

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

Kathrin Volkart

Towards integration of energy-economic modelling and life-cycle assessment

Motivation

Methodology

- Global MARKAL model (GMM)
- Life-cycle assessment (LCA)
- Idea and proposed methodology

Results

- Cost optimisation
- CO₂ cost optimisation
- CO₂ emission optimisation

Conclusions

Next steps / Outlook

• The global energy system faces various challenges, e.g.

- Climate change
- Resource depletion
- Energy access
- Security of supply

- <u>Tools</u> to assess the development of the global energy system are e.g.
 - Climate models
 - Energy-economic models
 - Life-cycle assessments
 - Risk assessments
 - Surveys

Global multi-regional MARKAL (GMM) model

- <u>G</u>lobal
 - All energy sectors
 - All energy resources

<u>M</u>ulti-regional

- 15 world regions
- Trade

• MARKAL (MARKet-ALlocation)

- Technology rich (> 400)
- Bottom-up
- Perfect-foresight (2010 2100)
- Partial-equilibrium ("Supply allocation")
- Least cost optimization
 - (Discounted total system costs)
- Assessment of the global energy system
- Focus on the economic aspects

Life-cycle assessment (LCA)

Some typical examples of LCA case studies

• Functional unit, e.g.

PAUL SCHERRER INSTITUT

- 1 vehicle-km in a car
- 1 pair of dry hands
- 1 kg of ready-to-eat tomatos
- 1 kWh of electricity

• Life-cycle indicators per functional unit, e.g.

- Ecosystem damages
- Land use
- Particulate matter emissions
- Greenhouse gas emissions
- Metal depletion

> Focus on environmental aspects

Is there a possibility to combine different tools to gain a <u>more</u> <u>comprehensive</u> insight into the global energy system?

> Multi-objective optimisation

Steps towards multi-objective optimisation

- 1) Non-cost optimisation in GMM
 - Change of the GMM objective function
- 2) Life-cycle impacts in GMM
 - Life-cycle indicators are calculated for the energy technologies (e.g. coal power plant)
 - *ex-post* analysis of the total environmental burden of the energy system

3) External cost in GMM

- External cost factors are attached to the life-cycle indicators
- *ex-post* or *ex-ante* analysis internalising the external costs of the energy system
- 4) Multi-objective optimisation in GMM
 - Various indicators (environment, risk, society, ...) are defined for the energy technologies
 - Analysis including different weights for the indicators

 $\min cost \rightarrow \min(w_1 * INDICATOR_1 + w_2 * INDICATOR_2 + \dots)$

Non-cost optimisation

- Case 1 (COST):
 - <u>Cost</u> minimisation
 - CO₂ prices

min cost (subject to system constraints) = z

Changes in the objective function of the model

- Case 2 (CO2_COST)
 - Direct $\underline{CO_2 \text{ cost}}$ minimization
 - CO₂ prices

 $\min CO_2 \ cost \ (subject \ to \ system \ constraints)$

- Case 3 (CO2_120)
 - Direct <u>CO₂ amount</u> minimisation
 - No CO₂ prices
 - Total discounted system cost limited to 120% of the one of the COST case

 $\min CO_2$ amount (subject to system constraints, $cost \le 120\% * z$)

- > One "normal" energy-economic run
- Two runs with different optimisation goals

Preliminary results

Direct CO₂ emissions

Preliminary results

Direct CO₂ emissions for different system cost caps

- Strong decrease of the CO₂ emissions in the non-cost optimisation cases towards 2100
 As expected
- The lower the total system cost cap the higher the CO_2 emissions of the energy system But even with a stringent system cost cap, it is possible to maintain today's CO_2 emission level!
- In the non-cost optimisation cases the CO₂ emissions do not go to zero This needs to be further analysed!

Next steps / Outlook

- 1) Non-cost optimisation
 - Change of the objective function of the large-scale MARKAL model

2) Life-cycle impacts in GMM

- Life-cycle indicators are calculated for the energy technologies (e.g. coal power plant)
- *ex-post* analysis of the total environmental burden of the energy system

3) External cost in GMM

- External cost factors are attached to the life-cycle indicators
- *ex-post* or *ex-ante* analysis internalising the external costs of the energy system

4) Multi-objective optimisation in GMM

- Various indicators (environment, risk, society, ...) are defined for the energy technologies
- Analysis including different weights for the indicators

Thank you for the attention

Are there any questions?

