



Kathrin Volkart :: PhD student :: Paul Scherrer Institute

# Integration of Energy System Modelling and Multi-criteria Analysis

31<sup>st</sup> May 2016, Frontiers in Energy Research, Energy Science Center, ETH Zurich



- Introduction
- Methodology
- Multi-criteria analysis of global energy system scenarios
  - Economic indicators
  - LCA-based indicators
  - Other societal indicators
  - Security of supply indicators
- External cost assessment of global energy system scenarios
- Multi-criteria optimisation in the global energy system model
- Outlook



- Introduction
- Methodology
- Multi-criteria analysis of global energy system scenarios
  - Economic indicators
  - LCA-based indicators
  - Other societal indicators
  - Security of supply indicators
- External cost assessment of global energy system scenarios
- Multi-criteria optimisation in the global energy system model
- Outlook



<sup>[1]</sup>www.chinadialogue.net, <sup>[2]</sup>www.utilities-me.com, <sup>[3]</sup>www.lightingafrica.org, <sup>[4]</sup>www.whoi.edu, <sup>[5]</sup>www.energyandcapital.com



#### Motivation

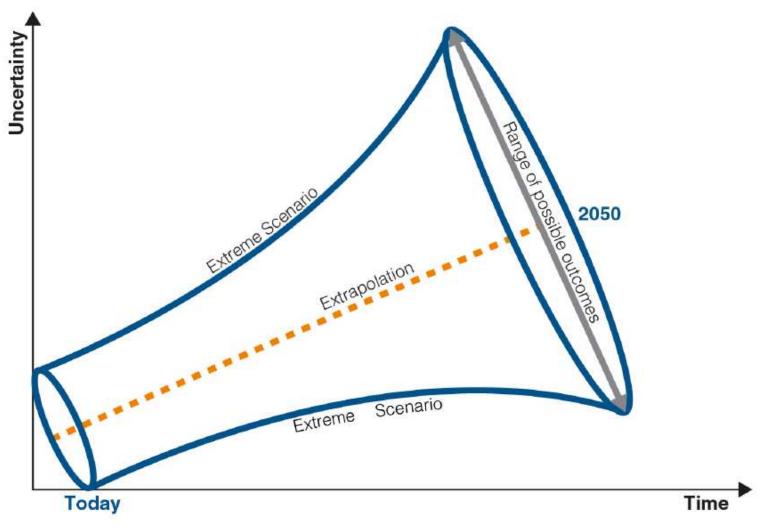
- Today's global energy system is characterized by the **dominant use of fossil resources**. Thus, there are growing concerns about **climate change**.
- But there are also but also other environmental, economic, and social aspects related to the energy system such as air pollution, energy access, and energy supply security.
- For the transformation to more sustainable energy systems we must consider all these aspects along with their spatial and temporal dimensions.

#### Goals of my PhD thesis

- Multi-dimensional analysis of energy systems
- Identification of sustainability trade-offs from the transformation of energy systems
- Support decision-making

