and dynamic calibration 

2.2.4.1 Steady state calibration 

GENESwIS is a Ramsey-Cass-Koopmans model based on a steady state growth path. In the steady 
state, all quantities in the model such as capital, output, consumption etc. grow at the same constant 
rate  

  (2.2.1) 

with Q the quantity, g the growth rate, t the time-period, and t0 the initial time-period.  

At a given period, the present value of utility is given by , where the factor 

relates to the time preference of the consumer, reflected in the rate of time preference r, 
which at the same time serves as the interest rate. 

For the model to be correctly calibrated on the steady state path, initial investments I0 are defined 
proportionally to the initial capital stock VK0 in the following way (see for example Paltsev 2004):  

  (2.2.2) 

with growth rate g, interest rate r and discount rate δ.  

Investments and capital stock are given by the input-output table. However, they might not satisfy 
equation (2.2.2) for the assumed growth, interest and discount rates. 

We analyzed the different combinations of interest rates r and depreciation rates δ such that (2.2.2) 
holds. We opted for the following reasonable combination with a growth rate of g=1%, an interest 
rate of r=4.5% and a depreciation rate of δ=4.5%, and implemented it in both GENESwIS and 
CROSSTEM. 

The time horizon for the study is set from 2010 to 2050. However, to avoid boundary effects, namely 
due to terminal capital conditions, the model is run until 2070. Special care must be taken regarding 
terminal capital conditions. If no constraint is introduced in the model, agents will not save in the last 
periods. We introduced the following constraint to force investments to grow at the same rate as 
production in the last period (see for example Paltsev 2004): 

  (2.2.3) 

with I total investments, Y total production and T the final period. 

To keep the model at a reasonable and solvable dimensionality, and to be in line with the time-steps 
of the CROSSTEM model with which GENESwIS is being coupled, 5-years time-steps are modeled. 
This requires adjustments of the investment activity and terminal investment activity. 

2.2.4.2 Baseline calibration and policies 

The chosen baseline (or reference) scenario for this study is based on the weiter wie bisher scenario 
of the Swiss Energy Perspectives (Prognos 2012). As this scenario realistically deviates from a steady 
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state growth path, we calibrate the model such that the following quantities follow the paths 
projected by Prognos 2012: 

• labor, 

• Gross Domestic Product (GDP), 

• electricity demand (per sector and use), 

• CO2 emissions per fuel. 

Labor growth is composed of two factors: (1) active population growth and (2) productivity growth. 
The full-time equivalent forecast is taken from the scenario (A-00-2010) of the FSO. The SECO, in 
their GDP projection, assume a productivity growth of 0.9% per year. We combine the two to get 
total labor growth, see Figure 37a. Labor growth is introduced exogenously in the model, and GDP 
growth follows SECO’s projection assumed in the weiter wie bisher scenario (Prognos 2012) (see 
Figure 37b). 
 

 
(a) Labor growth 

 
(b) GDP growth 

Figure 37: Macroeconomic assumptions: (a) Labor growth and (b) GDP growth. 
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Electricity demand per sector (industry, services, transport and households, see Figure 38a) and per 
use (transport, heating and others, see Figure 38b), as well as CO2 emissions per fuel (gas, transport 
fuels and heating fuel demands) are calibrated to follow the forecast by Prognos 2012 for the weiter 
wie bisher scenario. They are calibrated with the help of autonomous energy efficiency indices. 

 

(a) Electricity demand per sector 

 

(b) Electricity demand per use 

 

Figure 38: Electricity demand in Switzerland per sector and per use. Source: Prognos 2012. 
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These indices represent reductions in demand that are due to technology improvement, i.e. not 
directly linked to price signals.  

Table 11: World energy prices [CHF2010 /GJ] (Source:  IEA 2010 and own calculations), and 
CO2 permit prices [CHF2010 /ton] for sectors that belong to the ETS scheme 
(Source: Prognos 2012 and own calculations). 

 

Import prices for imported energy carriers are set according to projections of the World Energy 
Outlook 2010 (which were used by Prognos 2012). A logarithmic fit was used to extrapolate the 
missing years. CO2 permit prices for sectors entering the ETS scheme are given by Prognos 2012. 
These prices were harmonized with the inputs of the CROSSTEM-CH model. Prices in CHF of 2010 can 
be found in Table 11.  

The following baseline policies are implemented: 

• Emissions Trading Scheme (ETS): sectors that belong to the ETS must buy permits for CO2 
emissions due to heating fuels and for geogenic emissions. Aviation is included in the ETS 
scheme in 2020 in the model (start in 2020 due to 5-year time-steps) and trades ETS 
permits for CO2 emissions from transport fuels. CO2 permit prices follow the projections by 
Prognos 2012 (see Table 11). 

• A CO2 tax on light heating oil and natural gas is levied on non-ETS sectors and household 
consumption. The CO2 tax is set on the following levels: 36 CHF2010 /t in 2010, 60 CHF2010 /t 
in 2015 and 72 CHF2010 /t in 2020 and following years. 

• Subsidy for the refurbishment program: 280 mio CHF from the CO2 tax revenue is used to 
incentivize insulation (input of Construction in the heating nest). The remainder of the CO2 
tax revenue is recycled as a lump-sum transfer to households. 

2.2.5 Data 

2.2.5.1 Input-output table disaggregation 

GENESwIS is based on the 2005 Energy related disaggregation of the Swiss Input-Output Table, 
Nathani et al. 2011. The IO table was further disaggregated to better suit the needs of an analysis on 
the electricity sector and energy/environmental policies. The following changes were made: 

• "Non metallic mineral products" are divided into "Cement and concrete" (CMT) and "Rest 
of non metallic mineral products". Data source: reports from Cemsuisse 2011 and 2005. It is 
assumed that the whole production of Cement and concrete is consumed by the Construc-
tion sector. 

• The commodity "Coke and refined mineral products" is separated into "Heating fuels" 
(HFU), "Transport fuels" (TFU) and "Other refined mineral products" (the latter is allocated 
to Rest of industry). The Refinery sector (RFU) is kept aggregated, because of the integrated 
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nature of its processes. The sources used for this disaggregation are: Energy NAMEA data 
and Swiss report on energy statistics (BFE 2006). 

• "Crude oil" (CRU) is separated from "Products of mining and quarrying" and is solely 
composed of imports. 

The value added in the IOT is not disaggregated between capital and labor. It is important for the 
model to separate labor, capital and income taxes. Hence, labor was calculated from: "full time equi-
valent 2005" data (T2.8a BFS) and "gross monthly wage according to economic sector, 2006" (BFS). 
Income taxes were taken from OECD data. Capital was then set as the remainder of value added. 

To model insulation, an input of Construction is included in the heating nest. The total sum of this 
input is set to 5% of total Construction demand (excl. own demand and road and infrastructure, 
which amounts for 1/3 of total construction (see Körber and Kaufmann 2007). The input of insulation 
into each sector is distributed according to the respective sector’s share in total demand for heat. 
This way, each sector has the same benchmark value share of insulation in its heating nest. Insulation 
is not modeled for the energy sectors (ELE, ETD, GAS, DHT and RFU) because their inputs of heating 
fuels are used mostly for industrial processes rather than for heating buildings. Nor is insulation 
modeled for the Construction and Transport sectors. 

2.2.5.2 Elasticities of substitution 

The elasticities of substitution used in GENESwIS are listed in Table 12. 

The elasticities of substitution between capital and labour (KL nest, see also Figure 33 and Figure 35), 
are derived from Mohler/Müller 2012. Mohler/Müller 2012 compute elasticities for a similar struc-
ture as GENESwIS’ for the Swiss manufacturing industry on a timeframe of 14 years and give elastici-
ties for the following sectors: ROI, ETS and MET. To account for long-time elasticities as much as 
short-time elasticities in GENESwIS, the elasticities of substitution are set to be linearly dependent of 
time. As the elasticities in Mohler/Müller 2012 are calculated on a 14 year database, these values are 
used for 2025 and are doubled for 2050. A linear approximation is fitted through these two points. It 
is assumed that the remaining sectors will display the same elasticity as the ROI sector. 

The elasticities between energy and the capital and labour nest (KL,E nest, see Figure 33 and Figure 
35), are taken from Mohler/Müller 2012 for ROI, ETS and MET, and from Ban/Okagawa 2008 for the 
rest of the sectors. A similar linear fit as for the KL nest elasticities is set up. As Ban/Okagawa 2008 
compute their elasticities on a timeframe of 19 years, the base-points of the elasticities are set in 
2030, doubling in 25 years. 

Elasticities of substitution for the heating nest are chosen to increase linearly from 0.5 in 2010 to 2.5 
in 2050 to account for the fact that substitution is more likely in the long-term than in the short-term 
due to the lifetime of existing heating installations. 

Elasticities of substitution for transport were taken from Vöhringer et al. 2013 and European Com-
mission 1999. As gas and unrefined oil products that are transported by pipelines will not switch 
readily transport modes, the elasticities of substitution leading to Air and other transport are set to 
zero for the gas transport and distribution and refineries sectors. 

All elasticities are set to the 2050 level for the years 2055-2070.  
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The intertemporal elasticity of substitution, which is the elasticity which governs how households are 
willing to substitute this year’s consumption for that of another year, is set to 0.2. 

Table 12: GENESwIS’ elasticities of substitution 

 

Table 13: GENESwIS’ Armington elasticities, source: Hertel 1997 and Burniaux/Truong 2002 
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2.3 GEMINI-E3 

GEMINI-E31 (Bernard/Vielle 2008) is a multi-country, multi-sector, recursive computable general 
equilibrium model comparable to the other CGE models (EPPA, OECD-Env-Linkage etc.) built and 
implemented by other modeling teams and institutions, and sharing the same long experience in the 
design of this class of economic models. The standard model is based on the assumption of total 
flexibility in all markets, both macroeconomic markets such as the capital and the exchange markets 
(with the associated prices being the real rate of interest and the real exchange rate, which are then 
endogenous), and microeconomic or sector markets (goods, factors of production). In the last 20 
years, GEMINI-E3 has been extensively used to assess future climate and energy strategies at global 
and regional levels. 

The current version is built on the last GTAP database 8 (Badri et al. 2012). The industrial classifica-
tion used in this study comprises 14 sectors and is presented in Table 14. The model describes five 
energy goods and sectors: coal, oil, natural gas, petroleum products and electricity. Concerning the 
regions represented by the model we use an aggregated version of GEMINI-E3 that describes only 6 
countries/regions: Austria, France, Germany, Italy, Other European Countries and the Rest of the 
World.  

Table 14: GEMINI-E3's industrial classifications 

 Sectors/goods 
01 Coal 

02 Crude oil 

03* Gas 

04 Petroleum products 

05 Electricity generation 

06 Agriculture 

07 Metals 

08 Energy intensive industries 

09 Rest of industry 

10 Construction 

11 Land transport 

12 Sea transport 

13 Air transport 

14 Services 

15 Electricity transport and distribution 

 

For each sector, the model computes the demand for its production on the basis of household con-
sumption, government consumption, exports, investment, and intermediate uses. Total demand is 
then divided between domestic production and imports, using the Armington assumption (Arming-
ton 1969). Under this convention, a domestically produced good is treated as a different commodity 
from an imported good produced in the same industry. Production technologies are described using 
nested CES functions. 
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Time periods are linked in the model through endogenous real rates of interest determined by equili-
brium between savings and investment. National and regional models are linked by endogenous real 
exchange rates resulting from constraints on foreign trade deficits or surpluses. 

2.3.1 Production  

The production structure of the industrial sectors is shown in Figure 39. 

 

Figure 39:  Nested CES production structure of industrial and services sectors 

2.3.2 Consumption  

Household's behavior consists of three interdependent decisions: 1) labor supply; 2) savings; and 3) 
consumption of the various goods and services. In GEMINI-E3, we suppose that both labor supply 
and the rate of savings are exogenous. Demand in the different commodities has prices of consump-
tion and income (more precisely "spent" income, income after savings) as arguments and is derived 
from a utility function whose specifications are a Stone-Geary (Stone 1954) or Linear Expenditure 
System (LES): 
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2.3.3 Baseline calibration 

The baseline scenario was based on the following quantities: 

• labor supply, 

• GDP growth, 

• energy prices. 

For European countries/regions (Austria, Germany, Italy, France and other European countries) we 
used the figures coming from “The 2012 Ageing Report” published by the Directorate-General for 
Economic and Financial affairs (European Commission 2011b). The assumptions of the ROW regions 
are drawn from the Word Energy Outlook (WEO) 2010 (IEA 2010) and from the World Population 
Prospects done by the United Nations (United Nations 2011). Finally international energy prices are 
calibrated from those given by the WEO 2011. 

Table 15 gives the GDP growth by countries/regions. 

Table 15:  GDP growth (average yearly GDP growth rate) 

 2007-2020 2020-2030 2030-2040  2040-2050 
Austria 1.3% 1.3% 1.4% 1.4% 

Germany 0.8% 0.7% 0.6% 0.8% 

Italy 0.4% 1.4% 1.2% 1.3% 

France 1.2% 1.8% 1.6% 1.6% 

OEU 1.4% 2.0% 1.7% 1.5% 

ROW 5.1% 3.3% 3.1% 2.9% 

World 4.1% 3.0% 2.8% 2.6% 
 

Table 18 (page 79) shows the international energy prices; we retain the current policies scenario. As 
the predictions of the International Energy Agency stop in 2035, we assume that the energy prices 
will continue to slowly increase after 2035. The oil price is assumed to reach 157.9$ per barrel in 
2050 and the price of imported gas in Europe is equal to 14.7$ per Mbtu in 2050. 

2.3.4 International climate policy scenarios 

In this section, we describe the international scenarios that have been simulated in the project. The 
definition of these scenarios is mainly based on the EMF22 MiniCAM – BASE scenarios (see Calvin et 
al. 2009; Clarke et al. 2008). We have simulated three scenarios: 

1. A Reference scenario. In this scenario, no climate policy is implemented since it serves to 
evaluate the cost of the climate policies scenarios. 

2. A Baseline scenario. For this scenario, the MiniCAM scenario S1_3p7_OS was selected as a 
starting point. To account for existing policies in the EU to 2050, the allocation of the global 
emissions trajectory was adjusted to match the estimated emissions in the EU under 
“Current Policy” as defined in the EU Roadmap (European Commission 2011a). For Switzer-
land, the baseline scenario is comparable to the weiter wie bisher scenario of the Energy 
Perspectives. 
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3. A Moderate stringency scenario. The global emissions trajectory in MiniCAM scenario 
S1_3p7_S was selected as consistent with more ambitious Swiss policy to 2050.  To account 
for additional abatement activity in the EU, this global trajectory was adjusted to match the 
additional nearer-term (to 2030) EU Roadmap emissions pathway (European Commission 
2011b), but not the more normative/aspirational 2050 EU mitigation goals. 

The emissions trajectories for the EU and the rest of the world are presented in Figure 40. For the EU, 
the abatements in 2050 with respect to 2010 levels are respectively equal to 33% and 53% in the 
baseline scenario and in the moderate stringency scenario. It must be noticed that our baseline 
scenario is close to the Primes reference scenario published in 2013. For the Rest of the world, the 
abatements are less important in 2050 with respect to 2010 levels and equal to 13% and 28%. But if 
we compute the effective abatement with respect to our baseline scenario, the reductions are much 
more significant and equal to 43% and 64%. 

 

Figure 40: Emissions trajectories for the EU and the Rest of the world in Mt CO2 

The mitigation scenarios are implemented through a uniform CO2 price that is derived from a world-
wide emissions trading system that takes the emissions profiles presented above as initial alloca-
tions. For European countries/regions (Austria, Germany, Italy, France and Other European Union 
countries), the EU budget is allocated to each Member State by taking into account their emissions in 
the reference scenario: i.e. the more you emit, the more allocations you receive. We assume that 
only CO2 emissions are taxed and the extra revenue (positive or negative) from the exchanges is 
redistributed by each region to their households through a lump sum transfer. 

2.3.4.1 The Baseline scenario 

Table 16 gives the CO2 price in € computed by GEMINI-3, Figure 41 shows the emissions trading and 
welfare impact in % of households consumption in 2050. The CO2 price would reach 55 € per ton of 
CO2 in 2050. This moderate price is mainly driven by the low mitigation costs of the Rest of the world 
that is a significant net exporter of permits (up to 600 million ton of CO2 in 2040) in this scenario. The 
welfare cost is measured in the GEMINI-E3 model by the households' surplus and can be decom-
posed in three components: 

1. The Gains or losses from the Terms of Trade (GTT) representing the spill-over effects due to 
changes in international prices. Under climate policy, these gains or losses from the terms of 
trade mainly come from the drop in fossil energy prices due to the decrease of world energy 
demand; 

2. The buying or selling of tradable permits (called “Trading” in the figures); 
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3. By subtracting the GTT and Trading from the Welfare we obtain the Deadweight Loss of Taxa-
tion (DWL), i.e. the domestic cost that would occur in a closed economy and which only 
depends on the abatement done within the country. 

Table 16:  CO2 price in € - Baseline scenario 

 2020 2030  2040 2050 
CO2 price 6 12 24 55 

 

 

Figure 41: Emissions trading in Mt CO2 (left) and welfare impact in % of household 
consumption in 2050 (right) – Baseline scenario 

These three components are presented in Figure 41 for the year 2050. The welfare impact is slightly 
positive for Germany coming from a significant GTT and an initial CO2 allocation which is quite gene-
rous. For the other countries/regions the welfare impact is negative. The EU countries are net impor-
ters of emissions permits (except Germany) and the ROW net exporter. ROW is the most affected 
region (with a welfare cost equal to 1.5% of household consumption), their initial CO2 allocation is 
not sufficient to counterbalance their DWL. 

