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Outline

Models with expected water constraints
e single-period: ancillary service, pumping

e multi-period: discontinuous df, continuous time, two reservoirs

More detail model on a scenario tree
e occupation times of price (‘price-duration curves')

e numerical result



Ancillary services (control reserve)

Solar- and wind infeeds lower profitable price-peaks. Alternative:

Flexible production capacity is sold to transmission system
operator (TSO) to balance unpredictable deviations between
supply and demand

Types of ancillary services
e Primary: fully available 30sec. after imbalance is detected
e Secondary: fully available after 15 min.

e Tertiary: starts after 15 min.

+400 MW of secondary control reserved by TSO in Switzerland



A time series of requested secondary control
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A major reason for imbalance is the hourly step-wise production
schedule in Central Europe.
— Heuristically: >~ up-regulation ~ Y down-regulation

(summed over a week or month)



How is secondary control provided?

capacity
A

Free production interval, can be sold on market

Technical minimal production interval: 10-40% u__

Producer (with capacity umax) provides power +u, (MW) over
a week or a month. Producer sells umin + u; at the market.
TSO pays producer for providing the service

TSO pays producer for up-regulation energy amount

e Producer pays TSO for down-regulation energy amount

Because payment rules change constantly, all service- and
(expected) regulation-payments summed into p, (EUR)



Single reservoir

inﬂon\

min level

Optimal control problem: How to dispatch?
Objective: Maximize profit.

production (u)
or: ancillary service (u?)

Optimal rule [Massé, 1946]: Produce when the marginal utility of
production is higher than the marginal utility of expected
remaining water; else wait.



Single-period (steady-state) hydropower plant model

e Constraint on water-level in expectation
S € LY electricity spot price (EUR/MWh), continuous df
u: Ry— Ry ctrl-funct, u(S): turbined water (MWHh); umin =0

Max. capacity, initial, minimal water level: umax > lo— fnin > 0

Case without ancillary service

m(ax E[S u(S)]



Single-period (steady-state) hydropower plant model

e Constraint on water-level in expectation

S € LY electricity spot price (EUR/MWh), continuous df

u: Ry— Ry ctrl-funct, u(S): turbined water (MWHh); umin =0
Max. capacity, initial, minimal water level: umax > lo— fnin > 0

Case without ancillary service

max 15 u(S))

ot { o —E[u(S)] = hnin
1 0 < u(S) < Umax
Optimal solution (bang-bang type):
4(S) = umaxl{s>gy, § given by P[S > 4] = (lo — lmin)/Umax-
Remark. Equivalent to financial coherent risk measures:
Optimal objective value = —(lp — fnin)AVaR -1, [ 5]

Umax



Single-period (steady-state) model with ancillary service

e Interval [—u,, uy] of reserved power; umin =0
e up-regulation — down-regulation ~ 0 (over a long period)

e p, € R represents service- and expected regulation-payments

max E[S u(S)+ Su,+ paua]

u(-),ua
lo —E[u(S)] — ua > Inin
st.¢ u(S)>0, wu,>0
u(S) + 2u, < Umax



Single-period (steady-state) model with ancillary service

e Interval [—u,, uy] of reserved power; umin =0
e up-regulation — down-regulation ~ 0 (over a long period)

e p, € R represents service- and expected regulation-payments

max E[Su(S) + S ua + paus)

u('):’Ja

lo — [ ] — Uz 2 Imin
st.¢ u(S)>0, wu,>0
(5) + 205 < Umax

Optimal solution in case umax = 2(lo — Imin):

~ R R 1
0(S) = (tmax — 205)1(s24y 02 = S UmaxLp,>E[5-4)))

where § is an optimal multiplier of the water constraint



Single reservoir with pumping

inflow
N

" — — —min level

production (u*) pumping(u), efficiency e.g. 70%

sufficiently large
reservoir

(not modelled)




