Potential impact of post Fukushima nuclear policy on the future role of CCS in climate mitigation scenarios in Switzerland

Nicolas Weidmann, Hal Turton, and Ramachandran Kannan

Energy Economics Group, Laboratory for Energy Systems Analysis, Paul Scherrer Institute, Switzerland

IEW2012, June 19, 2012
Outline

1 Introduction
 - Scope, Objective
 - Swiss MARKAL model
 - Scenario definitions

2 Scenario analysis
 - Reference scenario, climate scenario
 - Nuclear phase-out under climate constraint
 - Carbon capture and storage

3 Conclusion and Outlook
 - Summary and conclusion
 - Outlook

References
Overview Swiss energy system

Primary and final energy consumption

Swiss primary and final energy consumption 2010

- Agriculture / stat. Diff
- Transport
- Services
- Industry
- Residential
- District heat
- Electricity
- Other renewables
- Nuclear
- Hydro
- Gas
- Oil products
- Oil
- Waste
- Coal
- Wood
Overview Swiss energy system

Electricity generation mix (2010)

- Total: 239 PJ
- Run-of-river hydro (24.2%)
- Dam hydro (32.3%)
- Nuclear power (38.1%)
- Conventional thermal (5.4%)

- Power sector nearly decarbonised
- Self sufficiency in annual electricity generation but still dependent on import for seasonal demands
- Electricity trading is important (power system balance, revenue)
Overview Swiss energy system

Challenges for the future Swiss energy system

- Development of future electricity demand (population/GDP growth increase, electrification)
- Nuclear phase-out
- Climate policy
- Energy security
- Future availability of technologies supporting low carbon energy system
Objective

- Analyze how uncertainties may affect future Energy system and cost-effectiveness of technologies
- Identify robust combinations of technologies and fuels
- Potential role of low carbon electricity sources (new renewables, CCS) under nuclear and climate constraints

Scenario analysis

- Uncertainties → Definition of scenarios
- Scenarios analysed using Swiss MARKAL energy system model
Swiss MARKAL model

Description of modeling framework

- Technology-rich bottom-up energy system model of entire Swiss energy system (single region model)
- Extensive representation of end-use efficiency technologies
- 40-years time horizon (2010-2050)
- Calibration to years 2000-2010
History of Swiss MARKAL model

- Model development initiated by M. Labriet at the University of Geneva (Labriet, 2003)
 - Building up first version of the model including five end-use sectors, conversion and supply
- Further developments and analyses by T. Schulz (Schulz, 2007; Schulz et al., 2007, 2008)
 - Implementation of extensive end-use technology options in transport and residential sector (including energy saving options based on marginal cost curves)
- and N. Weidmann (Weidmann, Turton, and Wokaun, 2009; Weidmann, Kannan, and Turton, 2011; ETS, 2009)
 - Further development of the model in all end-use sectors
 - Calibration of the entire model to 2010 data and demand update
 - Development and implementation of CCS module
Swiss MARKAL model

CCS module

Swiss MARKAL CCS Module

Natural gas

Electricity

- ENGACCSS0 Powerplant + capt.
- ENGACCSS50 Powerplant + capt.
- ENGACCSSR10 Powerplant
- ENGACCSSR50 Powerplant
- CHPNGCSS30 CHP Powerplant
- CHPNGCSS50 CHP Powerplant
- CHPNGCSSR10 CHP Powerplant
- CHPNGCSSR50 CHP Powerplant

- CCS_CONV_1 Combine captured CO2 streams
- CCS_CONV_2 Combine captured CO2 streams
- CCS_COMB_1 Combine captured CO2 streams
- CCS_COMB_2 Combine captured CO2 streams

- CCS_TRANS Transport of CO2
- CCS_STG Storage of CO2

- IMPSTGPOT1 Import of STGPOT (storage potential 1)
- IMPSTGPOT2 Import of STGPOT (storage potential 2)

- User-defined constraint: A_CCS_A
 \[\sum \text{Activity}_i \text{(CCS_COMB_1, CCS_COMB_2, CCS_CAP)} = \text{Activity}(\text{CCS_TRANS}) \]

- User-defined constraint: A_CCS_1
 \[\sum \text{Activity}_i \times \text{ENVACT}_{\text{capt},i} \text{(ENGACCS tech)} = \text{Activity(\text{CCS_COMB_1})} \]

- User-defined constraint: A_CCS_3
 \[\text{Activity(\text{CCS_CONV_2})} = \sum \text{Activity}_i \times \text{ENVACT}_i \text{(CCSCAPTHxx)} \]

- User-defined constraint: A_CCS_5
 \[\text{Activity(\text{CCS_CONV_2})} = \sum \text{Activity}_i \times \text{ENVACT}_i \text{(CHPNGCCS tech)} \]

- User-defined constraint: A_CCS_1x
 \[\text{Activity(ENGACCSR)} \times \text{EFF(\text{CCSCAPTE})} \geq \text{Activity(\text{CCSCAPTE})} \]

- User-defined constraint: A_CCS_2x
 \[\text{Activity(ENGHCCSR)} \times \text{EFF(\text{CCSCAPTH})} \geq \text{Activity(\text{CCSCAPTH})} \]

- User-defined constraint: A_CCS_6
 \[\sum \text{Activity}_i \times \text{ENVACT}_{\text{capt},i} \text{(CHPNGCCS tech)} = \text{Activity of CCS_COMB_2} \]
Scenario definitions