2.3.4.2 The Moderate stringency scenario 

In the Moderate stringency scenario the CO2 price reaches 170 € per ton of CO2. Of course, this 
higher price is associated with more important welfare losses. In 2050, the welfare loss is equal to 6% 
of household consumption for the Rest of the world. The cost for European countries is less 
important and equal to around 4%. Again, Germany is the least affected EU region with a welfare loss 
equal to 1.7% of household consumption. The Rest of the world remains net exporter of tradable 
permits, even if these exchanges decrease at the end of the simulation period. 
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Table 17:  CO2 price in € - Moderate stringency scenario 

 2020 2030  2040 2050 
CO2 price in € 10 19 43 170 

 

 

Figure 42: Emissions trading in Mt CO2 (left) and Welfare impact in % of Household 
consumption in 2050 (right) – Moderate stringency scenario 

Figure 43 shows the energy consumption by fuel for the 4 individual EU countries (Austria, Germany, 
Italy and France) in the Moderate stringency scenario. The variations of energy consumption are 
quite similar among the four countries. Total energy consumption decreases by 29% to 39%. Coal, 
which is mostly used in electricity generation, decreases by 82%. Only Germany still continues to use 
this energy in electricity generation. Of course, this result would not be the same, if CCS technology 
had been taken into account for electricity generation in GEMINI-E3. Other fossil energy consump-
tions (i.e. natural gas and refined petroleum products) are less affected by the carbon price and faced 
to the same dynamic. Indeed, their consumptions decrease in 2050 by 33% in average for the 4 indi-
vidual EU countries. Finally, the decrease of electricity consumption is limited and equal in average to 
15%. 

 

Figure 43: Energy consumption by fuel in Mtoe year 2050 – Reference and Moderate 
stringency scenarios 
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Table 18:  International energy prices (US Dollar per unit, 2010 prices) 

 2010 2020 2030  2040 2050 
IEA crude oil imports (barrel) 78.1 118.1 134.5 145.7 157.9 

European gas imports (MBtu) 7.5 11.0 12.6 13.4 14.7 

OECD steam coal imports (tonne) 99.2 109.0 115.9 121.0 126.2 
 

The baseline scenario assumes that no climate policies are implemented except those that have 
been implemented before year 2007. 
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3 The coupled ELECTRA frameworks 

3.1 ELECTRA-CH: Coupling CROSSTEM-CH and GENESwIS 

3.1.1 Coupling methodology 

3.1.1.1 Overview 

We built a coupled bottom-up top-down framework that consists of two models: the technology-rich 
bottom-up model Cross Border TIMES Electricity Model (CROSSTEM- CH), and the dynamic multi-
sectoral (Computable) General Equilibrium Model of the Swiss economy (GENESwIS). These two 
models are coupled through an iterative soft link, where  

• the electricity generation production function in the computable general equilibrium (CGE) 
model is determined by the cost structure optimized by the bottom-up model; 

• the sectoral electricity demand variations, which occur in the CGE as a result of changes in 
prices, as well as factor and intermediate input price variations are sent back to the 
bottom-up model. 

When choosing the soft link approach, we were fully aware of the advantages and disadvantages of 
different coupling methods as described in the literature. A lot of effort has been devoted to deve-
loping and assessing coupling methods since the first coupling by Hoffman and Jorgenson 1977. Two 
main currents emerge: "hard linking", which encompasses the two model types into one single 
model, and "soft linking", which couples existing full-size models by exchange of variables (Wene 
1996). 

The hard linking methodology may be implemented by enhancing one model with a reduced version 
of the other (Manne and Wene 1992; Messner and Schrattenholzer 2000; Kombaroglu and Madlener 
2003; Wing 2006; Böhringer and Rutherford 2008), by writing a hybrid model directly in MCP format 
(Böhringer and Rutherford 2008; Frei et al. 2003), or by decomposing an MCP hybrid model and 
solving it iteratively (Böhringer and Rutherford 2009; Sugandha et al. 2009; Lanz and Rausch 2011). 

This methodological choice ensures consistency within the model, but does not permit a high level of 
detail in both technical specification and economic interactions. 

The "soft link" coupling method (Drouet et al. 2005; Schäfer and Jacoby 2005; Martinsen 2011; Sceia 
et al. 2012; Riekkola et al. 2013; Fortes et al. 2014) involves keeping the models’ full structure and 
complexity, exchanging a chosen set of variables and solving the models iteratively until convergence 
is reached on a given criterion. It has the advantage to permit the use of full-scale models with all 
their dimensionally and complexity. However, Böhringer and Rutherford 2009 warn of the dangers of 
inter-model inconsistencies and convergence issues when soft-coupling models with fundamentally 
different logics. 

To analyze electricity markets in Switzerland, we choose the “soft link” method. Similarly to Schäfer 
and Jacoby 2005 (for transportation), we deemed important to adequately model the electricity 
sector’s interaction with the other sectors of the economy. Moreover, as electricity is a very specific 
commodity, a careful and detailed modeling of time-periods, load-curves and technological poten-



81/174 

 
 

tials were considered crucial. In addition, a precise implementation of both market policies and tech-
nological restrictions was required.  

Coupling through a soft link prioritizes the strengths of each model: The electricity generation mix 
and costs from the bottom-up model are given priority over the electricity production function of the 
CGE model. The latter effectively becomes a Leontief function which is parameterized with informa-
tion from the latest bottom-up run. On the other hand, the endogenous electricity demand reaction 
of the top-down model is given precedence over the initial demand assumption for the electricity 
supply model. Additionally, the variations of factor and intermediate input price variations due to 
general equilibrium effects modify the investment costs and operation & maintenance costs of the 
bottom-up model.  

Figure 44 depicts the exchange of information between the two models. Electricity generation costs 
and their components as well as export revenues and import costs are extracted from the 
CROSSTEM-CH model and translated for the CGE model into a) the wholesale electricity price and b) 
input shares for factors and commodities to the electricity generation cost function. The sectoral22 
electricity demand quantities simulated by the GENESwIS model are then sent back to become inputs 
to the CROSSTEM-CH model. To account for changes in the economy, factor and intermediate input 
prices from GENESwIS are used to modify the investment costs and operation and maintenance costs 
of the different technologies in the bottom-up model. This sequence is iterated upon until the vector 
of quantities of total electricity demanded each year converges.  

 

Figure 44: Information exchange between the two component models within one iteration. 

3.1.1.2 Coupling structure 

The two models are coupled through a coupler, written in the Python language, which displays the 
following (simplified) structure: 

As long as the demand doesn’t reach a given convergence criterion: 

                                                            
 

22 GENESwIS simulates yearly electricity demands which are distributed to each of the 288 time slices of the CROSSTEM-CH 
with the help of sectoral load curves. 
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• Run the CROSSTEM-CH model, read the result file, extract the different costs, and generate 
an input file for the GENESwIS model. 

• Run the GENESwIS model, read the result file, extract the sectoral demands and price 
changes, and convert them to input for the CROSSTEM-CH model. 

We start by running the bottom-up model CROSSTEM-CH. For the Baseline scenario, both models are 
calibrated and harmonized such that the electricity demand follows the projected path from Prognos 
2012. Hence, there would be no need to run GENESwIS first, as the electricity demand from a first 
run of the CGE model would be the same as the initial demand input from the CROSSTEM-CH model. 

3.1.1.3 CROSSTEM-CH input into GENESwIS 

The goal of a soft-link coupling methodology is to prioritize the strengths of each model. As such, the 
bottom-up model’s information on electricity generation must be prioritized over the CGE model’s 
electricity generation production function. Hence, the following information from CROSSTEM-CH will 
be prioritized over GENESwIS’s: 

• technology mix in electricity generation, 

• cost of electricity generation, 

• electricity trade. 

The CGE model does not encompass the large amount of different technologies inherent to the 
bottom-up model: The electricity mix cannot be plugged-in as such in GENESwIS. Translation 
mechanisms and modifications of the GENESwIS model are therefore needed for this information to 
be understood and prioritized over the usual structure of the CGE model. Also, although generation 
costs can be inserted into the model, this does not imply that prices would be fixed in GENESwIS. 

3.1.1.3.1 Modifications of the GENESwIS model 

For the information given by the bottom-up model CROSSTEM-CH to be treated as direct input, the 
electricity generation production function of GENESwIS is set as a Leontief function. This way, no 
substitution is allowed within one model run between inputs, which are set as fixed shares. The 
shares do, however, change between iterations during the coupling process. 

The input shares define the technology of electricity production in a CGE model. This cannot be seen 
as a technology mix as such, as no differentiation is made between the different bottom-up technolo-
gies (i.e. solar pv, storage hydro, offshore wind etc.), but gives the ratio of different commodities 
needed to produce an average PJ of electricity (amount of machinery, operation and maintenance, 
gas, nuclear fuel etc.). A change in technology mix, say introduction of gas-fired power plants, will be 
felt through mainly an increase of the share of gas in the CGE production function, and maybe a shift 
in share of capital and operation and maintenance costs.  

The different costs of electricity production calculated in the bottom-up model are translated into 
inputs from commodities defined in the CGE model. Namely, gas costs, nuclear fuel costs, capital 
costs, operation and maintenance costs, inter-connector costs, import costs and export revenues. 
The nesting structure of the ELE production is represented on Figure 45. 
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Figure 45: Nesting structure of GENESwIS’ electricity generation production function. The 
labels in bold-green represent inputs from the CROSSTEM-CH model. 

Operation and maintenance costs are not disaggregated into labor, materials, and other costs in the 
CROSSTEM-CH model. To retain sectoral information, we preserve the shares specified in the input-
output table for electricity production. Operation and maintenance is hence defined as a sub-nest 
composed of all inputs initially entering the ELE production function except for imports, natural gas, 
nuclear fuels and capital. 

The CROSSTEM-CH model does not precisely represent transport and distribution costs within the 
country of production. We therefore keep the electricity transport and distribution (ETD) sector in 
GENESwIS with the technology given by the Swiss Input-Output Table. However, the electricity 
balance equation in CROSSTEM-CH includes trade and inter-connectors (international transporta-
tion). For coherence, these inputs are included in the ELE production function instead of the ETD 
production function of the GENESwIS model. Inter-connectors are assumed to be owned partly by 
the Swiss ETD sector and by the neighbouring country (50%-50%). Inter-connector costs are hence 
paid to ETD and to foreign exchange (see Figure 45). 

3.1.1.3.2 Link CROSSTEM-CH’s costs to GENESwIS’ electricity generation and price 

The electricity generation technology is determined by CROSSTEM-CH’s input cost shares. 

For the wholesale electricity price, things are more complex. The wholesale electricity price cannot 
be plugged directly into the CGE as prices cannot be fixed. However, the Electricity Generation (ELE) 
price in the CGE can be pushed to a given value by varying the inputs of the production function 
while keeping output constant.  

Let us assume the following Leontief electricity production function (output value is equal to input 
costs): 

  (3.1.1) 
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where PELE(t) is the price of electricity, Pi(t) the prices for the different inputs, YELE(t) the activity index 
variable of the electricity generation production function, and qELE(t) and qi(t) the quantity parame-
ters for respectively electricity generation and the different inputs. We assume benchmark prices to 
be set to one, which allows us to treat the quantity parameters as values. For the ease of explana-
tion, and because in a general equilibrium all markets are in equilibrium, we will henceforth drop the 
"minimum" in equation (3.1.1). 

We set qELE(t) as a constant parameter. Consequently, equation (3.1.1) implies that a variation of qi(t) 
impacts the price variable of electricity PELE(t). The goal of the exercise is to calculate the qi(t) 
parameters, given CROSSTEM-CH’s costs CCi(t), such that the qi(t) push the price of electricity genera-
tion, PELE(t), to reflect CROSSTEM-CH’s total costs divided by the electricity demand. Accordingly, we 
want: 

  (3.1.2) 

Plugging (3.1.2) into (3.1.1), we obtain that the input quantities q(i) must be calculated the following 
way: 

  (3.1.3) 

All price and quantity indices constantly vary in the GENESwIS model between iterations within one 
simulation. It is therefore not possible to calculate the qi(t) within GENESwIS, using current prices and 
indices. To calculate the qi(t), we must take input prices Pi(t) and electricity activity index YELE(t) from 
the previous iteration of GENESwIS. For the sake of precision, let us rewrite equation (3.1.3) for itera-
tion number k: 

  (3.1.4) 

Although previous iteration prices might differ from present prices, once the framework converges, 
the input prices converge as well. As the convergence criterion is set on electricity demand, the 
electricity production index YELE(t) is bound to have converged, as demand always equals supply in a 
CGE model. 

By calculating the input quantities this way, the price of electricity generation PELE(t) reflects the ave-
rage cost (AC) of the CROSSTEM-CH model. This is fine when assuming a regulated wholesale electri-
city market. However, the Swiss wholesale electricity market is already partly liberalized and is 
expected to be liberalized further in the coming years. A liberalized market asks for electricity to be 
priced at marginal cost (including scarcity rents) and not average cost. 

Although we do not know exactly how the wholesale electricity market will develop, assumptions 
about future market structure have an impact on modeling results, which we investigate in Maire et 
al. 2015, a draft of which can be found in section 3.1.2. 
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We assume for this study a progressive evolution to a fully liberalized market, where prices are 
formed through marginal cost pricing: from 2025, the market is fully liberalized and the market price 
equals the long-term marginal cost of the CROSSTEM model; in 2010, the price is given by the Input-
Output data and reflects the current situation while in the years in between, the market is increa-
singly liberalized and prices reflect a combination of regulated prices and marginal cost pricing (see 
Figure 46). 

 

Figure 46: Wholesale electricity market price in comparison with average cost and 
marginal cost from the CROSSTEM-CH model, assuming progressive evolution 
to full market liberalization. 

In order for the price in GENESwIS to reflect the wholesale electricity market price and not only 
average cost, profit is introduced in the electricity generation production function. It is modeled as 
an output tax on electricity production; the tax rate being set such that it will inflate the CGE electri-
city generation price from the average cost given by the CROSSTEM-CH model (AC) to the assumed 
market price (Pm). 

  (3.1.5) 

with the following assumptions: Pm(2010) = IOT price, Pm(2015) =    AC +     MC, Pm(2020) =    AC 

+     MC, and Pm( 2025) = MC. 

CROSSTEM-CH optimizes the total cost of electricity generation and trade over the full period 2010 to 
2050. The marginal cost calculated by the model is the shadow price of the commodity balance and 
represents the increase in the total cost of the system due to an increase of a unit of demand (Loulou 
et al. 2005). It includes all constraints and costs (incl. investment costs) and can therefore be seen as 
a long-term marginal cost, or marginal cost including scarcity rents. As the CGE model’s simulates a 
year and not each 288 time slices displayed in the bottom-up model, the marginal cost is converted 
to an annual demand-weighted marginal cost (MC). MC is thus calculated as in equation (3.1.6): 

     (3.1.6) 
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where Dts is the demand at time-slice ts, and MCts the marginal cost for time-slice ts. 

3.1.1.4 GENESwIS input into CROSSTEM-CH 

3.1.1.4.1 Demand 

Yearly sectoral electricity demands are extracted from GENESwIS and given as inputs to the 
CROSSTEM-CH model. GENESwIS’ yearly electricity demand is converted to demands for the 288 time 
slices of the CROSSTEM-CH model with the help of load curves. Electricity demand is differentiated 
by GENESwIS for 5 types of sectors: agriculture, industry, transports, services and households to 
allow for introduction of sectoral load-curves. 

To help with convergence, the electricity demand response of the GENESwIS model is not sent direct-
ly, but dampened (see further below).  

Electricity demands for 2010 are not exchanged. Due to the calibration to weiter wie bisher projec-
tions and to the intertemporal behavior of the model, we experience some border effects that are 
not desirable in 2010. It is hence not instructive to couple 2010 values and historical values are kept 
unchanged. 

3.1.1.4.2 Factor and input prices variation 

For the sake of consistency, we try to include, to the extent possible, price feedback into the bottom-
up model. Indeed, in the CGE model, factors, goods and commodity prices vary in response to the 
different scenarios. However, CROSSTEM-CH does not use prices, but cost data on operation and 
maintenance, investments and fuels. Fuel costs are set exogenously for both models as Switzerland 
does not have an impact on world prices. However, for other costs, the variations of domestic prices 
should be taken into account. For this purpose, we send sectoral price variations to modify invest-
ments and operation and maintenance (O&M) costs for the different technologies. To do so, we 
create price-variation coefficients. These coefficients are composed of the weighted average of the 
price variation of each sector; the weighting being equal to the share of expenditure into each sector. 
However, investment and O&M costs of the CROSSTEM-CH model are not disaggregated into shares 
of different cost components (i.e. labor, metals, cement etc.). We must therefore take some assump-
tions on the composition of these costs. 

We class the different production technologies into four main groups: hydro generation, thermal 
generation, solar PV, and other renewable technologies. 

The decomposition of investment costs was based mostly on Ragwitz et al. 2009, with modifications 
from additional communication between the project partners. The price variation coefficients are 
calculated as the weighted average (weights given in Table 19) of the price variation of each input 
compared to the benchmark prices. In GENESwIS, transport sectors are disaggregated between Road, 
Rail, and Air and Other transport. The transport price coefficient is therefore composed of a combi-
nation of the different transport sectors prices using Swiss input-output table shares of intermediate 
consumption of transportation by the electricity generation (ELE) sector. 
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Table 19:  Composition of the price variation coefficients modifying CROSSTEM-CH’s 
Investments costs per technology 

 

Operation and maintenance (O&M) costs include labor costs and material and other service costs. 
Labor shares were estimated by Hal Turton for an analysis in the EU-NEEDS project. The other 
sectors’ shares are computed from the Energy Input-Output Table (Nathani et al. 2011). As transport 
is considered here only for thermal plants, it is considered to be composed solely of pipeline trans-
port, included in the Air and Other transports (ATP) sector.  

Table 20:  Composition of the price variation coefficients modifying CROSSTEM-CH’s 
Operation and maintenance costs per technology 

 

3.1.1.5 Harmonization and convergence 

The first main challenge when soft coupling two models of different natures such as GENESwIS and 
CROSSTEM-CH is for the models to react in a reasonable and stable way to the coupling. Indeed, 
input values that vary too much from the values the models are used to receive can lead to solution 
problems. For example, a too high electricity demand might push the CROSSTEM-CH model to reach 
boundaries of generation potentials. It then must use stop-gap production technologies with very 
high costs, that prevent the model from becoming infeasible. These very high costs, when sent to the 
GENESwIS model, which bring the electricity demand down drastically. When sent back to 
CROSSTEM-CH, a very low demand might, for example, result in CROSSTEM-CH generating negative 
costs due to the trade revenues. Negative costs are not allowed in the GENESwIS model, and solving 
the framework becomes impossible. 