Single-period (steady-state) pumped-storage plant model

Constraint on water-level in expectation

S € LY electricity spot price (EUR/MWh), continuous df

ut: Ry — R, ctrl-funct, u™(S): turbined /oumped water (MWh)
Max. capacity, initial, minimal water level: u$ax > lg— lnin > 0
c € (0,1) efficiency of pumping

max E[5u+(5) - %su*(S)}
o — E[U+(5) - Uf(S)] > hnin
St < i (S) <t

max

10



Single-period (steady-state) pumped-storage plant model

Constraint on water-level in expectation
S € L} electricity spot price (EUR/MWh), continuous df

ut: Ry — Ry ctrl-funct, u™(S): turbined/pumped water (MWh)
Max. capacity, initial, minimal water level: uf,. > lo— lnin >0
c € (0,1) efficiency of pumping

max E[5u+(5) - %su*(S)}
¢ {/0 — [ Jr(5) - Uf(s)] > /min

0<u*(S)<ut

max
Optimal solution:
07(S) = tmaxlis>gy, 0 (S) = Upaxlis<cq), 4 given by

IPJ[S > q] max]P)[S < Cq] =lo — Inin

max
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Single-period pumped-storage with discontinuous df of S
i.e., the distribution function of S may have discontinuities in
1
_l’_ = —
max E[Su (S) cSU (5)}

/0 — E[U+(5) - U_(S)] > /min
B 0<u®(S)<ut

max

11



Single-period pumped-storage with discontinuous df of S

i.e., the distribution function of S may have discontinuities in
1
_l’_ = —
max E[su (S)— <Su (5)}

. {/0— [ut(S) = v (S)] > lnin
+
0 < ut(S) <ut

max
Optimal solution:

0t (S) = Urﬁaxl{s>a} + alis—g},
07(S) = tmaxl{s<cg) + ©21(s-4),, 4 given by
max]P)[S > q] + Cl]P)[S CI] max]P)[S < cq] - CQP[S— Cq]

P[S>q]

/min-

fo—Imin

. _ T r-———fp—-————=————-—
Special case up,,, = 0: tmax a/ut P[S=dq
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Multi-period pumped-storage plant in discrete time

* (St)t=o,.,1, with S; € Lﬂr, S; continuous df, Vi
o Uf = uf(S0,S1,-..,S:): RITH — R, (non-anticipative)

max ZE[SU S, U }

ot ’0+Z<E[Ut - Uﬂ + wt> > I

0<UF <ut t,t'=0,...,T

max?

Optimal solution:

A

+_ - - B
Ut = umaxl{SrZZ;t qs}, Ut = Umaxl{stscz;t qs}, t=0,...
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Multi-period pumped-storage plant in continuous time

* (St)o<t<T, St € L_lk, S; continuous df, Vt

° U;t is a 0((S¢)o<r<¢)-measurable random variable

max/ StU:“—EStUt_ (dPxdt)
(UF) Jaxo,T] ¢

/0+/ Uy — U + we (dPxdt) > lmin
s.t Qx[0,t']

0< U<, st eloT]

max?
Optimal solution:
O+t = _
Ut - umaX]-{SthtTQsds}’ Ut - umaxl{stSCIthst}’

-
/Vsqs ds=0, vs,qs>0,
0

with

s T .
Vs :/ <Ur;ax]P) |:5t < C/qS/ ds’] — uan]P’ |:5t Z/C]s/ ds’} o+ /0—/mir)dt
0 t

t
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2 reservoirs

inﬂo'\’/v\

min level

pumping(u™), efficiency e.g. 70%

\

production (u'")

~

production (u?*)
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Multi-period pumped-storage: discrete time, 2 reservoirs

o (St)t=o,.. 7, with S; € L}, S; continuous df, Vt
o U .= ugli)(so, Si,...,S:)
o U2t = u®M(S,51,...,S)
e same electricity-per-water ratio in reservoir 1 and 2