>Integration of energy system modelling and multi-criteria analysis

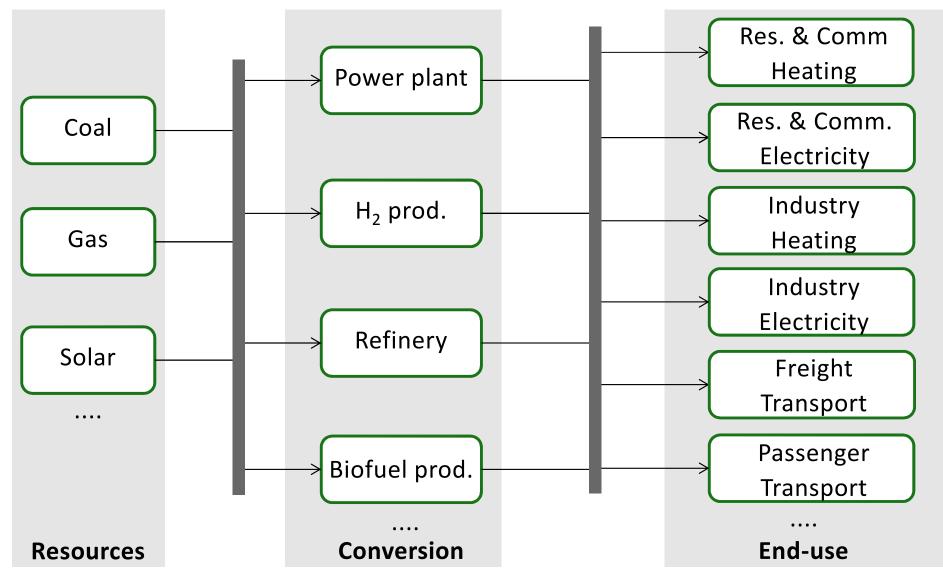



- Introduction
- Methodology
- Multi-criteria analysis of global energy system scenarios
  - Economic indicators
  - LCA-based indicators
  - Other societal indicators
  - Security of supply indicators
- External cost assessment of global energy system scenarios
- Multi-criteria optimisation in the global energy system model
- Outlook




- Energy system modelling
- Multi-criteria analysis




#### **Energy-economic system modelling**





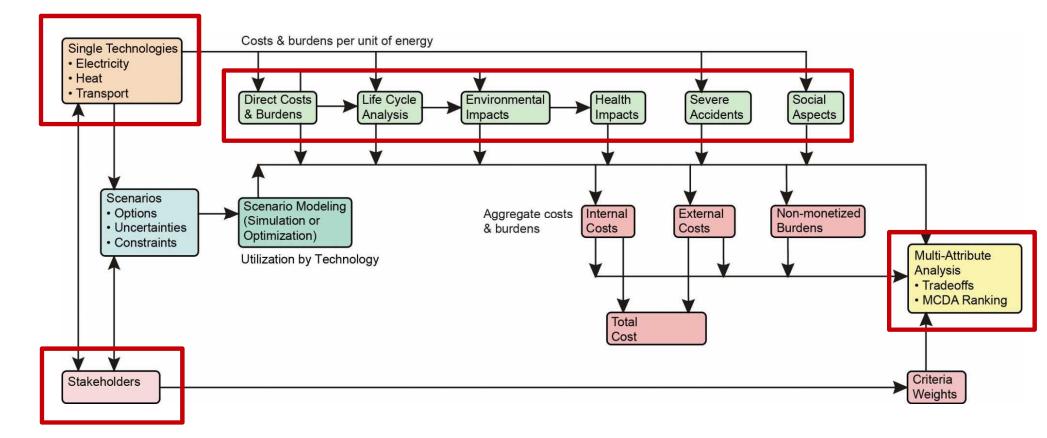


#### **Energy-economic system modelling @PSI**





- Energy system modelling
- Multi-criteria analysis

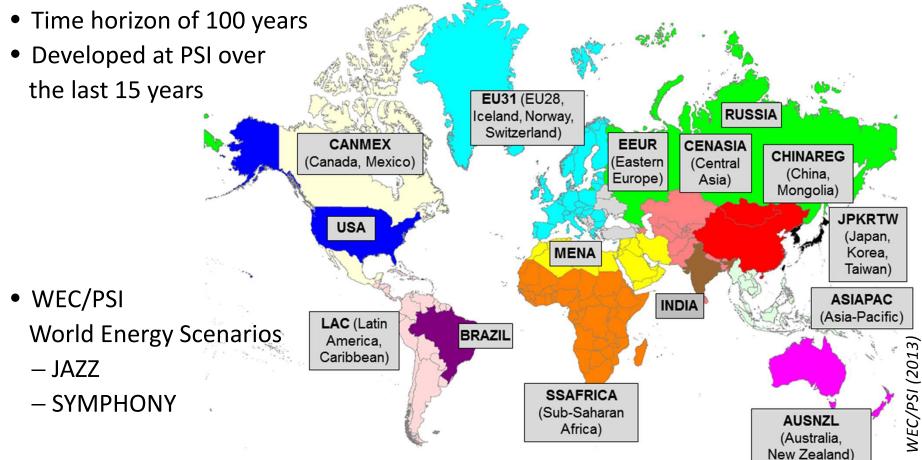



#### Multi-criteria analysis of energy technologies





#### Multi-criteria analysis of energy technologies @PSI




www.psi.ch/ta



#### Global Multi-regional MARKAL (GMM) model

- Energy system model (partial equilibrium)
- 15 world regions





- Formed in 1923
- UN-accredited global energy body
- More than 3000 member organisations located in over 90 countries
- representing the entire energy spectrum from governments, private and state corporations, academia, NGOs and energy-related stakeholders.
- Network of leaders and practitioners **promoting an affordable, stable and environmentally sensitive energy system** for the greatest benefit of all.
- Informs global, regional and national energy strategies by hosting high-level events, **publishing authoritative studies**, and working through its extensive member network to facilitate the world's energy policy dialogue.
- Regular reports:
  - World Energy Resources
  - World Energy Trilemma
  - World Energy Issues Monitor
  - World Energy Scenarios