Hence, a careful harmonization of the models is necessary before attempting the coupling and 
hoping for meaningful results (see 3.1.1.5.1). 

The second main challenge is to reach convergence. First of all, a solution must exist for the frame-
work to converge to. With such a complex framework, it was not possible to check this mathematic-
ally prior to testing. CGE models are built on CES functions to ensure convexity and solvability. How-
ever, it was not possible to determine the solution space of two big models with different structures 
and logic. When solutions do exist for all the scenarios simulated, the framework must converge to 
the existing solution. 

Convergence is not easy to achieve due to the stepwise behavior of the bottom-up model. Special 
solving techniques (see sections 3.1.1.5.2 and 3.1.1.5.3) had to be applied in the coupling procedure 
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to avoid the framework getting locked in oscillations. Finally, once convergence on electricity 
demand is reached, a check on convergence of other important variables is required for consistency. 

3.1.1.5.1 Harmonization of the models 

For the models to accept each other and converge to meaningful solutions, they must be harmonized 
carefully. 

For exogenous data, harmonization is trivial. A discount rate of 4.5% was decided upon and used in 
both models. World energy prices (import prices) and CO2 permit prices for the Emissions Trading 
Scheme were set for both models (see Table 11, page 70). 

Endogenous variables are much more difficult to harmonize while keeping the structure and data 
consistency of each models. 

The first difficulty encountered was linked to the electricity pricing and costs of electricity produc-
tion. GENESwIS is based on the Swiss Input-Output Table (IOT) (Nathani et al. 2011). This input-
output table also includes information on energy prices. It is important to ensure that average cost 
(AC) and marginal cost (MC) of electricity from the CROSSTEM-CH model (in terms of annual ave-
rages) are reconciled with IOT prices. Also, to ensure economic consistency, average annual marginal 
cost should not be smaller than annual average cost in any given year. For this purpose, some input 
data in the CROSSTEM-CH model were modified. Especially, capital costs for existing plants were 
included in generation costs. 

Once average and marginal costs from the CROSSTEM-CH were reconciled with IOT prices, demands 
had to be aligned for the baseline. 

The baseline scenario for this work is based on the weiter wie bisher scenario of the Energy 
Perspectives 2050 (Prognos 2012). Hence, CROSSTEM-CH initial demands are set on the demand 
projections of Prognos 2012 for the weiter wie bisher scenario. For the total framework to be set on 
that same Baseline scenario, GENESwIS was re-calibrated along that demand path, with the input of 
CROSSTEM-CH’s electricity price.  

3.1.1.5.2 Supply elasticity 

To help with the convergence of the models, which is hampered by the stepwise behavior of the 
bottom-up supply curve, we introduce a supply elasticity in the Electricity Transport and Distribution 
sector of GENESwIS. For this purpose, we insert a fixed resource at the top of the Electricity transport 
and distribution nest (see Figure 47). The elasticity of substitution between the fixed resource and 
the rest of the inputs is calculated as per equation 3.1.6 given a supply elasticity ƞ and the share of 
fixed resource θR (see Rutherford 1998). 

  (3.1.6) 

The value of supply elasticity can be set such that it helps with convergence (approximating the 
bottom-up supply elasticity), as it has no impact on the results. For our simulations, we set the supply 
elasticity at η=2. With θR= 0.024, equation (3.1.6) gives us an elasticity of substitution of σ=0.05. 
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This method was prompted by the work of Lanz and Rausch 2011 who introduce a demand elasticity 
to parametrize the bottom-up demand. They show that the choice of demand elasticity does not 
affect the results but that a good approximation of the top-down demand response reduces the 
number of iterations needed for convergence. 

 

Figure 47: Nesting structure of the Electricity transport and distribution production function 
in GENESwIS. 

3.1.1.5.3 Dampening the demand response 

Due to the stepwise nature of the bottom-up supply curve, and despite the introduction of a supply 
elasticity in the electricity transport and distribution of the CGE model, it is frequent that the models 
lock up into an oscillation between two marginal costs. The electricity demand oscillates between 
two values and does not converge. To avoid this problem, we introduce a dampening of the demand 
response between sub-sequent iterations into the coupler. Instead of sending the sectoral demands 
from the CGE directly to the bottom-up model, we send a Gauss-Seidel combination of the whole 
history of demands as on equation 3.1.7.  

  (3.1.7) 

The calibration of the α parameter is sensitive. Taking too small steps increases the run time, when 
too large steps will not solve the problem of the oscillations. We found that α=0.3 is a good choice 
for our framework. However, for some difficult scenarios, when many different marginal technolo-
gies compete, the α had to be decreased after some initial iterations.  

Figure 48 gives an illustration of the demand-dampening (Gauss-Seidel method) for our framework. 
The representation is indeed merely an illustration, because the depicted supply and demand curves 
are much too simplistic.  
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Figure 48: Illustration of the demand-dampening (Gauss-Seidel) method for our framework. 

Let us assume a bottom-up step-wise supply function and a demand curve for the CGE model. The 
equilibrium solution lies at demand D*. The goal for the coupling framework is to converge to this 
solution. Let us start with demand D0. The bottom-up model optimizes the electricity supply system 
and provides the CGE model with a given marginal cost (wholesale price). With this information, the 
CGE model reaches equilibrium at demand D1. D1 is then sent to the bottom-up model. With D1 for 
input, a much lower marginal cost is reached, which, sent to the CGE, will give a solution at D2. This 
routine is performed until convergence is reached. However, with this configuration, the framework 
never converges. It stays stuck, oscillating between 2 solutions (D3 and D4) indefinitely.  

This is when the Gauss-Seidel method becomes useful. Let us start with the same initial demand D0. 
The demand sent to the bottom-up model (D1’, in red ink in Figure 48) is a combination of the pre-
vious demands (equation 3.1.7). The same dampening is applied to the next demands. This way the 
steps are reduced, and the framework does not get stuck between two states. It is, hence able to 
converge towards the solution D*. 

The demand-dampening approach does not influence the equilibrium, but merely helps to approach 
the solution in a smoother way. 
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3.1.1.5.4 Convergence criterion 

The coupling procedure iterates until the electricity demand converges. To test this convergence, the 
following criterion ζ is introduced: 

  (3.1.8) 

where Dt ,i stands for the electricity demand at period t for iteration i .  

Although ζ is the stopping criterion (set at 5*10-5) for the coupling procedure, we verify post-
simulation that convergence has been reached for other variables (marginal cost, average cost, 
sectoral output etc.). Table 21 displays some information on the convergence of a few variables for 
the three domestic scenarios simulated with the ELECTRA-CH framework. 

Table 21: Convergence of the ELECTRA framework for the three scenarios simulated: a few 
indicators. 

Scenario Demand: 
convergence  

(ζ) 

Demand: 
maximum 
deviation 

MC: 
maximum 
deviation 

AC: 
maximum 
deviation 

Number of 
iterations 

α 

Baseline 2*10-5 8*10-5(2010) 4*10-5 2*10-5 18 0.3 

TAX 1*10-5 5*10-5(2050) 1*10-5 1*10-4 52 0.3&0.1 

NoGAS 3*10-5 8*10-5(2010) 1*10-6 9*10-5 18 0.3 

 

3.1.2 Linking electricity prices and costs in bottom-up top-down coupling under 
changing market environments (working paper) 

This sub-chapter consists of a working paper by Sophie Maire, Frank Vöhringer and Philippe Thal-
mann. It has been published as an EPFL-LEURE Working Paper and submitted to the peer-reviewed 
journal Energy Policy.  

We find it more informative to include the working paper into this report as it is. It fits well at this 
point, although a few small instances of repetitiveness result. 

Abstract 

Electricity market liberalization is altering the pricing mechanisms for wholesale electricity and thus 
the links between generation costs and user prices. This will affect the effectiveness of climate and 
energy policies. In this paper, we simulate a tightening of these policies under the alternative regula-
tory assumptions of (1) continued cost-plus price regulation and (2) gradual market liberalization. For 
these simulations, we developed a modeling framework composed of a technology-rich model of 
electricity generation and an applied computable general equilibrium (CGE) model. The first is used 
to minimize generation costs, the second to compute equilibrium prices and quantities. The two 
models are soft-linked by relating these costs and prices, whereby the relationship between costs 
and prices depends precisely on the regulatory assumption. Using this framework, we find, for 
Switzerland, that a tax on electricity is more effective in reducing electricity demand in a liberalized 
market than under cost-plus regulation. 
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WP 1 Introduction 

Price formation depends on market structure and regulation. Traditionally, wholesale electricity 
prices were regulated to allow producers to cover their generation costs and achieve an acceptable 
profit. Such price regulation provides incentives for new capacity additions as firms are guaranteed 
an acceptable return on investment. Moreover, investment into new capacity may additionally be 
fostered with the help of different types of subsidies, whether open or covert. In a fully liberalized 
competitive market, wholesale electricity is priced at marginal cost. This provides no incentive for 
investment unless there is scarcity, in which case the wholesale price includes a scarcity rent23, 
which, in equilibrium, provides incentive for investment into new capacities (IEA 2001). 

The current European wholesale electricity market can be described as a largely liberalized market 
with overcapacity. Wholesale electricity is increasingly priced at short-term marginal cost. However, 
this price is currently too low to provide incentive for investment into new capacity24. In a liberalized 
market, such incentive will emerge only as expected prices reflect new capacity needs through scarci-
ty rents at the margin. Today, it is yet unclear whether markets will be fully liberalized or whether 
elements of central planning will reappear out of the fear of undesired consequences of scarce 
capacity such as outages and price spikes. 

The impacts of changing regulatory environments on price formation are potentially relevant for the 
effectiveness of energy and climate policies. They must, therefore, be modeled carefully. An ade-
quate way of modeling electricity markets is to couple bottom-up and top-down models to take 
advantage of the qualities of both model types: The bottom-up model provides a detailed set of 
electricity generation technologies and minimizes generation costs, while the top-down model 
simulates the interactions between economic agents and computes equilibrium prices and quanti-
ties. For their coupling, many approaches have been developed since Hoffman and Jorgenson 1977, 
each with its strengths and weaknesses (for a review of the methods, see e.g. Böhringer and Ruther-
ford 2009). Few studies explicitly link costs from bottom-up models to prices in CGE models. Amongst 
the studies that do, different assumptions are made: 

• Fortes et al. 2014 link total energy costs (average cost) variation from TIMES-Portugal to 
energy prices in GEM-E3 Portugal.  

• Martinsen 2011 couples MARKAL Norway and the MSG6 CGE model, linking electricity margi-
nal cost (weighted annual average) to wholesale electricity price.  

• Riekkola et al. 2013 link the shadow price (marginal cost) of electricity from TIMES-Sweden to 
the electricity price in their CGE model. They note that the price issue is not fully resolved.  

In fact, the link between costs and prices depends on the regulation. This paper investigates whether 
assuming different market evolutions, and therefore different price formation mechanisms, has an 

                                                            
 

23 For simplification purposes and in line with the scope of our models, we do not consider here transmission constraints, 
load ranges nor network externalities. Nonetheless, the general argument remains valid. 
24 For example, a study from the Swiss Federal Office of Energy (BFE 2013) deems 24 out of 25 potential future hydro 
projects not viable due to low wholesale electricity prices. The average discounted cost of new hydro plants is estimated at 
141 CHF/MWh, which is considerably higher than the production costs of older plants or current average wholesale prices. 
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important implication on the results when modeling electricity markets and their interaction with the 
rest of the economy under climate and energy policies. 

We build a coupled framework designed to analyze electricity markets and trade in Switzerland. This 
framework consists of two component models: a TIMES electricity supply model of Switzerland - 
CROSSTEM-CH - and a dynamic computable general equilibrium (CGE) model - GENESwIS - of the 
Swiss economy. These two models are coupled through a soft link methodology such that each 
model keeps its full structure and coherence and the particular strengths of each model are used to 
inform the other model. 

The translation of variables between two fundamentally different models represents a challenge: The 
main difficulty comes from the fact that the TIMES electricity supply model yields costs of electricity 
generation, whereas the CGE model uses wholesale electricity prices. Moreover, prices are the main 
drivers of the CGE model and have a direct impact on the electricity demand that is reinserted as 
input to the TIMES model. 

We analyze a climate policy scenario for Switzerland under two different market assumptions requi-
ring two different coupling approaches: (1) a fully regulated market, where wholesale electricity is 
priced such that it equals the average cost of electricity production plus a markup, and (2) a progres-
sive evolution to a fully liberalized market, in which the marginal cost of electricity production includ-
ing scarcity rents defines the price of wholesale electricity. 

We show that the way in which costs are linked to prices, and therefore the market evolution 
expectations, have a sizable impact on the results. Notably, we observe a variation of the reduction 
in electricity demand induced by the same climate and energy policies. 

The outline of the paper is as follows: Section 2 describes the two models and the coupling approa-
ches. Section 3 defines the scenarios. Section 4 identifies the mechanisms at work to understand the 
results presented in section 5. Section 6 concludes. 

WP 2 Framework 

We build a coupled bottom-up top-down framework that consists of two models: the technology- 
rich bottom-up model Cross Border TIMES Electricity Model (CROSSTEM-CH), and the dynamic multi-
sectoral Computable General Equilibrium (CGE) model (GENESwIS) of the Swiss economy. These two 
models are coupled through an iterative soft link, where 

• the electricity generation production function in the CGE model is determined by the cost 
structure optimized by the bottom-up model; 

• the sectoral electricity demand variations that occur in the CGE as a result of changes in 
prices, as well as factor and intermediate input price variations are sent back to the 
bottom-up model. 

Before describing the coupling method, we shortly introduce the two models. 
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WP 2.1 Models 

WP 2.1.1 Bottom-up model: CROSSTEM-CH 

The Cross Border TIMES Electricity Model (CROSSTEM)25 is a technology rich bottom-up optimization 
model of the electricity system in Switzerland and its four neighboring countries developed on the 
basis of the TIMES framework. TIMES is a perfect foresight model that, given a comprehensive set of 
technologies, allows users to minimize the cost of the technology mix over the time horizon, 
matching a given demand and taking into account a set of constraints (Loulou et al. 2005). It displays 
a high level of technological detail including operational and maintenance costs, investment costs, 
fuel costs, lifetime, construction time, renewable potential and decommissioning. CROSSTEM was 
developed from the existing STEM-E model described in Kannan and Turton 2011. CROSSTEM’s time 
slices are disaggregated to take into account the variability of electricity demand across the day 
(hourly), different types of day (weekday, Saturday, Sunday) and seasons. For the analysis in this 
paper, we use the Swiss module of the CROSSTEM model (CROSSTEM-CH), where trade with the 
neighboring countries is exogenous. 

WP 2.1.2 Top-down model: GENESwIS 

GENESwIS is a dynamic computable general equilibrium (CGE) model of the Swiss economy designed 
to analyze energy and environmental policies (Vöhringer 2012). 

In GENESwIS, agents act rationally and are forward-looking over the time horizon 2010-2050. 
Households maximize utility under given preferences and a budget constraint. Firms maximize profit 
under given production technologies and perfect competition. The Government collects taxes to 
provide public goods. Domestic and foreign goods are assumed to be imperfect substitutes (Arming-
ton 1969). Non-satiation in consumption implies that demand must equal supply in all markets under 
flexible positive prices. 

The energy sector is disaggregated to allow for energy and environmental policy analysis. Non-
energy industries are separated into aggregates taking into account their possible importance in the 
formation of capital for the electricity sector and their affiliation to different CO2 taxation schemes 
(ETS, CO2 tax). The electricity sector has been split into ‘Electricity Generation’ and ‘Electricity 
Transport and Distribution’ to permit the differentiation between wholesale electricity and retail 
electricity prices. 

Capital is modeled as putty-clay. Thus, capital invested into one sector (industry, services or electri-
city) cannot be transformed into capital for another sector. 

WP 2.2 Coupling 

The "soft link" coupling method (Wene 1996), involves keeping the models’ full structure and 
complexity, exchanging a chosen set of variables and solving the models iteratively until convergence 
is reached on a given criterion. It has the advantage of allowing the use of detailed and complex 
models, which we deem important for an analysis of the impact of climate and energy policies on the 
electricity sector and the entire economy. It permits for the representation of the electricity sector’s 
                                                            
 

25 Developed by the Energy Economics Group at the Laboratory for Energy Systems Analysis (LEA), Paul Scherrer Institute 
(PSI), Switzerland. 
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interaction with the other sectors of the economy (Schäfer and Jacoby 2005), and allows for different 
types of policies to be adequately modeled: market instruments in the CGE model and technology 
standards in the bottom-up model. 

Coupling through a soft link prioritizes the strengths of each model: The electricity generation mix 
and costs from the bottom-up model are given priority over the electricity production function of the 
CGE model. The latter effectively becomes a Leontief function which is parametrized with informa-
tion from the latest bottom-up run. On the other hand, the endogenous electricity demand reaction 
of the top-down model is given precedence over the initial demand assumption for the electricity 
supply model. Additionally, the variations of factor and intermediate input price variations due to 
general equilibrium effects modify the investment costs, and operation and maintenance costs of the 
bottom-up model. 

Figure 49 depicts the exchange of information between the two models. Electricity generation costs 
and their components as well as export revenues and import costs are extracted from the 
CROSSTEM-CH model and translated for the CGE model into a) the wholesale electricity price and b) 
input shares for factors and commodities to the electricity generation cost function. The sectoral26 
electricity demand quantities simulated by the GENESwIS model are then sent back to become inputs 
to the CROSSTEM-CH model. To account for changes in the economy, factor and intermediate input 
prices from GENESwIS are used to modify the investment costs and operation and maintenance costs 
of the different technologies in the bottom-up model. This sequence is iterated upon until the vector 
of quantities of total electricity demanded each year converges. 