1
max ZE (S, Ut — zstUtl— + S, U]
t=0

U2i U1+
I} +Z( E[U}™ - UFT] + wt> > L

s.t. /g—i—Z(E[—Utli-f‘UtlJr_Ut%r} ) >/r2n|n

| 0 < UFF < uih,, t=0,...,T
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Optimal solution for 2 reservoirs

Let g}, g? be optimal Lagrange multipliers of reservoir 1 and 2

N
Ut B maxl{st>25 tqs s_ qs}
o
Ur™ = tmaxl (s, < (57 a7, )}
)2+ — 2t 1 _
Ut = Umax {5t>zs th} t=0,...,T
Water in lower reservoir 2 is more valuable:
14+ 1+ . .
U™ = Umax water in reservoir 1
1 2 N1— .
Z gs < Z g = yU: =0 is reduced
= s=t U > 03w

Water in upper reservoir 1 is more valuable:

T O > 03w anced _
Z qsl > Z q52 >0 — Utlf > 03w alanced operation
- - 0> 03w
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General mean-risk model (suitable for scenario tree)

e Monthly time steps for water-level and profit: t =0,1,..., T
e Electricity price: (St+£)h:17,_,,H, changes hourly
H

+
o u; (St+%,.

¢ Use of occupation times: ), ufE(SHﬁ, L) = S uE(E, )
H

..) € Ry production/pumping control variables

max E[X
Ui SUE <t ]
ot r[Xo, .-, X7] = Pmin
- (Lt7Pt)€Xt, t:07,T

e L;: water level (feasible in every scenario, with monthly
stochastic inflow)
e P;: cumulative profit-and-loss
e X;: production value := P; + weight x expected usable water
o r[Xo,...,X7] € R: risk-adjusted value
17



Hourly time scale replaced by occupation times

Idea: Replace integration over time by integration over levels

Continuous time. State equations of profit-and-loss and water-level
over a month, formally with suitable f: R — R:

t+1 %) t+1
/ F(Su) dt’ = / £(s) dFesa(s), Fora(s) = / 1s,coydt’
t 0 t

Stieltjes integral w.r.t. occupation time Fy11(s) at level s.

Discrete time. Discrete price levels sy < 51 < --+ < sp:

H N
Z f(5t+%) ~ HZ f(§i)<Fu 1(5i) — Fiy 1(5171)>, 5 € (si-1,5i)s
h—1 i—1

H
1 Fraction of hours where
Ft+1(5) = ﬁ Z 1{St+/ﬁ SS} < pnce < s
h=1
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Dimensional reduction of occupation times

Goal: Dimensional reduction of stochastic vector of occupation

times, (F:(so), ..., Ft(sn)), N large, by Principal Component
Analysis (PCA).

PCA of monthly occupation times from hourly electricity prices
(EEX market, 2003-2005):

Coefficients
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Variance - -
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Ancillary service (p, = 60 EUR/MW)

waterlevel 1 (MWh)

Water level over time stages

Upper reservoir Lower reservoir
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(diameter of circle in node = amount of ancillary service)

Ancillary service (lower reservoir) mainly during first and last stage
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Ancillary service (p, = 195 EUR/MW)

Water level over time stages

Upper reservoir Lower reservoir
8 _§-
- 8 8 g
3 & § g1
= 8
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1 2 3 4 5 1 2 3 4 5
stage stage

(diameter of circle in node = amount of ancillary service)

Upper reservoir is emptied for ancillary service in lower reservoir
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Conclusion

For models with water levels in expectation:
e exact solutions for ancillary services or several reservoirs

e extendable to discontinuous df of price and to continuous time

For models on a scenario tree:

e Occupation time of electricity price (‘price-duration curve’,
dual-scale modeling) allows to incorporate ancillary services

e Further ingredients: (i) principal component analysis of
occupation times, (ii) time-consistent risk constraint
Outlook
e Exact solution for ancillary service in general

e Refine expected water constraint by using testfunctions H:
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