All information from www.worldenergy.org



## WEC/PSI World Energy Scenarios (2013)

|                               | Scenario JAZZ                                               | Scenario SYMPHONY                                           |
|-------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| Goals                         | <ul> <li>Affordable access to energy</li> </ul>             | <ul> <li>Secure access to energy</li> </ul>                 |
|                               | through free markets                                        | • Targeted regulation through states                        |
|                               | <ul> <li>High income</li> </ul>                             | and international organizations                             |
|                               | <ul> <li>Mainly adaptation to</li> </ul>                    | <ul> <li>Mainly avoidance of</li> </ul>                     |
|                               | environmental damages                                       | environmental damages                                       |
| Economic Growth               | GDP growth has priority                                     | Less GDP growth                                             |
| (Gross Domestic Product, GDP) | (3.5% annual average to 2050)                               | (3.1% annual average to 2050)                               |
| Population                    | Increase                                                    | Strong increase                                             |
|                               | (8.7 billion in 2050)                                       | (9.3 billion in 2050)                                       |
| Climate Policy                | CO <sub>2</sub> markets develop slowly                      | Rapid state control                                         |
|                               | (CO <sub>2</sub> price in 2050: 23-45 \$/tCO <sub>2</sub> ) | (CO <sub>2</sub> price in 2050: 70–80 \$/tCO <sub>2</sub> ) |
| Energy Efficiency / Intensity | Efficiency increases based on                               | State promotion of measures for                             |
|                               | economic criteria                                           | efficiency and energy savings                               |
| Unconventional Resources      | Expanded opening of markets. High                           | Regulation (regarding water use,                            |
| (Shale oil/gas, oil sands)    | incentives for use due to high                              | market access). Fewer incentives                            |
|                               | energy demand.                                              | due to lower demand.                                        |
| Renewable Energy              | Limited promotion. "The market"                             | Selective state promotion                                   |
|                               | selects the technologies.                                   |                                                             |
| Non-renewable Energy          | Limited support:                                            | State support:                                              |
|                               | <ul> <li>CCS market driven, pilot plants by</li> </ul>      | <ul> <li>CCS available from 2020</li> </ul>                 |
|                               | 2030                                                        | <ul> <li>Nuclear energy</li> </ul>                          |
|                               | <ul> <li>Nuclear plants under construction</li> </ul>       |                                                             |
|                               | partially not in operation                                  |                                                             |
|                               |                                                             | https://www.psi.ch/com/was.comparisor                       |

https://www.psi.ch/eem/wec-comparison



- Introduction
- Methodology
- Multi-criteria analysis of global energy system scenarios
  - Economic indicators
  - LCA-based indicators
  - Other societal indicators
  - Security of supply indicators
- External cost assessment of global energy system scenarios
- Multi-criteria optimisation in the global energy system model
- Outlook



# Integration of economic indicators

#### Environment

- Greenhouse gas emissions
- Resources (metal, fossil)
- Ecosystem damages



#### Economy

- Energy system cost
- Energy cost
- Pollution tax



### Society

- Human health impacts
- Chemical waste
- Expected mortality in accidents
- Maximum consequences of accidents (conflict potential)

### **Security of Supply**

- Diversity of energy supply
- Import dependency
- Energy intensity, TFC/TPES
- Reserves-to-production ratio
- Refining capacity
- Renewable / Oil share in TPES



- Introduction
- Methodology
- Multi-criteria analysis of global energy system scenarios
  - Economic indicators
  - LCA-based indicators
  - Other societal indicators
  - Security of supply indicators
- External cost assessment of global energy system scenarios
- Multi-criteria optimisation in the global energy system model
- Outlook



# Integration of LCA-based indicators

#### Environment

- Greenhouse gas emissions
- Resources (metal, fossil)
- Ecosystem damages



#### Economy

- Energy system cost
- Energy cost
- Pollution tax



### Society

- Human health impacts
- Waste
- Expected mortality in accidents
- Maximum consequences of accidents (conflict potential)