 

 Figure 49: Information exchange between the two component models 

                                                            
 

26 GENESwIS simulates yearly electricity demands that are distributed to each of the 288 time slices of the CROSSTEM-CH 
with the help of sectoral load curves. 
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The modeling framework has been set up such that the link between CROSSTEM-CH’s generation 
costs and GENESWIS’ wholesale prices for electricity can be modeled in different ways: 

• Average cost plus pricing: The wholesale price is set at CROSSTEM-CH’s average cost level 
plus a markup.  

• Marginal cost pricing: CROSSTEM-CH’s marginal cost is the shadow price of the commodity 
balance and represents the increase in total system cost due to an additional unit of 
demand (Loulou et al. 2005). It reflects all constraints and costs (incl. investment cost) and 
can therefore be seen as a long-term marginal cost, or marginal cost including scarcity rents 
for capacity. As the CGE model does not disaggregate the year into 288 time slices, the 
marginal cost is aggregated to an annual demand-weighted marginal cost. 

To help with the convergence of the models, which is hampered by the stepwise behavior of the 
bottom-up supply curve, we introduce a supply elasticity in the Electricity Transport and Distribution 
sector of the CGE model. For this purpose, we insert a fixed resource at the top of the Electricity 
Transport and Distribution’s nest. The elasticity of substitution between the fixed resource and the 
rest of the inputs is calculated27 such that, given the share of the fixed resource, the supply elasticity 
of the sector equals a selected value28 (see Rutherford 1998). This method was inspired by the work 
of Lanz and Rausch 2011 who introduce a demand elasticity to parameterize the bottom-up demand. 
They show that the choice of demand elasticity does not affect the results but that a good approxi-
mation of the top-down demand response reduces the number of iterations needed for converg-
ence. 

Despite the introduction of a supply elasticity in the Electricity Transport and Distribution sector of 
the CGE model, it is frequent for the models to lock up into an oscillation between two marginal 
costs. The electricity demand oscillates between two values and does not converge. To avoid this 
problem, we introduce a dampening of the demand response in the coupler: Instead of the last 
electricity demand vector, we send a Gauss-Seidel combination of the CGE electricity demands of the 
previous iterations (equation 3.1.9) to the bottom-up model: 

  (3.1.9) 

where α ∈ [0, 1] represents the length of the step towards the demand of the last iteration. 

WP 3 Scenarios 

We simulate a baseline and a policy scenario for two different types of electricity markets in Switzer-
land: a regulated market, and progressive liberalization to a fully liberalized market (see Table 22). 

                                                            
 

27  , with σ the elasticity of substitution between the fixed resource and the rest of the inputs, η the supply 
elasticity and θR the share of the fixed resource. 
28  The value of supply elasticity can be set such that it helps with convergence (approximating the bottom-up supply 
elasticity), as it has no impact on the results. 
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Table 22: Scenarios matrix 

 

The baseline (BAU) scenarios are based on the weiter wie bisher (i.e. "more of the same") scenario of 
the Energy Perspectives 2050 (Prognos 2012). They include current policies such as an Emissions 
Trading Scheme, a CO2 tax on gas and heating fuels for the non-ETS sectors and households, and a 
subsidy program for the energy refurbishment of buildings. For each pricing scenario, the GENESwIS 
model is calibrated such that the electricity demands and CO2 emissions follow the paths projected 
by Prognos 2012. 

The TAX scenarios represent more stringent climate and energy policies. A tax is levied on electricity 
at a rate of 10% in 2020, increasing linearly to 50% in 2050. The Emissions Trading Scheme stays 
identical as in the BAU scenario, but the CO2 tax on gas and heating fuels is increased linearly from 
current level (60 CHF/t) to 200 CHF/t in 2050. A CO2 tax on transport fuels is introduced at 50 CHF/t 
in 2035, reaching 200 CHF/t in 2050. 

Under regulation (scenario REG), firms are usually allowed to cover their costs and make an appro-
priate profit. We assume accordingly that electricity is priced at average cost plus a small markup. 

We assume in the liberalized market scenario (LIB) that the electricity market will be entirely libera-
lized from 2025 onwards and that the price will then follow the long-term marginal cost of the 
bottom-up model. From 2010 to 2025, the market is in transition and prices reflect an increasing 
importance of marginal cost pricing. Profit is calculated such that the price of wholesale electricity is 
pushed from the average cost given by the CROSSTEM-CH model (AC) to the assumed market price 
(Pm). 

  (3.1.10) 

We analyze the policy scenarios for the two market regulation assumptions TAX_LIB and TAX_REG as 
deviations from the respective baseline scenarios BAU_LIB and BAU_REG. It is uncommon in a CGE 
setting to have two different baselines. Actually, the central targeted baseline parameters, namely 
electricity demands and CO2 emissions per fuels, are the same in both of our baselines. However, it 
was necessary to recalibrate the model framework under the different coupling mechanisms to 
match the targeted baseline parameters, as electricity prices are defined in a different manner. 

WP 4 Mechanisms at work 

WP 4.1  Prices in the baseline scenarios 

As mentioned above, the wholesale electricity market prices simulated in the baselines for the two 
different market regulation scenarios diverge. As can be seen in Figure 50, annual average and 
marginal costs for the targeted baseline demands are distinct not only in level, but also in evolution. 
According to whether we assume a regulated market (REG) or a liberalized market (LIB), the whole-
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sale electricity prices are linked to respectively the average cost or marginal cost of the bottom-up 
model. This largely specifies the level and evolution of the prices in each market scenario (Figure 50). 

 

Figure 50: Wholesale electricity pricing under the two baselines (LIB for the liberalized 
market and REG for the regulated market) in comparison with annual average 
(AC) and marginal (MC) costs from the CROSSTEM-CH model. 

WP 4.2  The effects of an electricity tax 

A tax on electricity consumption increases end-user prices for electricity. In equilibrium, however, 
this end-user prices increase does not amount exactly to the level of the tax. The reasons are 
twofold:  

• Electricity demand is flexible: A rise in end-user price induces a reduction in demand. The 
new equilibrium price will hence be lower than the initial price plus the tax.  

• This new (and reduced) electricity demand is then passed on to the CROSSTEM-CH model 
(see Figure 49), which lowers electricity generation and hence alters generation costs. As 
generation costs are linked to the wholesale electricity price, their alteration will, in turn, 
have an effect on end-user prices.  To analyze th         -
city demand reaction and end-user prices, we thus also need to analyze the influence of 
changes in demand on generation costs.  

WP 4.3 The effect of demand changes on marginal and average generation 
costs 

Both average and marginal costs generated by the CROSSTEM-CH model include all relevant costs, 
i.e. fuel costs, operation and maintenance costs, investment costs, taxes, and the electricity trade 
deficit (which is usually negative for Switzerland, i.e. a trade surplus). They both depend on the 
composition of the technology mix, albeit in different ways: The marginal cost is linked to marginal 
technologies, whereas the average cost depends largely on the degree of utilization of technologies 
with high variable costs, such as gas-fired power plants. 

Thereby, technology restrictions, or an increase in demand large enough to require the introduction 
of a more expensive technology, will increase the marginal cost. Likewise, a reduction in demand 
important enough to make the most expensive technology obsolete, will decrease the marginal cost. 
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For the average cost, things are more complicated, because the direction of change depends not only 
on the marginal technology, but on the technology and cost structure as a whole. For example, if the 
technology mix is composed mostly of technologies with high fixed costs, a decrease in demand 
increases average cost. In contrast, if the technology mix includes a large share of technologies with 
high variable costs, a decrease in demand also decreases average cost. 

WP 4 Results 

In this section, we analyze the effectiveness of the TAX scenario policies under two different market 
assumptions: gradual liberalization (LIB) and regulation (REG). To do this, we first investigate the 
effect of the policies on the generation costs in the Swiss context. 

WP 5.1  Generation costs 

WP 5.1.1  Marginal cost 

As can be seen in Figure 51a, the marginal cost does not vary greatly for the TAX scenarios relative to 
the baselines for either of the market regulation scenarios. Demand reductions under the TAX 
scenarios are not large enough to shock the technology mix deeply and there are no technology 
restrictions in addition to the baselines. Therefore, the marginal technologies, and hence the 
marginal cost, do not change much in yearly average (although they may change in some particular 
time-slices). 

WP 5.1.2  Average cost 

In contrast, average cost is reduced in the TAX scenarios relative to the baselines (Figure 51a). Due to 
a technology mix comprising many depreciated plants and to the optimized cost structure of the 
CROSSTEM-CH model, variable costs represent a major share of total cost. Furthermore, at each 
iteration, the investment decisions as well as running-schedules are re-optimized over the entire 
time horizon of the model, which further increases the total proportion of variable costs in the 
framework. A dominant share of variable costs implies that average cost is lower when less electricity 
is produced. 

The variation of average cost for the liberalized market (TAX_LIB) is greater than under regulation 
(TAX_REG). This is due to the fact that total electricity demand is reduced further in the liberalized 
market scenario than in the regulated market scenario. 

WP 5.2  From costs to end user prices under alternative market regulation 

We will now investigate what the different responses of the marginal and average costs imply for the 
wholesale, retail and end-user prices, and for electricity demand under alternative market 
regulations. 

WP 5.2.1  Liberalized market 

In the liberalized market scenarios, wholesale electricity prices are increasingly linked to the marginal 
cost. We observe that the marginal cost is not greatly affected by the demand reduction induced by 
the TAX_LIB scenario (Figure 51a). As a result, wholesale electricity prices (Figure 51b) are impacted 
only slightly. Retail electricity corresponds to electricity transported and distributed to the users. An 
important share of its production cost is due to the purchase of wholesale electricity. The prices of 
commodities and services constituting the remaining share are not affected greatly by the policies of 
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the TAX_LIB scenario. Hence, retail electricity prices vary in the same direction as wholesale electrici-
ty prices, although this variation is dampened (Figure 51b). End user prices are defined as retail 
prices gross of tax. The electricity tax included in the TAX scenario increases the end user price of 
electricity (Figure 51c), which reduces electricity demand (Figure 51d). 

WP 5.2.2  Regulated market 

For the regulated market scenarios, wholesale electricity prices are closely linked to average cost. 
They are therefore reduced as a result of the electricity demand reduction induced by the energy 
policies, namely the electricity tax, included in the TAX_REG scenario (Figure 51a&b). Consequently, 
retail electricity prices also decrease relative to the baseline (Figure 51b). Hence, the end user price 
increase (gross of tax) is smaller in the regulated market (TAX_REG) than in the liberalized market 
(TAX_LIB), as can be seen in Figure 51c. The resulting reduction in demand is therefore smaller in the 
regulated market than in the liberalized market29 (Figure 51d). 

 
(a) Average and marginal costs 

 
(b) Wholesale and retail electricity prices 

                                                            
 

29 These results are qualitatively robust to different calibrations of the CGE model. 
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(c) End user prices (gross of tax) for electricity 

 
(d) Electricity demands 

Figure 51: Percentage change of - (a) average cost (AC) and marginal cost (MC), (b) 
wholesale and retail electricity prices, (c) electricity prices paid by the end 
users (gross of tax) and retail electricity prices (net of tax), and (d) electricity 
demands - for the scenarios TAX_LIB and TAX_REG compared to the baselines 
BAU_LIB and BAU_REG, respectively. 

WP 6 Conclusions 

In this paper, we show that assumptions on the future evolution of electricity market regulation have 
an impact on the effectiveness of electricity taxes to curb demand. In a coupled bottom-up top-down 
modeling framework, the way we translate costs into prices needs to reflect the nature of market 
regulation: Assuming a more or less liberalized market implies linking the wholesale electricity price 
to either the average cost or the marginal cost of electricity generation. 

The regulated market, which links wholesale electricity market prices to average costs, is easier to 
model, because it avoids the numerical convergence issues stemming from the stepwise behavior of 
marginal costs. However, if the market is not tightly regulated, this linking assumption is inappropri-
ate and leads to its misrepresentation. As a consequence, the estimation of the effectiveness of 
energy or climate policies is erroneous. As we have shown, the electricity demand reduction fostered 
by market-based policies is stronger in a liberalized setting than in a regulated market. 
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Before generalizing this result, some caveats are in order. First of all, the marginal cost assumed in 
our modeling framework is a demand-weighted annual average of the marginal costs for all time 
slices, which is a strong simplification. In addition, we assume that electricity generation is optimized 
over the full modeling horizon with perfect foresight. Finally, we make specific, albeit representative 
for Switzerland, assumptions about policy changes and available technologies. Further research is 
needed to explore the consequences of modified pricing mechanisms in (partially) liberalized 
markets under different national circumstances, policies and technological options. 

Notwithstanding, it is important to take ongoing and projected market liberalization into account and 
to disclose pricing assumptions when interpreting coupled models’ results. 

3.1.3 Further results of the coupled framework 

In the previous section, which is a self-contained scientific paper, we only presented a small selection 
of ELECTRA-CH’s simulation results to stay with the regulatory focus of the paper. In this section, we 
present results of the domestic scenarios simulated with the ELECTRA-CH framework in a more com-
prehensive manner. 

3.1.3.1 Reminder for the domestic scenarios 

A detailed description of the scenarios can be found in section 1.4.1. Domestic scenarios were 
developed to test and illustrate the ELECTRA-CH framework. The results presented in this section are 
closely linked to the nature and timing of the policy instruments. We found it judicious to recapitu-
late the important features of the scenarios. For this purpose, Figure 52 gives a comparison of the 
varying instruments of the domestic scenarios. 

 

Figure 52: ELECTRA domestic scenarios: comparison of the varying instruments. 

3.1.3.2 Electricity prices and demand  

In the TAX scenario, the wholesale electricity price does not vary much compared to the baseline 
scenario (Figure 53a). This is due to the only minor variations in marginal cost, as the electricity 
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generation mix is not altered fundamentally (see 3.1.3.5). However, due to the policies of the TAX 
scenarios, namely the electricity tax, the user price of electricity increases in the TAX scenario (Figure 
53b). This user price increase induces a reduction of the electricity demand (Figure 54) with regard to 
the baseline.  

In the NoGAS scenario, the marginal cost of electricity production increases (see 3.1.3.5), which 
pushes the wholesale electricity price up (Figure 53a). This translates into a greater increase in 
electricity user prices (Figure 53b) and a greater decrease of electricity demand (Figure 54) compared 
to the TAX scenario. 

  

Figure 53: Variation of (a) wholesale electricity price (net of tax) and (b) electricity price 
for users (gross of distribution costs and tax) for the TAX and NoGAS scenarios 
with regard to the baseline. 

 

Figure 54: Variation of total electricity demand for the TAX and NoGAS scenarios with 
regard to the baseline. 

3.1.3.3 Electricity generation mix 

The Swiss electricity generation mix and installed capacity from the coupled framework scenarios are 
given in Figure 55 and Figure 56. As mentioned before, the Baseline scenario follows the weiter wie 
bisher demand from the Energy Perspectives 2050 (Prognos 2012). In this scenario, the existing 
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nuclear capacity is gradually replaced by natural gas based generation in the short to medium term, 
and a combination of gas and renewables in the long term. By 2020, already 365 MW of nuclear 
capacity is retired (KKW Mühleberg retires in 2019), while the demand increases by 5%. To solve this 
problem, the model invests in around 1.3 GW of base-load type natural gas generation (see Figure 
56). By 2035, the remaining nuclear capacity30 is replaced by a combination of base-load (2.9 GW) 
and flexible (2.5 GW) gas power plants. The flexible gas generation capacity enables better supply-
demand balancing in conjunction with the import/export cycles. The latter generates additional trade 
revenue due to diurnal and seasonal arbitrage electricity trade, which is further discussed in section 
3.1.3.4. By 2050, the increasing gas prices combined with technology learning (capital cost reduction) 
in renewable technologies leads to increasing investments in solar PV (10 GW). By 2050, 52% of the 
net generation comes from hydro, 32% from gas, and the remaining 16% from renewables.   

Compared to the Baseline scenario, the TAX scenario has a lower demand (14% lower by 2050), as 
shown in Figure 54, but with no technology or CO2 emission restrictions, the overall generation mix 
and installed capacity are very similar to the Baseline scenario. While the total capacity of hydro and 
nuclear technologies remains unchanged with respect to the Baseline, there is a proportionate 
lowering in gas based generation due to the lower demand. Hence, there is an installed gas capacity 
of 1 GW by 2020, 4.1 GW by 2035 (vs. 5.4 GW in Baseline) and 3.1 GW (vs. 4.7 GW in Baseline) by 
2050. The solar PV generation remains unchanged from the Baseline scenario, i.e. full potential is 
tapped by 2050. The self-sufficiency constraint prevents the model from increasing domestic produc-
tion and exporting the excess. 

 

Figure 55: Electricity generation mix (Switzerland) 

                                                            
 

30 Although the last nuclear power plant in Switzerland (KKW Leibstadt) goes offline in 2034, 2035 still shows that 2.5% of 
the total electricity generation comes from nuclear. This is because the milestone year displays an average of all the years 
within that time period. 
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Figure 56: Installed Capacity (Switzerland) 

The NoGAS scenario provides a very different picture compared to the other two scenarios. This 
scenario has an even lower demand than the TAX scenario (23% lower than Baseline and 11% lower 
than TAX by 2050, see Figure 54). No natural gas based generation is allowed in this scenario. 
Instead, the model is allowed to import electricity to the same level as gas imports for electricity 
production in the TAX scenario (see Figure A 28, Appendix A). In the near term (2020), due to the 
lowering of the demand, the existing nuclear, hydro and renewable capacities are almost enough to 
supply the demand (only 0.5 PJ of net imports in 2020). By 2035, when all the nuclear capacity will 
have been retired, the model finds it cost optimal to import the majority of the retired nuclear gene-
ration (around 46 PJ, or 22% of the total demand), with some investment in wood fired power plants 
to provide seasonal base-load (0.6 GW by 2035). The levelized costs of other new renewable techno-
logies such as solar PV are still not competitive in 2035 versus the import prices from the surrounding 
regions. As with the other scenarios, by 2050 solar PV becomes competitive due to increasing import 
prices as well as lowering electricity generation costs from renewables, fully tapping the available 
potential by 2050 (10 GW). Nonetheless, net imports of around 11 PJ (about 5% of the total demand) 
are still required to meet the electricity demand. Note that these results are significantly different 
from the NoGAS scenario (Sc.3) in the CROSSTEM model runs (see section 2.1.11.2.1). The reason for 
this difference is partially explained in section 2.1.12, referring particularly to the differences in 
import/export price assumptions in CROSSTEM-CH versus the endogenous import/export prices in 
CROSSTEM. The higher electricity import costs assumed in the CROSSTEM-CH model result in higher 
investments in renewable technologies while minimizing the net electricity imports, whereas cheaper 
electricity generation costs in neighbouring regions favors electricity imports for Switzerland in the 
CROSSTEM model. 

3.1.3.4 Generation schedule 

One of the main highlights of the CROSSTEM-CH model is its ability to depict hourly load patterns. 
The hourly electricity supply and demand balance curves of Switzerland for an average weekday for 
all four seasons for the TAX scenario are shown in Figure 57 for the TAX scenario. Generation 
schedules for the other scenarios can be found in Appendix C.  
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It can be observed that the base-load generation (river hydro and base-load gas plants) only covers 
around half of the demand (blue line in upper panel of Figure 57), even during the summer when the 
demand is lowest. Since there is a large installed capacity of solar PV, this covers the peak time 
(08:00-16:00), with imports required during the early morning hours as well as evening and/or night 
hours for all the seasons. In spring and summer, solar availability is high (see Figure A 24 in Appendix 
A), and with the support of flexible dam hydro and flexible gas based production, covers the peak 
demand adequately. Switzerland also generates excess electricity during these peak hours by 
scheduling dam hydro plants, with the surplus electricity being exported. During the early morning 
(00:00-08:00) and late evening (20:00-00:00) hours, when electricity import prices are assumed to be 
cheaper, Switzerland imports the electricity to cover its demand as well as store the excess using 
pumped hydro (light blue area in  the export plots in Figure 57).  

 

 

Figure 57: Electricity generation schedule on weekdays (2050) – TAX  

In autumn (fall), most of these patterns are repeated, with the addition of another export peak 
during the evening hours. The reason for this second peak is again the import/export price assump-
tions (see Figure 31), with the model maximizing the amount of exports at these high price hours to 
generate more revenue. Although there is a reduction in solar PV output compared to summer and 
spring, it is compensated by flexible dam hydro generation, which is highest during fall (see Table 3).  

The generation schedule in winter is very similar to autumn. Since solar PV outputs and dam hydro 
availability is at its lowest during winter, the demand is met with base-load gas plants and imports. 
Imports occur almost throughout the day, except for a few hours around noon (09:00-12:00) and in 
the evening (17:00-19:00) when import/export prices are assumed to be high. The dam hydro gene-
ration is scheduled in those hours to meet the demand as well as to export. Dam hydro is used in this 
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manner to exploit the export prices, which is found to be more economical than using it more evenly 
throughout the day to minimize the imports.  

The hourly generation profile of the Baseline scenario is very similar to the TAX scenario, with only 
the magnitude of the demand and accordingly the gas based generation increasing (see Figure 58 
and Figure 59). This also explains why the marginal cost (red line in upper panel of Figure 58 and 
Figure 59) does not vary much across both these scenarios, as both scenarios have the same marginal 
technology (also see section 3.1.3.2, Figure 53). 

 

 

Figure 58: Electricity generation schedule on a summer weekday (2050) 

For the NoGAS scenario, the generation schedules still have a lot of similarities with the other two 
scenarios, with the obvious exemption of gas based generations. In summer (Figure 58) and spring 
(Appendix C), the model optimizes the use of flexible hydro and imports to complement the steady 
outputs from solar PV and base-load river hydro. Import and export patterns are also similar, but due 
to the lower generation capacities, there is correspondingly a reduction in the export volumes as 
well.  

Baseline 
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In fall (Appendix C) and winter (Figure 59), base-load generation from river hydro is supplemented by 
wood/biomass and geothermal sources. As with the previous scenarios, electricity is imported 
throughout the day except for the two high price peaks (noon and evening), and the flexible hydro 
plants are scheduled at these hours to maximize exports at higher prices and generate more trade 
revenue. The increasing dependence on expensive electricity imports, reduced electricity trade reve-
nue, and reliance on more expensive renewable technologies such as geothermal is also reflected in 
the marginal price, which is highest for the NoGAS scenario amongst the three scenarios. It is this 
increase in marginal price that lowers the demand even further compared to the TAX scenario (see 
section 3.1.3.2).  

 

 

Figure 59: Electricity generation schedule on a winter weekday (2050) 

3.1.3.5 System cost and average electricity cost 

Figure 60 shows the annual undiscounted electricity system costs, for all the scenarios. The costs are 
broken down to various cost components such as capital costs (annuities on investments), taxes (levy 
on nuclear spent fuel and CO2), fixed and variable operation and maintenance costs, fuel costs and 
trade balances (which refer to net profits if negative or cost if positive) from electricity import or 
export. The net system cost for each scenario is also shown in the figure (blue marker). 
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One can see the increasing electricity system cost as we move from 2010 to 2050 in all three scena-
rios. For the Baseline scenario, in the near to medium term (2020, 2035) the main increase is in 
capital and fuel cost due to the investment and operation of gas power plants. The higher share of 
gas based generation as well as a rise in natural gas price assumptions increase the fuel costs. The 
increasing CO2 emissions result in a gain in the taxes (CO2 taxes) as well. By 2050, the fuel cost and 
taxes are stable due to partial replacement of gas plants with solar PV, which in turn drastically 
increases the capital costs.  

 

Figure 60: Undiscounted electricity system cost: Switzerland 

The TAX scenario follows the same system cost pattern as the Baseline scenario, but with a slightly 
lower magnitude of costs due to the lower capacities required to supply the lower demand.  

For the NoGAS scenario, with overall electricity demand being the lowest, there are no large invest-
ments in the near to medium term (2020, 2035), apart from some biomass and waste incinerator 
power plants (see Figure 56), which reduces the total system cost with respect to the other 
scenarios. With no gas based production, there is no CO2 tax to be accounted for, with O&M costs 
decreasing as well. In 2035, Switzerland has a positive net electricity trade balance due to the high 
share of electricity imports (22%) to meet the demand. But by optimising the timing of imports and 
exports, this net import cost only accounts for 8% of the total system cost. By 2050, with higher 
investments in renewable technologies (solar PV, see Figure 56) increasing the domestic production, 
dependence on imports is reduced and a trade revenue surplus is obtained once again, which in turn 
offsets the increasing capital cost of renewable technologies and keeps the net costs even lower than 
the other two scenarios. It is worth remembering that the electricity tax is applied in the CGE model. 
Therefore there is no significant change in the tax component of the electricity system cost. 

The differences in the total system costs across the three scenarios are also reflected in the average 
electricity cost. The average cost of electricity declines by 9% in 2050 for the TAX scenario compared 
to the Baseline scenario (see Figure 61). The total electricity system cost and thereby the average 
cost of electricity in the NoGAS scenario decreases even further (30% decrease in average cost by 
2050 compared to Baseline). 
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Figure 61: Average electricity cost (TAX) relative to Baseline 

As mentioned in section 3.1.3.4, the marginal cost of electricity does not vary between the TAX and 
Baseline scenario, with the average cost being even lower for the TAX scenario compared to the 
baseline. This implies that the lower electricity demand in the TAX scenario is not due to the price 
feedbacks from the bottom-up model (CROSSTEM-CH), but instead driven primarily by the electricity 
tax applied within the CGE model (GENESwIS).  

3.1.3.6 Welfare and consumption 

Due to the introduction of environmental policies in the TAX and NoGAS scenarios, welfare is 
decreased with regard to the baseline (Figure 62). This welfare reduction is not very pronounced (≤ 
0.1%), and it is unlikely that it originates from the simulated electricity tax, because we assume its 
revenue to be recycled through the income tax (equal yield constraint). Hence, it does not greatly 
alter the total excess burden of the tax system. The welfare reduction is mainly due to the increase of 
the CO2 tax, as its revenue is recycled through the buildings program (subsidy of 280 mio CHF) and 
lump-sum transfers. However, this welfare reduction appears only, because we neglect the benefits 
of reduced climate change as well as side benefits of abatement, such as health improvements due 
to reduced air pollution. 

 

Figure 62: Percentage change of welfare with regard to the baseline for the TAX and 
NoGAS scenarios. 
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We observe that the welfare reduction is smaller for the NoGAS scenario than for the TAX scenario. 
As the simulated market instruments are the same in both scenarios, the difference must lie in the 
prohibition to use natural gas power plants and in the relaxation of the net trade constraint.  

In the NoGAS scenario, although the marginal cost of electricity (and hence the price of wholesale 
electricity) increases compared to the TAX scenario, the total system cost is much lower (Figure 60 
and the explanations that come with it).  

To understand the impact on welfare of these two results, we must analyze the way wholesale 
electricity is priced. It is priced at “long-term” marginal generation cost, i.e. it reflects the shadow 
price of the binding constraint in the CROSSTEM-CH model, taking into account all cost components 
of the system, including for example capital costs for new investments. In GENESwIS, generation 
costs are correctly linked to average generation costs from CROSSTEM-CH. Marginal pricing in the 
wholesale market thus creates a profit. In the model, the markup over the average costs is set such 
that it represents the difference between CROSSTEM-CH’s marginal and average costs (see 3.1.1.3.2). 
Although the profit has to be paid for by electricity users, the money remains in the economic cycle, 
because it is an income of the representative agent.  Consequently, overall welfare is not affected by 
the profit as much as one might expect from simply looking at the increased wholesale electricity 
price in Figure 53. As we have only one representative household, we neglect distributional effects 
between capital owners of electricity generation plants and other households, which of course do 
play a role in the real world. 

Now that we have brought to mind that the wholesale electricity price consists of the two compo-
nents (1) average generation cost and (2) profit, we are able to analyze the welfare effects more 
clearly:  

• The first component of wholesale electricity, the average cost, is reduced in the NoGAS 
scenario compared to the TAX scenario. This cost saving effect is translated into an increase 
in welfare.  

• The second component, the profit, increases due to higher marginal costs (and hence 
higher wholesale electricity prices) as well as lower average costs. The increased profit 
results in a welfare loss, because it effectively works like a tax with lump-sum recycling to 
the representative agent. However, this welfare loss is not the result of a policy-induced 
distortion, but related to a natural feature of competitive pricing under diminishing returns 
to scale.  

It is an important advantage of the ELECTRA-CH framework that it explicitly models the shape of the 
sectoral cost function at every moment. Because of this, costs, prices and profits can be determined 
more precisely. Interestingly, we find in this case that prices increase although total system cost 
decreases, which is a direct consequence of the technologies selected by CROSSTEM-CH. Such analy-
sis is impossible with a stand-alone CGE model, at least when it relies on homogeneous, i.e. constant 
returns to scale, nested CES production functions.   

The combined result of the effects for the two price components is an increase in welfare in the 
NoGAS scenario compared with the TAX scenario. Calculated from GENESwIS, the total increase in 
welfare in discounted value terms in the NoGAS scenario with respect to the TAX scenario amounts 
to 1.05 bio CHF2010. CROSSTEM-CH displays a difference in total system cost of roughly 2 bio CHF2010. 
The comparison between these two numbers illustrates that general equilibrium effects are non-
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negligible. In this particular case, the most important of these is that higher electricity prices induce 
substitution away from electricity. This may be regarded as desirable, due to external effects. 
Neglecting these external effects, however, the resulting changes in consumption eat up most of the 
welfare advantage connected to lower total costs of the electricity system. We would not be able to 
find such effects in a pure bottom-up energy system model. Nor would we have found this particular 
effect in a standard CGE without coupling it to a bottom-up electricity supply model. 

The impacts of the diminution of total system cost and increase of electricity prices can also be felt in 
the development of total consumption over time. For the tax scenario, we can see in Figure 63 that 
total consumption is progressively reduced from 2020 onward with respect to the baseline. As ex-
plained above, this is mostly due to the CO2 tax. For the NoGAS scenario, the lower electricity system 
cost in all time periods shifts the consumption curve upward. In the figure, we directly observe this 
effect especially for the earlier years. For the later years, the electricity price increase (Figure 53), 
which is much stronger from 2030 onward, bends the NoGAS consumption curve back down. 

Figure 63: Variation of consumption with regards to the baseline for the TAX and NoGAS 
scenarios. 

3.1.3.7 Sectoral effects  

The environmental policies of the TAX scenario affect the energy sectors the most (Figure 64). We 
observe a reduction of production for the Natural gas, Refineries and Electricity sectors with regard 
to the baseline. The increase in production of the District heating sector, and to a smaller extent of 
the Construction and Cement & concrete sectors, are due to a substitution of heating fuels into 
District heating and insulation (provided by the construction sector). In GENESwIS, Cement & con-
crete are demanded by the Construction sector and for export only, which implies that output 
changes for the Construction sector usually induce similar output changes for Cement & concrete. 
While in reality some insulation is achieved with thicker and/or improved concrete walls, we may 
have overestimated the positive effect on the Cement & concrete sector due to the usual homogene-
ous commodity assumption for CGE models, which also applies to Construction. The prohibition of 
gas power plants in the Electricity generation sector for the NoGAS scenario causes a large reduction 
in demand for natural gas. Also, due to the wholesale electricity price increase, demand for electrici-
ty, and hence electricity generation is further reduced in the NoGAS scenario compared to the TAX 
scenario.  
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Figure 64: Sectoral production - variation with regards to the baseline - for the years 2035 
and 2050. 

The natural gas restriction of the NoGAS scenario also affects the output of the Refinery sector. Its 
output increases slightly with regard to the TAX scenario. This is the combined result of two opposing 
effects: 

• The electricity price increase makes e-mobility and electric heat pumps less attractive and 
more transport and heating fuels are used compared with the TAX scenario (larger effect). 

• As gas power plants are prohibited in electricity generation, natural gas becomes more 
attractive to other sectors and households. Although there is no extraction of natural gas in 
Switzerland and world market prices are exogenous, prices slightly decrease for domestic 
natural gas transport and distribution. This somewhat accelerates the replacement of oil 
heaters (smaller effect). 

3.1.3.8 Foreign trade 

In GENESwIS, foreign trade is modeled such that domestic and foreign goods are imperfect substi-
tutes (see section 2.2.2.4). In the CROSSTEM-CH model, international electricity trade is governed by 
the minimization of total system cost, taking into account exogenous import and export price 
assumptions. In the coupled framework, CROSSTEM-CH’s representation of foreign electricity trade is 
prioritized over GENESwIS’s.  

For sectors other than electricity, changes in net trade as a share of output are unimportant across 
the different scenarios. As there are sizeable output changes in some sectors, trade volumes do 
change, but net trade as a share of total output generally remains unaffected (see Figure 65; for a 
clearer view of the graph, the non-energy sectors have been aggregated; anyway, the three lines 
appear almost as one single line). This indicates that within our modeling framework, the simulated 
policies generally do not produce large international competitiveness issues.  

ATP Air and other transports CON  Construction CMT Cement and Concrete ETS  Rest of the sectors linked to 
RTD Road transport GAS Gas transport and distribution MET Metals  the ETS scheme 
RLT  Rail transport DHT District heating RFU Refineries ROI Rest of industry 
ROS  Rest of services ELE Electricity generation   AGR  Agriculture  
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The picture for electricity trade could not be more different. This is, because CROSSTEM-CH’s optimi-
zation in the Baseline and TAX scenarios uses the opportunities for reducing total system cost by 
achieving net revenues from foreign trade, which increase until 2035. Domestic electricity taxation in 
the TAX scenario reduces domestic demand (although not the wholesale price of electricity) and thus 
increases the share of exported electricity relative to the Baseline scenario (see Figure 65). In the 
NoGAS scenario, the more restricted choices for domestic generation lead to a net import of electri-
city in 2035 and 2040, i.e. immediately after the nuclear phase out. By 2045, Switzerland becomes a 
considerable net exporter of electricity again, on the basis of newly installed solar capacity. Whether 
the net imports in 2035 and 2040 become necessary, is likely to depend on the rate of efficiency 
improvements and related capacity growth for solar generation technologies.  

 

Figure 65: Net foreign trade (exports-imports) as a share of output for the electricity sector 
for the Baseline, TAX and NoGAS scenarios. 

3.1.3.9 CO2 emissions 

CO2 emissions from the electricity generation sector for all the scenarios are given in Figure 66, for 
the different scenarios. For both the Baseline and TAX scenarios, there is an initial increase in the CO2 
emissions, reaching a peak value of 10.8 Mt CO2 in 2045 for the Baseline scenario, and 7.6 Mt CO2 in 
2040 for the TAX scenario. Increasing gas prices combined with the higher CO2 tax result in increasing 
technology penetration from solar PV, which lowers the emissions by 2050. The NoGAS scenario 
clearly will not have any CO2 emissions (grey CO2 emissions due to increasing electricity imports are 
not represented here).  
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Figure 66: CO2 emissions (Electricity sector) 

For the economy as a whole, we observe an even greater decrease in fuel-related CO2 emissions for 
both policy scenarios relative to the baseline (Figure 67a). This is the expected outcome for scenarios 
that include a CO2 tax. The restriction on gas power plants in the NoGAS scenario brings the total 
emissions down further with regard to the TAX scenario. 

It is however interesting to note the presence of a substitution effect: Although the prohibition of 
gas-fired power plants decreases total CO2 emissions, CO2 emissions from the other sectors (excl. 
electricity generation) increase relative to the TAX scenario (Figure 67b). This is mainly, because 
higher electricity prices in the NoGAS scenario discourage the switch from heating and transport 
fuels to electric systems.  