### **Security of Supply**

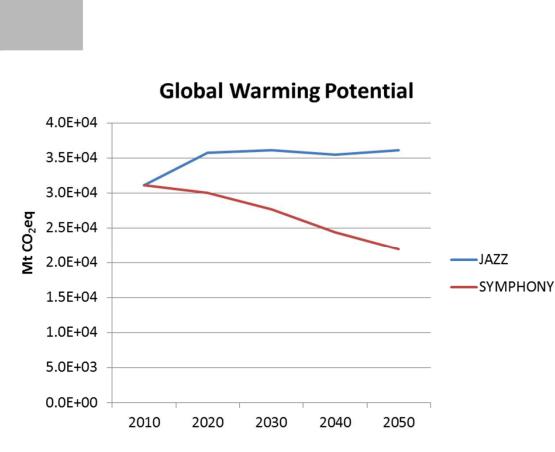
- Diversity of energy supply
- Import dependency
- Energy intensity, TFC/TPES
- Reserves-to-production ratio
- Refining capacity
- Renewable / Oil share in TPES

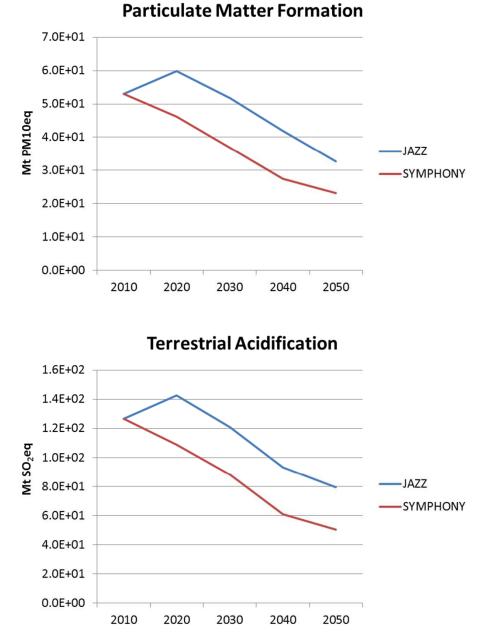


# Integration of LCA-based indicators

#### Life-cycle assessment (LCA)

- Evaluation of environmental impacts associated with all the stages of a product's life from cradle to grave, i.e., raw material extraction, materials processing, manufacture, distribution, use, repair and maintenance, and disposal or recycling.
- Life-cycle inventory datasets in background database ecoinvent





#### **Research questions**

- How can LCA-based indicators be integrated in existing energy system models without double-counting of impacts?
- What are the environmental impacts of the global energy system from a life-cycle perspective?

- Chris Mutel
- Martin Densing, Evangelos Panos









- Introduction
- Methodology
- Multi-criteria analysis of global energy system scenarios
  - Economic indicators
  - LCA-based indicators
  - Other societal indicators
  - Security of supply indicators
- External cost assessment of global energy system scenarios
- Multi-criteria optimisation in the global energy system model
- Outlook



# Integration of other societal indicators

#### Environment

- Greenhouse gas emissions
- Resources (metal, fossil)
- Ecosystem damages



#### Economy

- Energy system cost
- Energy cost
- Pollution tax



### Society

- Human health impacts
- Chemical waste
- Expected mortality in accidents
- Maximum consequences of accidents (conflict potential)