 

  

(a) (b) 

Figure 67: Percentage variation with regard to the baseline of CO2 emissions from fuels for - 
a) all sectors including electricity generation and b) all sectors excluding 
electricity generation – for the TAX and NoGAS scenarios. 
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Analyzing the CO2 emissions paths by fuel, we observe an interesting consequence of policies timing:  

In the TAX and NoGAS scenarios, the CO2 tax on heating fuels is increased from 2020 until 2050. An 
electricity tax is introduced in 2020, increasing until 2050. Transport fuels, in contrast, are taxed 
through the CO2 scheme only from 2035 onwards. For a more detailed presentation of the policy 
scenario, please refer to section 1.4.1. 

The different timings of the CO2 policies affect the respective fuel demands and related emissions. 
CO2 emissions from light heating oil are reduced from 2025 onward, due to the CO2 tax (Figure 68). 
We notice a slight increase of CO2 emissions until 2020 due to inter-temporal effects. For natural gas, 
the emission reduction is somewhat delayed (Figure 68). Although natural gas is a fossil fuel, its emis-
sion intensity is lower than for heating oil. This implies that under a CO2 tax, there is not only substi-
tution away from natural gas, but also some substitution from oil to gas heating, especially as long as 
there is still a sizeable share of existing oil heaters. 

  

 

 

Figure 68: Percentage variation with respect to the baseline of CO2 emissions from fuels 
(transport fuels, heating fuels and gas) for all sectors excluding electricity 
generation. 

The CO2 emissions from transport fuels increase until 2030 compared to the baseline (Figure 68). As 
electricity is taxed earlier, i.e. from 2020 onward, the switch to e-mobility is somewhat discouraged, 
and more transport fuels are continued to be used. Once transport fuels are also taxed, this effect is 
reversed, and e-mobility becomes more attractive. This effect is quite strong in our model, because 
of the high elasticity of substitution that we had to assume between e-mobility and transport fuels 
(see 2.2.3.1). In reality, the effect might be smaller. However, our simulation results demonstrate at 
least qualitatively that the timing of policies is crucial for the market penetration of new and cleaner 
technologies.  

CO2 tax increase 

Electricity tax 

CO2 tax 

CO2 tax increase 
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3.1.3.10 Comparing results from the coupled ELECTRA-CH framework with results 
from stand-alone models 

3.1.3.10.1  Comparing coupled ELECTRA-CH results with CROSSTEM-CH results  

During the coupling process, we include, in the extent possible, sectoral prices feedback from the 
GENESwIS model. This is done with the help of price-variation coefficients (see section 3.1.1.4.2) that 
affect capital investments as well as O&M costs of various technologies. These changes have an 
effect on the technology choice as shown in Figure 69. The figure compares a coupled run of the TAX 
scenario to an uncoupled independent CROSSTEM-CH run using the TAX scenario demands, but 
without multiplying investment and O&M cost with the price-variation coefficients (shown in Figure 
70 for the TAX scenario). As seen from Figure 70, the investment cost for gas and hydro technologies 
are higher during the initial time periods, but then decrease towards the end of horizon (variations 
are small, within ± 2%). The O&M costs for gas plants do not change much over the same time 
period, whereas they increase considerably (up to 6% by 2050) for the hydro technologies. This 
implies that for a coupled run, the cost of operating hydro technology is higher than for an un-
coupled run. This is reflected in the generation mix, which shows a higher output from pumped 
hydro (which is the most expensive hydro option available) for the uncoupled run compared to the 
coupled run. To overcome this lost flexibility, the coupled model invests in more flexible gas 
generation technology (in 2035, 30% of the total gas based generation comes from flexible gas plants 
in the coupled run, compared to 14% in the uncoupled run). Similar patterns are observed for the 
other two scenarios as well. 

Coupled Uncoupled
 

Figure 69: Electricity generation mix (Switzerland - TAX) - Coupled vs uncoupled 
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Figure 70: Price-variation coefficients for the TAX scenario. 

3.1.3.10.2 Comparing coupled ELECTRA-CH results and GENESwIS results  

The following comparison between the coupled ELECTRA-CH results and GENESwIS stand-alone 
results serves to illustrate some of the differences in behavior which arise from the methodological 
differences in the representation of electricity supply. Before we present this comparison, however, 
we need to identify the limits of this comparison: The results presented in this section should not be 
compared quantitatively. Hence, we merely explain why and how the two models behave differently, 
which demonstrates some important advantages of the coupled ELECTRA-CH framework. 

For the comparison, we use the same version and calibration for GENESwIS stand-alone as in the 
coupled framework except for the following: For the coupled framework, we calculate input shares 
for electricity generation from the CROSSTEM-CH technology mix. In the stand-alone version, we 
replace this information by the input shares given by the Swiss energy input output table, just as it is 
usual practice for CGE modelers. This approach has the advantage that we compare two models 
which are as similar as possible in terms of the CGE model’s structure and calibration. 

Generally, every calibration decision also has its disadvantage. In this case, the disadvantage is that 
the GENESwIS stand-alone model that we employ is not the model that we would usually put for-
ward as the ideal CGE representation: The GENESwIS model used in the coupled framework was 
modified to suit the economic and technical requirements for the coupling. Mainly, the representa-
tion of the electricity sector is set as a Leontief function to take CROSSTEM’s results as direct inputs. 
For a stand-alone CGE model, this representation of the electricity sector lacks some important op-
portunities for substitution and is thus somewhat too restrictive. Secondly, using the same GENESwIS 
parameters for calibration (with the exception given above), the different methodologies imply that 
we cannot expect to exactly meet the baseline quantity paths that the coupled framework is calibra-
ted to conform with. To minimize the impact of these discrepancies, we present the results in per-
centage changes with regard to the respective baselines.  



119/174 

 
 

Figure 71 shows the comparison of total electricity demand variation between the TAX and Baseline 
scenarios for both GENESwIS stand-alone and the coupled ELECTRA-CH framework. In both models, 
the tax-induced increase in the user price of electricity reduces demand. However, the magnitude of 
the demand reaction is strikingly different. This is although the tax rates and also the representation 
of demand are the same. The difference is thus in the representation of electricity supply: GENESwIS 
stand-alone shows the behavior that we would also expect from a simple partial equilibrium analysis 
(see Figure 72): A tax introduces a wedge between producer (net) price and user (gross) price and 
thus typically increases the gross price. However, along usual demand and supply functions we reach 
a new equilibrium with lower quantities, a higher gross price, but a lower net price. In the ELECTRA 
framework, in contrast, electricity prices net of tax hardly move between the two equilibria, because 
the marginal generation cost remains almost the same for this particular scenario. For the TAX scena-
rio, the gross price of electricity is thus remarkably higher in the ELECTRA-CH framework than in 
GENESwIS stand-alone (see Figure 73), which is directly linked to the technological representation of 
electricity supply in CROSSTEM-CH. The different gross user prices translate into differences in total 
electricity demand.  

Figure 71: Comparison of total electricity demand variation for the TAX scenarios relative to 
baseline scenarios for the stand-alone GENESwIS model (TAX) and for the 
coupled ELECTRA-CH framework (TAX coupled).  

 

Figure 72: Graphical static partial equilibrium analysis for the introduction of a tax.  
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Figure 73: Retail (net of tax) and user (gross of tax) electricity prices for the TAX scenario 
relative to the baseline scenarios for the stand-alone GENESwIS model and for 
the coupled ELECTRA-CH framework. 

The above differences, which arise from the modeling of electricity supply, are transmitted into the 
general economy and are reflected in macroeconomic indicators. For example, the comparison of 
consumption paths (Figure 74) is also instructive. In the later years, total household consumption is 
reduced more for the coupled ELECTRA-CH framework than in GENESwIS stand-alone. Lower electri-
city demand as shown in Figure 71 is a related element in this, but the main explanation is in the 
profits that arise from wholesale electricity pricing (for an explanation on the effect of wholesale 
electricity pricing on welfare and consumption, see section 3.1.3.6). The difference between average 
cost and marginal cost, and hence the profit, is larger in the later periods, which reduces the con-
sumption possibilities for the representative household, as shown in Figure 74. 

 

Figure 74: Comparison of the variation of consumption between the TAX and Baseline 
scenarios for the stand-alone model (TAX) and the coupled ELECTRA-CH 
framework (TAX coupled). 

This short comparison of central indicators confirms that coupling matters. In results and functioning, 
the coupled ELECTRA-CH framework is clearly different from either stand-alone model. Basically, the 
ELECTRA-CH framework is a new model that strives to combine the analytic potentials of its bottom-
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up and top-down model components. This creates opportunities for more profound policy analysis 
and greatly improves the understanding of supply and demand interrelations. The fruits of any such 
modeling advancement can only be reaped when the new model framework produces dependable 
results that are driven by traceable effects. In the current chapter 3.1, we have demonstrated that 
ELECTRA-CH has these important properties.  
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3.2 ELECTRA: Coupling CROSSTEM, GENESwIS and GEMINI-E3 

This section concerns work in progress. It presents the current state of affairs on coupling 
CROSSTEM, GENESwIS and GEMINI-E3 to create an ELECTRA framework with an explicit representa-
tion of foreign countries in both the bottom-up electricity supply component and in the top-down 
multi-sectoral CGE part. The goal of this coupling is to extend the framework such that it fully reflects 
the high level of Switzerland’s integration into international commodity markets and the European 
electricity grid. Among other things, this framework would enable us to also simulate the impact of 
foreign climate and energy policies on the Swiss economy in general and on the Swiss electricity 
sector in particular. 

The ELECTRA framework is composed of three component models that are to be coupled through a 
soft link:  

• CROSSTEM, the cross-border TIMES electricity supply model, provides the technological 
details of electricity supply and trade for Switzerland and its neighbouring countries (see 
section 2.1). 

• GENESwIS, the dynamic general equilibrium model of Switzerland, models the entire Swiss 
economy, taking into account inter-sectoral feedbacks (see section 2.2). 

• GEMINI-E3, the multi-regional general equilibrium model of international-national inter-
actions between economy, energy and the environment, adds the global trade dimension 
to the framework and the possibility to explicitly model market instruments of international 
policies (see section 2.3). 

In this chapter, we motivate the development of the ELECTRA framework (section 3.2.1) and intro-
duce the methodology applied to couple the models (section 3.2.2). In section 3.2.3, we present the 
current state of affairs and identify the latest issues. Finally, we propose next steps in section 3.2.4. 

3.2.1 Motivation 

Simpler models are most of the time preferred to larger and complex ones, as they are easier to build 
and interpret. Despite this, there are very good reasons for expanding the ELECTRA-CH framework to 
the larger ELECTRA framework: 

Switzerland is a small economy that is closely interlinked with Europe and the rest of the world. 
Although Switzerland may not have a noticeable impact on the rest of the world (although, this may 
not be fully true for the electricity sector), the rest of the world influences to a great extent the Swiss 
economy through trade.  

This inter-linkage is even more pronounced for the electricity sector. Indeed, with the liberalization 
of the electricity market, electricity is traded all across Europe. It is traded extensively, from long-
term contracts, negotiated years in advance, to short-term trading through spot and intraday mar-
kets. Furthermore, electrons know no international borders. The electricity grid is actually one grid, 
although some parts can be sectioned-off in case of an emergency. Additionally, with the appearance 
of renewable technologies, the inter-connection of the whole European network becomes more and 
more important. The Swiss electricity market can thus not be analyzed adequately without a sound 
representation of its integration into the European electricity market. 
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In principle, international integration can be modeled through exogenous assumptions (import and 
export prices, world energy prices, CO2 price etc.), which is the case in the ELECTRA-CH framework. 
This is perfectly fine when analyzing Swiss policies. However, to adequately simulate impacts of 
international climate and energy policy scenarios, exogenous assumptions are often not sufficient.  

As bottom-up models do not have the ability to model market instruments appropriately, a multi-
regional CGE model (here GEMINI-E3) is needed to simulate such international policies. For example, 
CO2 prices can be implemented only exogenously in the CROSSTEM model. Endogeneity of CO2 prices 
is important, however, as policies as the emissions trading scheme involve CO2 emission reduction 
goals in terms of absolute emissions (caps). In countries like Germany or Italy, the electricity sector, 
which is part of the ETS, has non-negligible impacts on the total emissions from ETS sectors. Hence, 
variations in the electricity mix may greatly influence CO2 prices.  

In connection with international policies, the electricity mix in neighbouring countries affects Switzer-
land also directly through electricity markets. This is where the full CROSSTEM model with endoge-
nous trade comes to its full potential: EU policies affect the composition of the electricity mix in the 
EU Member States and indirectly also in Switzerland.  

For simulating and understanding these effects, exogenous trade prices are not informative enough. 
As can be seen in Figure 31 in Section 2.1.12.1, trade prices assumptions differ compared to simula-
ted trade prices. While the exogenous assumptions do not need to be wrong, they typically do not 
fully correspond to the modeling structure and scenarios of the current project. The endogenous 
simulation of trade prices is the much more consistent approach, provided that the model 
framework represents well the electricity systems of the countries involved. For the scenarios of this 
project, the seasonal variations embedded in simulated trade prices significantly alter the results for 
the technology mix. For example, solar becomes less attractive with endogenous trade prices, 
because export prices are lower in summer. It is replaced by flexible gas power plants which can take 
advantage of high winter prices (see Figure 30 and the explanation in Section 2.1.12.1).  

International policies affect the Swiss economy through further transmission mechanisms: 
• CO2 price: If Switzerland joins the European emissions trading scheme (as we assume in our 

scenarios), EU (climate) policies affect CO2 prices also for the Swiss sectors that are 
affiliated to the Emissions Trading System (ETS).  

• Fuel prices: International climate policies affect fuel prices, which are important determi-
nants for energy efficiency and the pace of fuel switch in Switzerland. A change in fuel 
prices thus also affects the Swiss electricity sector (directly, if gas power plants are imple-
mented, or indirectly through demand shifts). 

• Terms of trade: Differences in environmental and climate policies between countries affect 
the cost structure and competitiveness of energy-intensive sectors. This can change world 
market prices also for certain non-energy commodities and thus influence the terms of 
trade for Switzerland.  

In conclusion, the ELECTRA framework, including  
• an explicit representation of electricity supply in Switzerland and the neighbouring count-

ries, 

• international electricity trade based on endogenous prices, 

• a general equilibrium representation of Switzerland, the neighbouring countries, the rest of 
Europe and the rest of the world, and hence, 
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• the possibility to explicitly model Swiss, European, and international policies 

endogenizes further important aspects for energy policy analysis, and it is especially needed when 
analyzing scenarios with a focus on the impact of foreign policies on the Swiss electricity sector and 
general economy.  

3.2.2 Coupling methodology 

As described above, the ELECTRA framework consists of three component models (CROSSTEM, 
GENESwIS and GEMINI-E3), coupled through a soft link. We can divide the coupling of the models 
into three steps: 

1. CROSSTEM is coupled to GEMINI-E3. The result of the convergence between these two 
models provides 

a. the electricity mix (and related costs) for Switzerland and the neighbouring countries, 

b. the economic impacts on the neighbouring countries, the rest of Europe and rest of 
the world, 

c. which includes the variation of relevant price indicators (mainly CO2 prices and fossil 
fuel prices). 

2. GENESwIS is updated with world market prices simulated by GEMINI-E3. 

3. GENESwIS is coupled to CROSSTEM. The result of the convergence between these two 
models provides 

a. the electricity mix (and related costs) for Switzerland and the neighbouring countries, 

b. the impacts on the Swiss economy. 

First, convergence must be reached for each step (mostly 1 and 3; step 2 is a simple harmonization). 
Second, steps 1 to 3 must be iterated upon until the full framework converges.  

In the following, we elaborate on the exchange of variables involved in each step of the process (see 
also Figure 75). 

Step 1: CROSSTEM-GEMINI-E3 

Electricity generation costs and their components as well as export revenues and import costs for 
Germany, France, Austria and Italy are extracted from the CROSSTEM model and translated for the 
GEMINI-E3 model into a) wholesale electricity prices (for each country) and b) input shares for 
factors and commodities to the respective electricity generation cost functions. The national electri-
city demand quantities simulated by GEMINI-E3 are then sent back to become inputs to CROSSTEM. 
To account for changes in the economy, factor and intermediate input prices from GEMINI-E3 are 
used to modify the investment costs and operation and maintenance costs of the different technolo-
gies in CROSSTEM. This sequence is iterated upon until the vector of quantities of total electricity 
demanded for each common model period converges. Checks are performed such that demands also 
converge for each country. 
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Step 2: GEMINI-E3-GENESwIS 

World energy prices (fuel prices) and CO2 prices in GENESwIS are exogenously fixed to the price levels 
provided by GEMINI-E3.  

 

 

Figure 75: ELECTRA framework: exchange of information between the three component 
models. 

Step 3: GENESwIS-CROSSTEM 

Electricity generation costs and their components as well as export revenues and import costs are 
extracted from the CROSSTEM model and translated for the GENESwIS model into a) the Swiss 
wholesale electricity price and b) input shares for factors and commodities to the electricity genera-
tion cost function. The sectoral electricity demand quantities simulated by GENESwIS are then sent 
back to become inputs to CROSSTEM. To account for changes in the economy, factor and intermedi-
ate input prices from GENESwIS are used to modify the investment costs and operation and mainte-
nance costs of the different technologies in CROSSTEM. This sequence is iterated upon until the 
vector of quantities of total electricity demanded for each common model period converges.  

For steps 1 and 3, the following routines are implemented: 

• Link CROSSTEM’s costs to CGE’s electricity technology and price (see section 3.1.1.3.2). 

• Translate CGE price feedback into changes to investment and operation and maintenance 
costs (see section 3.1.1.4.2). 
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Before coupling the models, the following procedures are applied: 

• Modification of the electricity generation production function in the CGE models (Step 1: 
see section 3.2.3.2. Step 3: identical to the modifications described in section 3.1.1.3.1 for 
the ELECTRA-CH framework.).  

• Harmonization of the models (Step 1: see section 3.2.3.2.). 

• Introduction of a supply elasticity for electricity in the CGEs (see section 3.1.1.5.2). 

• Introduction of a dampening of the demand response in the coupling routine (see section 
3.1.1.5.3). 

3.2.3 State of the coupling  

3.2.3.1 Completed tasks 

Step 1, the coupling of CROSSTEM and GEMINI-E3, is the most challenging of the three steps. It has 
thus been the natural starting point. In this respect, the following tasks have been performed: 

• Creation of a python script for the exchange of information between CROSSTEM and 
GEMINI-E3, which 

– runs the CROSSTEM model, 

– extracts CROSSTEM data from a (100Mb) text file with the help of “for” and “if” 
loops,  

– calculates the required variables (annual fuel costs, capital cost annuities, operation 
and maintenance costs, import costs and export revenues, inter-connector costs, 
average cost, annual demand-weighted marginal cost etc.), 

– creates an input file for the GEMINI-E3 model, 

– creates an input file for the GENESwIS model, 

– creates result files for average cost and marginal cost. These files are used to follow 
the evolution of annual average and marginal costs through the different iterations 
and check their convergence. 

• Creation of a python script for the exchange of information between GEMINI-E3 and 
CROSSTEM, which 

– runs the GEMINI-E3 model, 

– extracts the results, 

– calculates the dampened demand to be sent according to the Gauss-Seidel equation, 

– writes into the input files (.dd) of the CROSSTEM model to modify the electricity 
demands as well as fuel and CO2 prices. The routine involving changes of investments 
and O&M costs from factors and commodities prices feedback is not yet operational, 
because we should first reach convergence before adding more complex exchanges 
which have only minor impacts on electricity prices. 

– creates result files for the electricity demands (total, and for each neighbouring coun-
try) and wholesale electricity prices (for each neighbouring country). The demand 
files are used to compile the convergence criterion (total demand) and to check 
convergence for each country. The wholesale electricity price files are used to check 
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that the costs of the CROSSTEM model are translated adequately into wholesale 
prices (they must be equal at convergence). 

• Creation of a main python script for the CROSSTEM-GEMINI-E3 coupling, which runs both 
previous scripts until the convergence criterion for total electricity demand is reached. 

• Modifications of the GEMINI-E3 model (see section 3.2.3.2). 

• Harmonization of the models. 

Convergence issues are discussed in section 3.2.3.3. 

3.2.3.2 Modifications of the GEMINI-E3 model 

For the purpose of the coupling with CROSSTEM and as it is done in the GENESwIS model, we have 
disaggregated the GTAP electricity sector into two sectors, respectively "Electricity generation" and 
"Electricity transport and distribution". We assume that the output of the Electricity generation sec-
tor is only consumed by the Electricity transport and distribution sector, which distributes the electri-
city to all users (firms and households) and trades electricity with neighbouring countries. 

In contrary to the GENESwIS model, it was not possible to use the Input-Output table to calibrate the 
two sectors. Indeed the Input-Output tables of the GTAP database do not disaggregate electricity 
generation and electricity transport and distribution. We implemented the procedure described in 
Figure 76 to calibrate the electricity generation and distribution sectors: 

 

Figure 76: Calibration of the base year in GEMINI-E3 electricity generation and distribution 
sectors 

1. Calibration of the electricity generation sector: 

a. Fuel inputs (coal, natural gas, oil and nuclear fuels) are equal to the values given by 
the CROSSTEM database; 
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b. Operation and maintenance (O & M) costs are equal to the figures of the CROSSTEM 
model, they are disaggregated between labor and inputs from sectors 6 to 14 using 
the shares computed from the GTAP database for the electricity sector as a whole; 

c. Trade of electricity between countries is also given by the CROSSTEM database; 

d. Capital remuneration is equal to the capital annuities given by CROSSTEM; 

e. Taxes on nuclear fuel and fossil energy are computed from CROSSTEM; 

f. The production level minus imports is assumed to be consumed only by the electrici-
ty and transmission sector (minus exports). 

2. Calibration of the Electricity transport and distribution sector: 

a. The final uses (excluding exports and imports, which are supposed to be zero) are 
equal to the figures coming from the GTAP database; 

b. Energy inputs excluding electricity consumption are equal to zero; 

c. Electricity consumption is equal to the value of the GTAP database and represents 
the own uses and losses; 

d. Other intermediate consumptions are equal to figures coming from the GTAP data-
base minus the intermediate consumptions by the electricity generation sector; 

e. The same procedure is applied to labor remuneration (i.e. labor remuneration is 
equal to labor remuneration of the electricity sector as a whole minus the labor 
remuneration of the electricity generation sector); 

f. VAT and other indirect taxes are equal to the GTAP figures; 

g. The difference between resources and uses is added to the capital remuneration in 
order to balance the accounting representation of the sector. 

At the end of the procedure, the two sectors are balanced but some discrepancies with the GTAP 
database remain regarding: 

• Fossil energy consumption is not balanced at the national level, as the figures are coming 
from the CROSSTEM database; 

• Electricity trade differs from the GTAP figures; 

• Capital remuneration of the electricity sector. 

The balancing of the economy is performed by solving the GEMINI-E3 model, therefore the repre-
sentation of the calibration year is slightly different from the one of the GTAP database. 

3.2.3.2.1 Dynamic calibration 

The previous section describes the calibration of the two new sectors that have been introduced in 
GEMINI-E3 for the year 2007. Furthermore, it was necessary to implement a “dynamic calibration” 
on the simulation period (2007-2050) to be sure that the two models share a common and consistent 
view of the future of the European electricity market. The following variables have been harmonized 
between the two models: 
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• the price of energy commodities: coal, oil and natural gas, 

• the electricity demands. 

3.2.3.2.2 Further modifications to enable the linking of GEMINI-E3 and CROSSTEM 

We follow the methodology that has been developed for the coupling between CROSSTEM-CH and 
GENESwIS. The energy mix and other inputs (O & M costs, capital remuneration) computed by 
CROSSTEM are introduced into GEMINI-E3 by removing the nested CES functions representing the 
production of the electricity generation sector. The CES functions are substituted by Leontief func-
tions where the shares are computed from the CROSSTEM inputs. To disaggregate O & M cost 
between labor and intermediate consumptions by products (i.e. metals, energy intensive industries, 
rest of industry, construction etc.), we use the GEMINI-E3 shares. 

A similar procedure is applied for the electricity trade; the respective Armington functions are 
replaced by Leontief functions. 

CROSSTEM provides its output for every 5 years (2010, 2015, 2020, ...): As GEMINI-E3 is a CGE with 
subsequent annual periods, the intermediate annual values are computed by linear interpolations 
between the periods that are explicitly represented in CROSSTEM. 

3.2.3.2.3 GEMINI-E3 stand-alone versus GEMINI-E3 with energy mix coming from 
CROSSTEM 

In this section, we present a preliminary coupling that aims to demonstrate the feasibility of the full 
coupling already demonstrated within the Swiss ELECTRA framework. This coupling is a preliminary 
step, because only the energy mix coming from CROSSTEM is implemented in the GEMINI-E3 model. 
It is also a one way coupling, as the demand computed by GEMINI-E3 is not reintroduced into 
CROSSTEM. Neither is the electricity trade computed by CROSSTEM coupled with GEMINI-E3, which 
computes electricity trade with its own equations. 

We performed two runs: 

1. The first one is based on a stand-alone version of GEMINI-E3 but where the representations 
of the electricity sectors are calibrated with data coming from the CROSSTEM model (see 
section 3.2.3.2). The nested CES function used for the electricity sectors (generation, and 
transmission and distribution) retains the substitution elasticities of the GEMINI-E3 standard 
version. 

2. The second one builds on the energy mix of the electricity generation sector as computed by 
the CROSSTEM model. In this case, we assume that the elasticities σoth, σe and σef reported in 
the Figure 39 are equal to zero (i.e. the three CES functions become Leontief functions). The 
coefficients representing the shares of the Leontief functions are given by the CROSSTEM 
model. 

The scenarios presented hereafter assume that a carbon price is implemented in the power sector 
which is equal to the one reported in Table 11. Also, we have harmonized between the two models 
the world energy prices and the electricity demands. Nevertheless, the models have two different 
assumptions concerning CCS technology and the German nuclear moratorium. GEMINI-E3 does not 
integrate any penetration of Carbon Capture and Storage technology, in contrary to CROSSTEM. 
CROSSTEM assumes that a nuclear moratorium is implemented in Germany, which is not the case in 
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the GEMINI-E3 runs. Finally, as GEMINI-E3 does not represent explicitly renewable and nuclear 
power plants, we compare the fossil energy mix computed by the two models (GEMINI-E3 stand-
alone vs. the coupled models). 

Figure 77 gives for the four countries (Austria, Germany, Italy and France) the fossil energy mix 
computed by the two models for the years 2010, 2020, 2030, 2040 and 2050. 

In 2010, the two models give similar results. Indeed, GEMINI-E3 alone is calibrated from the energy 
mix coming from CROSSTEM for the calibration year 2007. After the first periods of the simulation, 
however, the two models diverge and give completely different results. In the long term, CROSSTEM 
finds a solution where only one fossil energy dominates the electricity generation: coal with CCS. In 
contrary to CROSSTEM, GEMINI-E3 represents a diversified fossil energy mix in Europe, where coal is 
gradually replaced by natural gas whose low carbon content limits the impacts of the carbon price. 
These two different views of the future of European electricity generation come mainly from the 
availability of CCS in CROSSTEM, which is not assumed in GEMINI-E3. Nevertheless, these simulations 
demonstrate that CGE models like GEMINI-E3 tend to underestimate the possibility of substitution in 
comparison to bottom-up models like CROSSTEM, which maybe have a tendency to overestimate this 
substitution. 

 

Figure 77: Electricity generation fossil energy mix in Mtoe. 

At country level, Austria and Italy face similar dynamics. First, the total amounts of fossil energy con-
sumption computed by the two models are similar in the two countries. As we already noticed, in 
GEMINI-E3 coupled with CROSSTEM fossil energy use is almost fully represented by coal with CCS. In 
contrary, the GEMINI-E3 stand-alone run shows a mix dominated by natural gas where coal contri-
butes respectively only 33% and 18% to the fossil energy consumption in Austria and Italy. 

The German case in the coupled version is mainly driven by the nuclear moratorium where nuclear 
power plants are replaced by renewables and coal. In contrary, the stand-alone GEMINI-E3 version 
assumes that nuclear power still contributes to German electricity generation.  
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In France, the two models find that fossil energy contribution to electricity generation remains limi-
ted in the future (it is less than 10% in 2012). This contribution is divided by two in the coupled 
version and mainly represented by coal with CCS. In the stand-alone version this contribution also 
decreases and remains dominated by natural gas. 

3.2.3.3 Trade related issues 

The main issue at the time of writing this report is linked to endogenous trade: One of the main 
features of the CROSSTEM model is that trade is endogenous. All decisions in the model are 
governed by the optimization of total system cost. Hence, CROSSTEM chooses to trade when it is 
beneficial for the system as a whole. This decision is linked to the marginal cost of electricity in each 
country and time slice (see section 2.1.9).  

The GEMINI-E3 model does not simulate 288 time slices, but an entire year. Hence, for the coupling, 
trade must be annualized. This is a simple summation in terms of physical quantities, but non-trivial 
in value terms, i.e. when prices are involved: Annual import costs and export revenues are equal to 
the sum over all time slices of the quantity imported (resp. exported) multiplied by the marginal cost 
of the exporting country. Hence, the import (resp. export) price extracted from the CROSSTEM model 
can be calculated as the import-weighted (resp. export-weighted) average of the exporting country’s 
marginal cost. As imports do not happen in the same time slices as exports (or at least not in the 
same quantities), the average import price is not the same as the average export price, which in turn 
will not be equal to the wholesale electricity price (calculated as the annual demand-weighted ave-
rage marginal cost of electricity). We hence have, for each country, three different prices: import 
price, export price, and wholesale electricity price (incl. net trade). 

In GEMINI-E3, there is only one (wholesale) electricity price in each country for a given year. When, 
for example, Germany imports electricity from France, it pays the French wholesale electricity price. 
This is a direct consequence of annual time periods and product homogeneity in the CGE model.  

Essentially, the question is: What characterization of trade do we prioritize from the CROSSTEM 
model: 

a. trade volumes (quantities)  
b. or net trade revenues (values)? 

Prioritizing trade volumes implies that wholesale electricity in GEMINI-E3 will not reflect exactly 
CROSSTEM’s costs as put forward in the methodology (see 3.1.1.3.2). This is not the case when we 
prioritize trade costs (in value terms). However, the CROSSTEM model is calibrated on physical 
quantities, and hence these might be the more relevant indicator. 

The issue of trade prices leaks into the harmonization of the models. In 2010, the calibration year for 
the CROSSTEM model, marginal costs are quite high, due to constraints in CROSSTEM which need to 
be added for calibration. As a result, import costs and export revenues are quite high relative to 
other years (although trade volumes are similar). As 2010 data is used to calibrate/harmonize the 
GEMINI-E3 model, this poses a problem.  
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3.2.4 Further research 

The next steps for creating the full ELECTRA framework involve the following tasks: 

Step1: Coupling GEMINI-E3 with CROSSTEM 

• Solve the trade issue (especially: decide on prioritization of volume or value). 

• Further improve the harmonization of the models. 

• Solve next problems arising: 

– We could expect some issues due to the different inter-temporal nature (fully dyna-
mic and dynamic recursive) of the models.  

– We could also envision some issues coming from the fact that the CROSSTEM model 
optimizes full system cost (the Swiss electricity sector represents a very small share 
of this cost), while GEMINI-E3 simulates the interaction of nationally optimizing 
representative agents. 

– For sure, we need to expect issues that we do not expect. 

• Once convergence is reached: analyze results. Further modifications may be needed until 
consolidated results are obtained. 

Step 2: Gemini-E3-GENESwIS 

• Set GEMINI-E3 CO2 and fuel prices as exogenous prices in GENESwIS.  

Step 3: Coupling GENESwIS with CROSSTEM 

• Implement trade the same way as decided for step 1. 

• Re-harmonize GENESwIS and CROSSTEM (for Switzerland), taking endogenous trade and 
modified costs into account. 

With convergence for each step, the likelihood for the whole framework to converge is very high. 
Indeed, the Swiss electricity sector represents a small share of the total system cost. Changes in Swiss 
electricity demand will not change the electricity mix of the neighbouring countries drastically. Also, 
the Swiss electricity mix and/or the Swiss economy do not have a (large) impact on CO2 or fuel prices.  
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4 Conclusions 

The main goal of the ELECTRA research project has been to include international and multisectoral 
feedbacks as well as general equilibrium effects in the modeling of electricity markets in order to 
improve model-based energy policy analysis in Switzerland. For this, models had to be updated, 
enhanced, extended, harmonized and coupled. Although not all of the coupling efforts have already 
been successful, we can conclude that the project has achieved major breakthroughs for the applied 
modeling of energy policies in Switzerland. These achievements are represented by the two new 
modeling frameworks CROSSTEM and ELECTRA-CH.  

Accomplishing significant breakthroughs in modeling is always demanding work: including new data, 
improving model structure, and dealing with numerical challenges. The greatest challenges and most 
rewarding learning effects, however, have been in the intense interdisciplinary work which is needed 
to construct a meaningful and reliable coupled modeling framework that consists of very different 
types of models.  

In the simulations with the coupled ELECTRA-CH framework, CGE modelers witnessed how technolo-
gy-based cost functions introduced profits into their zero-profit world and thus significantly altered 
equilibrium prices and demands as well as economic welfare. For example, the demand reduction 
that is prompted by an electricity tax is much more pronounced in ELECTRA-CH than in a stand-alone 
version of GENESwIS, which also has wider economic consequences in the model.  

This result is directly related to the technological options in the Swiss electricity system for the 
particular scenario (see section 3.1.3.10.2) and not transferable to other scenarios. This singularity 
only confirms that it is important to explicitly simulate the technological options to be able to under-
stand the working of market instruments in energy policy. On the other hand, the simulation of 
market instruments is a natural domain of CGE models, which represent flexible prices, options for 
substitution for households and in the different sectors, as well as intersectoral and general equilibri-
um effects. Thus, a pure bottom-up approach would not be suitable for studying market instruments 
either. 

Another striking example of the importance of technology-based cost modeling is the welfare im-
provement that results in ELECTRA-CH from a prohibition of natural gas when net electricity imports 
are allowed – which at the most correspond to the energy content of the gas that had previously 
been imported (NoGAS scenario). Although imports of electricity and natural gas are qualitatively 
different in many respects, the favorable outcome of this scenario challenges narrow interpretations 
of supply security, which anyway become questionable when we observe the implications of the 
many CROSSTEM figures in this report which depict the intensive foreign electricity trade on an hour-
ly basis.  

Interestingly, the reduction in total system cost in the aforementioned NoGAS scenario translates 
into a welfare gain of roughly only half the size, which highlights the importance of modeling the 
interaction of electricity supply with other sectors of the economy. The diminished welfare gain is 
attributable to a combination of microeconomic and general equilibrium effects which are explained 
in section 3.1.3.6. They are relevant for policy-making, mostly because it is important to assess 
whether a reduction in total system cost translates into price reductions that are beneficial to many 
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or whether they enhance profits which, at least directly, benefit capital owners of electricity genera-
tion plants. From a general equilibrium perspective, this is not yet the end of the story, by far. 
GENESwIS keeps track of all flows in the economy and hence takes into account, for example, that 
capital owners use large parts of their income for consumption, which creates income also for others.  

In the end, ELECTRA-CH demonstrates clearly that changes in total system cost have a large influence 
on welfare, but that it is only one of many determinants for the induced welfare changes – and this 
does not even include external effects of electricity generation, which are also known to be impor-
tant. The policy-relevant effects that we have sketched here cannot be investigated with either 
stand-alone model, because CROSSTEM-CH operates with fixed demands and does not consistently 
translate costs into prices, while GENESwIS’s cost functions do not adequately capture the differen-
ces between average and marginal costs of electricity supply. Thus, it takes a coupled framework to 
analyze electricity markets adequately.  