### **Security of Supply**

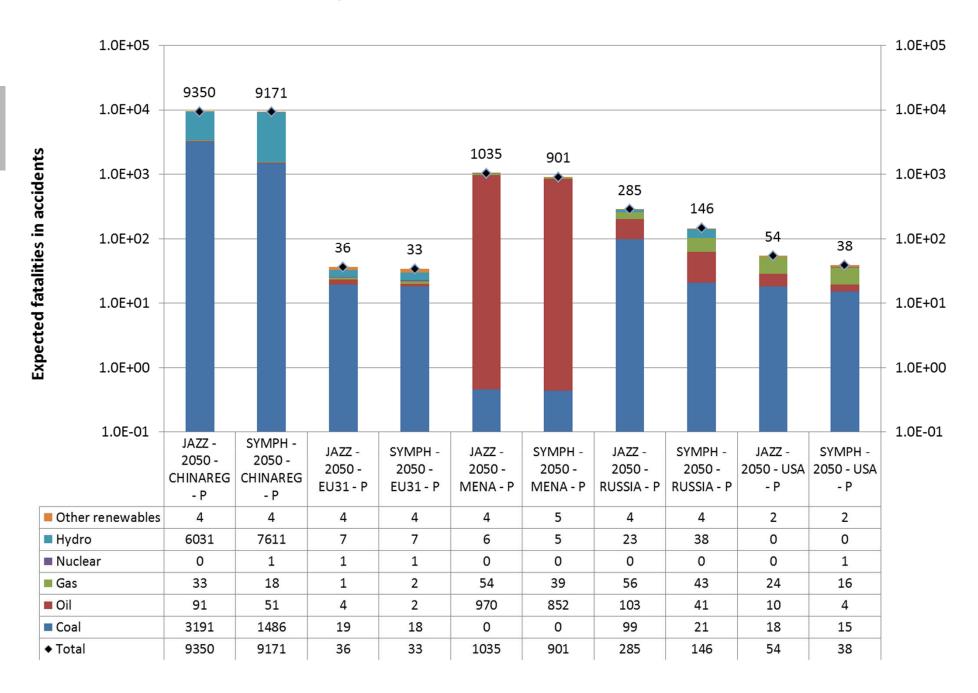
- Diversity of energy supply
- Import dependency
- Energy intensity, TFC/TPES
- Reserves-to-production ratio
- Refining capacity
- Renewable / Oil share in TPES



## Integration of other societal indicators

#### **Risk assessment**

- Energy-related Severe Accident Database (ENSAD)
- Accidents can occur at all stages of an energy chain, i.e. extraction, transport, and plant.
- In ENSAD, data on all energy-related accidents is collected and classified into energy chains and activities within those chains.


#### **Research questions**

- How can accident risk assessment indicator be integrated in existing energy system models?
- What are the expected consequences from accidents in the global energy system based on historic evidence?

- Peter Burgherr
- Martin Densing, Evangelos Panos



## **Preliminary Results**





- Introduction
- Methodology
- Multi-criteria analysis of global energy system scenarios
  - Economic indicators
  - LCA-based indicators
  - Other societal indicators
  - Security of supply indicators
- External cost assessment of global energy system scenarios
- Multi-criteria optimisation in the global energy system model
- Outlook



# Integration of security of supply indicators

#### Environment

- Greenhouse gas emissions
- Resources (metal, fossil)
- Ecosystem damages



#### Economy

- Energy system cost
- Energy cost
- Pollution tax



### Society

- Human health impacts
- Chemical waste
- Expected mortality in accidents
- Maximum consequences of accidents (conflict potential)

### Security of Supply

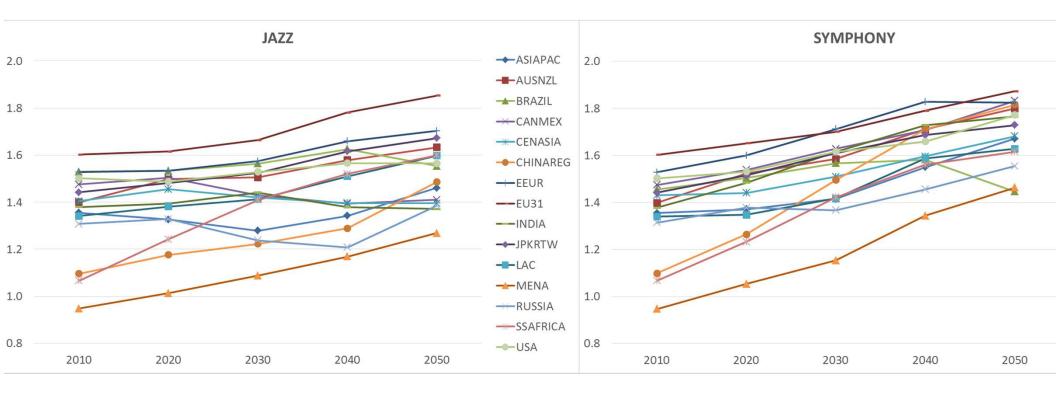
- Diversity of energy supply
- Import dependency
- Energy intensity, TFC/TPES
- Reserves-to-production ratio
- Refining capacity
- Renewable / Oil share in TPES



# Integration of security of supply indicators

### Security of supply

- "uninterrupted availability of energy sources at an affordable price" (IEA, 2015)
  - Long-term energy security: timely investments in the supply of energy
  - Short-term energy security: ability of the energy system to react to sudden changes within the supply-demand balance


#### **Research questions**

- What are important security of supply indicators?
- How does the security of supply of the global energy system evolve?

- Moritz Köhme
- Martin Densing, Evangelos Panos



#### Shannon-Wiener Index for Total Primary Energy Supply (TPES)





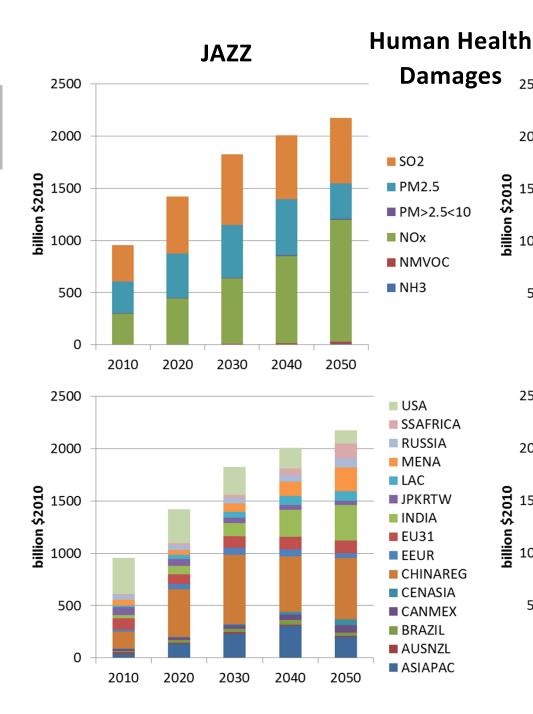
- Introduction
- Methodology
- Multi-criteria analysis of global energy system scenarios
  - Economic indicators
  - LCA-based indicators
  - Other societal indicators
  - Security of supply indicators
- External cost assessment of global energy system scenarios
- Multi-criteria optimisation in the global energy system model
- Outlook

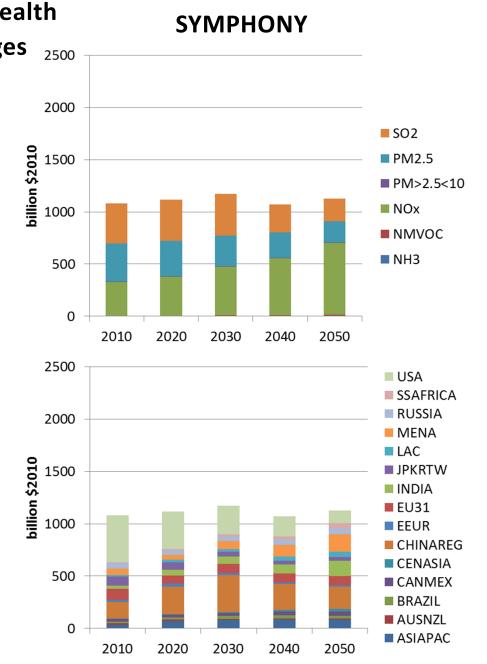


## External cost assessment

#### Externalities

- Costs or benefits imposed upon a third party when goods and services are produced and consumed.
  - External costs: Third party has a drawback.
  - External benefits: Third party has an advantage.


#### **Research questions**


- What are the external costs of the global energy system?
- How do the external costs compare with the GDP in the respective period?