Even more, the innovative feature of coupling with marginal cost pricing in competitive markets is 
indispensible for producing the insights provided by the ELECTRA-CH framework. The usual proce-
dure to couple top-down prices to bottom-up average costs may be simpler to implement and conve-
nient for model convergence, but it is inconsistent with the microeconomic theory for competitive 
markets, and it neglects the formation of profits due to differences between average and marginal 
costs. As a result, it miscalculates both the impacts on the rest of the economy and the implications 
for electricity producers. Section 3.1.2 provides a detailed investigation of this issue to highlight the 
advantages of the ELECTRA-CH framework in this respect.  

For the long-term electricity mix, the results in this report reveal many significant feedbacks from the 
rest of the economy as well as from developments abroad. In ELECTRA-CH, this includes GENESwIS 
feedbacks through changes in electricity demands and input prices (see section 3.1.3.10.1). It is 
noteworthy that endogenizing prices for international electricity trade, as realized in CROSSTEM, has 
shown to be especially influential for the results (see section 2.1.12). For example, the successful 
market penetration of grid-connected solar power in Switzerland projected by the CROSSTEM-CH 
model for 2050 collapses with endogenous cross-border prices in CROSSTEM. As the scenarios in this 
report have merely been designed to illustrate the functioning of the new model frameworks, any 
such conclusions are still preliminary and need to be taken with great care. Despite this, the results 
demonstrate clearly that the additions and enhancements that we have introduced to create the two 
new modeling frameworks CROSSTEM and ELECTRA-CH matter for energy policy analysis.  

To provide further examples, the CROSSTEM scenario analysis shows that exporting electricity pro-
duced from solar PV in summer has a limited market for export. It also demonstrates the flexibility of 
Swiss dam and pumped hydro plants to adapt to increasing renewable based generation in neigh-
bouring countries. Alternatively, in certain scenarios, import of electricity from low carbon sources in 
surrounding countries becomes cost effective, even though it adds to concerns regarding the security 
of supply. The impacts of various boundary conditions in the neighbouring countries are well cap-
tured by the CROSSTEM framework, which has led to major improvements in the representation of 
international electricity trade, including the possibility to trace back import and export decisions to 
the sources of electricity generation and the marginal cost of supply in each region. The above 
insights would not have been possible with a stand-alone single region model like STEM-E. At least, 
the methodological basis for taking such conclusions would be shaky.  
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As for CROSSTEM, the scenario simulations performed with the ELECTRA-CH framework have also 
provided reproducible results. Although only few scenarios have been analyzed so far, we especially 
take confidence from the fact that reactions of the coupled system to scenario and parameter 
changes lead to reasonable results across different simulations. The disadvantage of a large coupled 
framework is that the testing of a large number of scenarios and sensitivities is more time-
consuming. However, to create a robust coupled system, we did have to run a large number of 
simulations, which helped to gain an overview of different results and a good intuition for the 
interplay of the coupled system. More specifically, the experience of the design, implementation and 
testing of the ELECTRA-CH framework provided the following methodological insights: 

• A careful harmonization of the models is crucial for framework convergence and for 
producing dependable results. 

• Bottom-up and top-down models are based on different methodologies and different 
logics. The variables to be linked must be meticulously selected and interpreted, not to 
introduce inaccuracies or logic flaws in the framework. 

• Demand dampening (Gauss-Seidel) is an essential approach for achieving convergence. 

• Assumptions on the future evolution of electricity market regulation have an impact on the 
modeling results. 

In addition, the effort on coupling CROSSTEM and GEMINI-E3 unfolded methodological issues due to 
the different treatment of trade (see section 3.2.3.3): Firstly, the different definitions of import and 
export prices forced us to abandon the full harmonization of all values, volumes and prices for 
electricity trades within the coupling framework. Secondly, there are diverging optimization 
approaches that determine endogenous trade decisions: GEMINI-E3 has one representative house-
hold per region, each of which optimizes its utility, while CROSSTEM minimizes total system cost for 
the five countries, which implies that the outcome will not be optimal for each of the five countries.  

In summary, we have developed two new modeling frameworks for energy policy analysis:  

• an international CROSSTEM model that has been extended to explicitly include – next to 
Switzerland – electricity generation technologies in Austria, France, Germany and Italy, 
including existing capacities and potentials;  

• a coupled ELECTRA-CH framework for Switzerland, consisting of the optimizing electricity 
supply model CROSSTEM-CH and the dynamic computable general equilibrium model 
GENESwIS. 

We have also undertaken major steps towards coupling the extended CROSSTEM model with 
GENESwIS and with the multiregional CGE world trade model GEMINI-E3, but to date this larger 
ELECTRA framework does not yet operate. It would permit an even more integrated analysis, espe-
cially of the impact of global and EU climate and energy policies on Switzerland. The main advantage 
of the framework would be to endogenously consider the implications of such policies both on the 
substitution between energy carriers – including electricity demand – and on the European electricity 
mix. All of these effects would be simulated both for Switzerland and abroad, such that also impacts 
that are transmitted through Swiss foreign trade – in electricity and other commodities – would 
endogenously be taken into account. These worthwhile tasks remain for future research.  

The effort to create large coupled frameworks such as ELECTRA-CH and ELECTRA is known to be very 
large, at least when they entail the necessary structural complexity and a great amount of empirical 
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data. On the other hand, the simulations with the two existing new frameworks confirm the 
importance of stucturally improving the models that are employed for energy policy analysis. When 
we adequately include and integrate technological, intersectoral, international, and general equilibri-
um feedbacks, the economic effects of policies differ not just slightly, but fundamentally, at least for 
some scenarios. This conclusion can safely be drawn even on the basis of the few scenarios that we 
have already simulated, because we see the large impacts that structural model changes can have on 
the results.  

The fact that the direction and magnitude of these differences is hard to predict is evidence for the 
need to use models that are sufficiently complex to capture all of the most relevant effects. An 
important modeling rule is to keep models as simple as possible. Yet, when the investigated issue is 
complex, the model needs to incorporate this complexity if it is not to lead to wrong conclusions. In 
the context of this report’s scenarios, exogenous trade assumptions and ceteris paribus assumptions 
for the rest of the economy have proven to be largely inadequate. Then, the well-known challenge is 
to ensure that the more complex models still produce dependable results and that the individual 
effects remain traceable.  

More scenarios should be explored in the future to further test and elaborate the model frameworks. 
This would enable the frameworks to unfold their full potential to generate better-informed answers 
when investigating the influence of Swiss and foreign energy policies on the electricity mix, electricity 
prices, and economic welfare, just to name a few. Future simulations with these frameworks can also 
contribute to a better understanding of the long-term role of Swiss electricity producers in the Euro-
pean electricity system and the implications of this role for policy-makers and consumers. Based on 
the lessons from additional scenario runs, the two existing modeling frameworks CROSSTEM and 
ELECTRA-CH can be further enhanced.  
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Appendix A – Country specific details 

1 Austria 

1.1 Existing technologies 

Table A 1: Existing technology & model calibration (2010) 

Technology description Stock 
capacity 
(GW) 

Production 
(PJ) 

Eff (%) AF 
(%) 

Peak 
contribution 

Hydro (river) 5.7 109 80% 63% 90% 

Hydro (dam) 4.3 29 80% 25% 90% 

Pump hydro 3 12 70% 17% 100% 

Solar: PV   0.1 0.3 100% 11% 0% 

Wind: onshore 1 7 100% 24% 0% 

Geothermal 0.001 0.004 100% 23% 50% 

Biogas 0.4 3 36% 26% 30% 

Wood/biomass 0.8 13 21% 47% 90% 

Waste incinerator 0.6 3 16% 28% 30% 

Coal: SCPC 1.6 24 41% 63% 90% 

Gas: GTCC base load  2.4 27 58% 80% 100% 

Gas: GTCC flexible load 1.6 24 39% 48% 100% 

Oil engine 0.3 5 26% 77% 100% 

Source: BMLFUW 2009; ENTSO-E; OECD iLibrary. 

1.2 Hydro power  

 
Source: E-control 2014. 

Figure A 1: Dam hydro plants capacity factors - Austria 
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Source: E-control 2014. 

Figure A 2: River hydro production (2012) - Austria 

1.3 Solar PV  

 
Source: JRC 2013. 

Figure A 3: Solar Availability factor (Vienna) 
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1.4 Wind  

 
Source: Austrian Power Grid 2014. 

Figure A 4: Wind (onshore) availability factor - Austria 

1.5 Electricity demand load curve 

 
Source: ENTSO-E. 

Figure A 5: Electricity load profiles (2010) - Austria 
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1.6 Electricity Import / Export  

 
Source: ENTSO-E, OECD iLibrary. 

Figure A 6: Electricity imports & exports 2010 - Austria 

2 Germany 

2.1 Existing technology 

Table A 2: Existing technology & model calibration (2010) - Germany 

Technology description Stock 
capacity 
(GW) 

Production 
(PJ) 

Eff (%) AF 
(%) 

Peak 
contribution 

Hydro (river) 5.1 72 80% 45% 90% 

Hydro (dam) 0.6 3 80% 17% 90% 

Pump hydro 6.8 23 74% 19% 100% 

Solar: PV   21.3 42 100% 12% 0% 

Wind: onshore 27.2 136 100% 21% 0% 

Geothermal 0.008 0.1 100% 23% 50% 

Biogas 4.8 106 53% 80% 30% 

Wood/biomass 6.2 73 40% 46% 90% 

Waste incinerator 1.7 17 19% 39% 30% 

Nuclear 23.5 506 33% 85% 100% 

Lignite: SCPC 22.7 525 38% 83% 90% 

Coal: SCPC 30.2 421 41% 55% 90% 

Gas: GTCC base load  7.2 186 58% 82% 100% 

Gas: GTCC flexible load 16.6 124 42% 44% 100% 

Oil engine 5.9 30 43% 24% 100% 

Source: BWE 2011; ENTSO-E; OECD iLibrary. 
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2.2 Solar PV 

 
Source: JRC 2013. 

Figure A 7: Solar availability factors (Berlin & Munich) 

2.3 Wind 

  
Source: European Energy Exchange, Transparency reports 2014 

Figure A 8: Wind availability factor (onshore) - Germany 

 
Source: European Energy Exchange, Transparancy reports, 2014. 

Figure A 9: Wind availability factor (offshore) - Germany 
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2.4 Electricity demand curves 

 
Source: ENTSO-E. 

Figure A 10: Electricity load profiles (2010) - Germany 

 



150/174 

 
 

2.5 Electricity import/export 

 
Source: ENTSO-E, OECD iLibrary. 

Figure A 11: Electricity imports & exports 2010 - Germany 

3 France 

3.1 Existing technology 

Table A 3: Existing technology & model calibration (2010) - France 

Technology description Stock 
capacity 
(GW) 

Production 
(PJ) 

Eff (%) AF 
(%) 

Peak 
contribution 

Hydro (river) 8.5 122 80% 45% 90% 

Hydro (dam) 13.9 103 80% 24% 100% 

Pump hydro 1.8 20 71% 36% 100% 

Solar: PV   1.0 2 100% 15% 0% 

Wind: onshore 5.9 36 100% 22% 0% 

Tide 0.24 2 100% 27% 0% 

Biogas 0.62 4 31% 20% 30% 

Wood/biomass 1.2 6 40% 15% 30% 

Waste incinerator 2.4 15 20% 20% 30% 

Nuclear 63.1 1543 35% 82% 100% 

Coal: SCPC 3.5 95 40% 85% 90% 

Gas: GTCC flexible load  9.5 86 31% 40% 100% 

Oil engine 10.4 21 21% 40% 100% 

Source: RTE, 2010; ENTSO-E; OECD iLibrary. 
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3.2 Solar PV 

 
Source: JRC, 2013. 

Figure A 12: Solar availability factors (Marseille & Paris) 

3.3 Wind 

 
Source: Réseau de transport d'électricité 2012. 

Figure A 13: Wind availability factor (onshore) - France 

 
Source: Réseau de transport d'électricité 2012. 

Figure A 14: Wind availability factor (offshore) - France 
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3.4 Electricity demand curves 

 
Source: ENTSO-E. 

Figure A 15: Electricity load profiles (2010) - France 

3.5 Electricity import/export 

 
Source: ENTSO-E, OECD iLibrary. 

Figure A 16: Electricity imports & exports 2010 
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4 Italy 

4.1 Existing technology 

Table A 4: Existing technology & model calibration (2010) - Italy 

Technology description Stock 
capacity 
(GW) 

Production 
(PJ) 

Eff (%) AF 
(%) 

Peak 
contribution 

Hydro (river) 9.8 136 80% 45% 90% 

Hydro (dam) 4.4 48 80% 35% 90% 

Pump hydro 7.7 12 74% 12% 100% 

Solar: PV   3.5 7 100% 19% 0% 

Wind: onshore 5.8 33 100% 25% 0% 

Geothermal 0.8 19 100% 90% 50% 

Biogas 1.1 19 41% 53% 30% 

Wood/biomass 1.2 16 15% 46% 90% 

Coal: SCPC 11.2 143 38% 54% 90% 

Gas: GTCC base load  22.5 333 51% 74% 100% 

Gas: GTCC flexible load 14.9 220 42% 59% 100% 

Oil engine 23.1 124 35% 64% 100% 

Source: TERNA 2014; ENTSO-E; OECD iLibrary. 
 

4.2 Solar PV 

 
Source: JRC, 2013. 

Figure A 17: Solar availability factors (Catania & Rome) 
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4.3 Wind 

 
Source: TERNA 2014. 

Figure A 18: Wind availability factor (onshore) - Italy 

 
Source: TERNA 2014. 

Figure A 19: Wind availability factor (offshore) - Italy 
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4.4 Electricity demand curves 

 
Source: ENTSO-E. 

Figure A 20: Electricity load profiles (2010) - Italy 

4.5 Electricity import/export 

 
Source: ENTSO-E; OECD iLibrary. 

Figure A 21: Electricity imports & exports 2010 - Italy 
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5 Switzerland 

5.1 Existing technologies 

Table A 5: Existing technology & model calibration (2010) - Switzerland 

Technology description Stock 
capacity 
(GW) 

Production 
(PJ) 

Eff (%) AF 
(%) 

Peak 
contribution 

Hydro (river) 3.7 58 80% 55% 90% 

Hydro (dam) 8.1 70 80% 28% 90% 

Pump hydro 1.4 7 80% 19% 100% 

Solar: PV   0.1 0.3 100% 11% 0% 

Wind: onshore 0.04 0.13 100% 14% 0% 

Biogas 0.3 0.01 32% 57% 30% 

Wood/biomass 0.03 0.5 13% 38% 90% 

Waste incinerator 0.3 5.5 40% 57% 30% 

Gas: GTCC base load  0.6 7.2 35% 57% 100% 

Nuclear (Mühleberg) 0.365 9.5 30% 96% 90% 

Nuclear (Beznau - 1) 0.365 10.2 30% 96% 90% 

Nuclear (Beznau - 2) 0.373 10.7 30% 91% 90% 

Nuclear (Gösgen) 0.970 28.7 30% 94% 90% 

Nuclear (Leibstadt) 1.2 31.6 30% 90% 90% 

Oil engine 0.1 0.06 18% 38% 100% 

Source: BfE 2010; ENTSO-E; OECD iLibrary; Kannan/Turton 2011. 
 

5.2 Hydro power  

 
Source: Kannan/Turton 2011. 

Figure A 22: Dam hydro reservoir availability - Switzerland 
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Source: Kannan/Turton 2011. 

Figure A 23: Capacity factors of hydro plants - Switzerland 

 

 

5.3 Solar PV 

 
Source: JRC 2013. 

Figure A 24: Solar availability factors (Zürich) 
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5.4 Wind  

 
Source: Kannan/Turton 2011. 

Figure A 25: Wind availability factor (onshore) - Switzerland 

5.5 Load curve 

 
Source: ENTSO-E. 

Figure A 26: Electricity load profiles (2010) - Switzerland 
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5.6 Electricity import / export  

 
Source: ENTSO-E; OECD iLibrary. 

Figure A 27: Electricity imports & exports 2010 - Switzerland 

5.7 Net electricity import restrictions for the NoGas scenario 

 

Figure A 28: Net electricity import allowance for Switzerland (NoGas) 
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Appendix B – CROSSTEM results 

1 Country-specific results  

1.1 France 

 

Figure B 1: Electricity generation mix - France 

 

 

Figure B 2: Installed capacity - France 
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Figure B 3: Undiscounted system costs - France 

1.2 Germany 

 

Figure B 4: Electricity generation mix - Germany 
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Figure B 5: Installed capacity - Germany 

 

Figure B 6: Undiscounted system costs - Germany 
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1.3 Italy 

 

Figure B 7: Electricity generation mix - Italy 

 

 

Figure B 8: Installed capacity - Italy 
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Figure B 9: Undiscounted system costs - Italy 

1.4 Austria 

 

Figure B 10: Electricity generation mix - Austria 
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Figure B 11: Installed capacity - Austria 

 

Figure B 12: Undiscounted system costs - Austria 
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2 Generation Schedules 

2.1 Scenario 1 

 

 

 

Figure B 13: Electricity generation schedules for all countries on a summer weekday 2050  
(Sc1) 
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Figure B 14: Electricity generation schedules for all countries on a winter weekday 2050 
(Sc1) 
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2.2 Scenario 2 

 

 

 

Figure B 15: Electricity generation schedules for all countries on a summer weekday 2050 
(Sc2) 
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2.3 Scenario 3 

 

 

 

Figure B 16: Electricity generation schedules for all countries on a summer weekday 2050 
(Sc3) 
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Figure B 17: Electricity generation schedules for all countries on a winter weekday 2050 
(Sc3) 
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Appendix C – CROSSTEM-CH results in the coupled ELECTRA-CH framework 

1 Generation schedule – comparison between three scenarios 

 

Figure C 1: Electricity generation schedule on a fall weekday (2050) 
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Figure C 2: Electricity generation schedule on a spring weekday (2050) 
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Figure C 3: Electricity generation schedule on a winter Sunday (2050) 
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Figure C 4: Electricity generation schedule on a winter Saturday (2050) 
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