- Michael Hegglin
- Chris Mutel
- Evangelos Panos
- Martin Densing

PAUL SCHERRER INSTITUT

## **Preliminary Results**

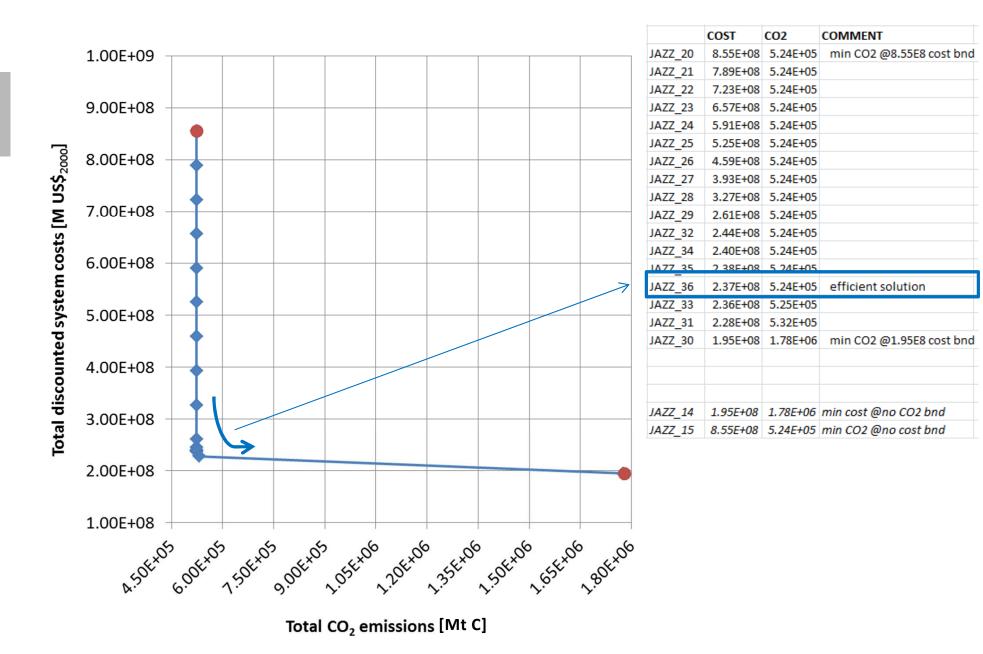






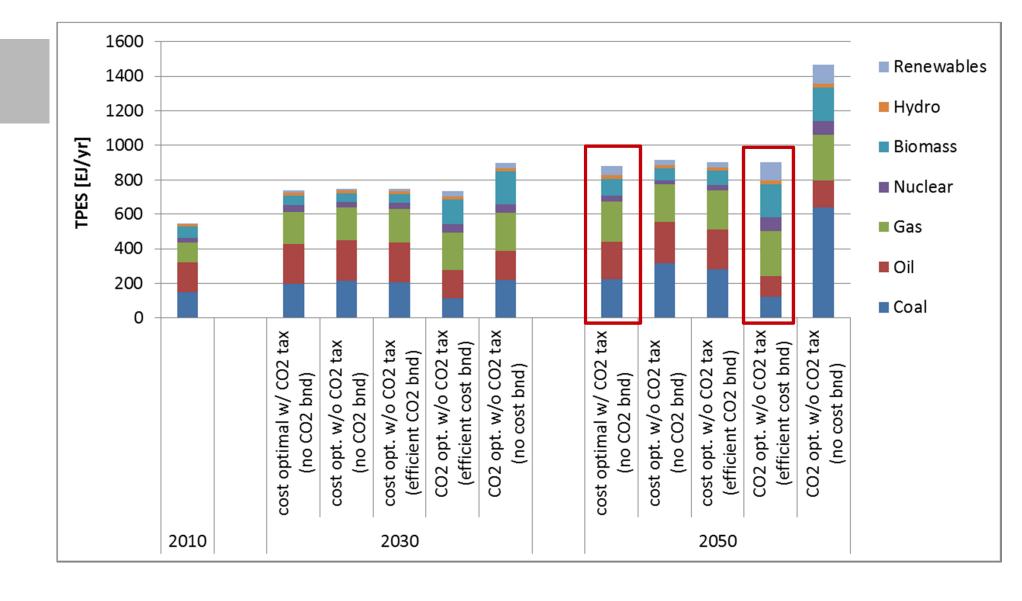
- Introduction
- Methodology
- Multi-criteria analysis of global energy system scenarios
  - Economic indicators
  - LCA-based indicators
  - Other societal indicators
  - Security of supply indicators
- External cost assessment of global energy system scenarios
- Multi-criteria optimisation in the global energy system model
- Outlook




#### **Research questions**

- How do energy systems look which are optimized for other indicators than cost or weighted combinations of indicators?
- How much does achieving other sustainability goals cost?

- Martin Densing
- Nagore Sabio
- Evangelos Panos




## Preliminary Results: Epsilon constraint approach





## Preliminary Results: Epsilon constraint approach





## Wir schaffen Wissen – heute für morgen

#### I would like to thank:

- Martin Densing
- Evangelos Panos
- Chris Mutel
- Nicolas Weidmann
- Christian Bauer
- Peter Burgherr (all from PSI)
- Michael Hegglin
  Moritz Köhme (both from ETHZ)
- Nagore Sabio
  Neil Strachan (both from UCL)