- **Ref**: Reference scenario (nuclear replacement, no (climate) policies)
- **NoNuc**: Nuclear phase-out
- **Clim**: Climate target (domestic CO$_2$ reductions by 20% by 2020, 60% by 2050)
- **Cumul A**: Cumulative CO$_2$ target
- **Cumul B**: Cumulative CO$_2$ target with fixed end point
- **CCS**: Carbon Capture and Storage technologies available

General model assumptions

- Oil, coal, and geothermal based power generation are fully restricted
- Hydro assumed to follow a fixed production path (34.8 TWh$_{el}$ in 2035, 33.0 TWh$_{el}$ in 2050)
- Renewable potentials (Solar PV: 13.7 TWh$_{el}$, Wind: 4 TWh$_{el}$, Biomass: 28.1 TWh$_{th}$)
- Discount rate: 3%
Reference scenario

Primary energy supply

![Primary energy - Ref graph](image)
Climate scenario

Primary energy supply

![Primary energy - Ref vs. Clim.](chart.png)

- Geo
- Solar
- Wind
- Biomass
- Hydro
- Nuclear
- Gas
- Oil
- Coal

Introduction

Scenario analysis

Conclusion and Outlook

References
Electricity and CO₂ emissions

Electricity gen. - *Ref vs. Clim*

![Graph showing electricity generation across different years and scenarios.]

- Solar
- Biomass CHP
- NGA CHP
- NGA CC
- Hydro
- Wind

CO₂ emissions - Ref vs. Clim

![Graph showing CO₂ emissions across different years and scenarios.]

- Electricity
- Residential
- Industry
- Transport
- Service
- Agriculture
- Other
- Upstream
Climate scenario

Final energy in residential heating and car sector

Final energy res. heat. - Ref vs. Clim

Final energy car sector - Ref vs. Clim

Introduction

Scenario analysis

Conclusion and Outlook

References
Nuclear phase-out under climate constraint

Primary energy supply

Primary energy - Clim. vs. Clim.+NoNuc

Graph showing the primary energy supply from 2010 to 2050 for different scenarios: Ref, Clim, and Clim + NoNuc. The graph compares the energy supply from various sources including Geo, Solar, Wind, Biomass, Hydro, Nuclear, Gas, Oil, and Coal. The y-axis represents PJ (petajoules) ranging from 0 to 1200, and the x-axis represents years from 2010 to 2050.
Electricity supply

Electricity gen. - Clim. vs. Clim + NoNuc

- Solar
- Wind
- Biomass CHP
- NGA CHP
- NGA CC
- NGA CC CCS
- Nuclear
- Hydro
- Other
CO\textsubscript{2} emissions

CO\textsubscript{2} emissions - \textit{Clim vs. Clim+NoNuc}

- Million tons of CO\textsubscript{2}
- Years: 2010, 2020, 2035, 2050
- Categories: Electricity, Transport, Residential, Industry, Service, Agriculture, Upstream
Nuclear phase-out under climate constraint

Final energy in residential heating and car sector

Final energy res. heat. - Clim vs. Clim+NoNuc

Final energy car sector - Clim vs. Clim+NoNuc

- **Savings**
- **Electricity**
- **District heat**
- **Natural gas**
- **Oil**
- **Biomass**

- **Battery**
- **Hydrogen**
- **Natural gas**
- **Gasoline**
- **Diesel**

- **Ref Clim Clim + NoNuc**
Electricity supply

Electricity gen. - **CCS in nuclear replacement and nuclear phase-out**
Final energy in residential heating and car sector

Final energy res. heat. - CCS w/ & w/o Nuclear

- **2010**: Ref, Clim + NoNuc, Clim + NoNuc + CCS
- **2020**, **2035**, **2050**: Savings, Electricity, District heat, Natural gas, Oil

Final energy car sector - CCS w/ & w/o nuclear

- **2010**: Ref, Clim + NoNuc, Clim + NoNuc + CCS
- **2020**, **2035**, **2050**: Battery, Hydrogen, Natural gas, Diesel, Gasoline
Alternative CO₂-reduction pathways

CO₂-emissions

CO₂ emissions - CO2 reduction pathways

CO₂ emissions - CO2 reduction pathways with CCS

Introduction

Scenario analysis

Conclusion and Outlook

References
System costs

Incremental total discounted system costs (rel. to Ref)

- no CCS
- CCS

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Ref</th>
<th>Clim</th>
<th>Clim + NoNuc</th>
<th>Cumul A + NoNuc</th>
<th>Cumul B + NoNuc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental costs</td>
<td>0.0%</td>
<td>0.5%</td>
<td>1.0%</td>
<td>1.5%</td>
<td>2.0%</td>
</tr>
</tbody>
</table>

Notes:
- Ref Clim Clim +
- NoNuc
- Cumul A + NoNuc
- Cumul B + NoNuc
Summary and conclusion

- Changes over time across entire energy system (supply and end-use). Climate- and nuclear policy constraints have system-wide effects (e.g., interplay between end-use and power sectors).

- Car sector: Trends towards higher efficiency (across all scenarios) and low carbon intensity (climate scenarios). However, fossil fuels will play a major role during the next 40 years.

- Residential heating: Implementation of energy saving options and low carbon heating systems attractive across a wide range of scenarios (with and without climate targets).
New renewables become attractive towards the end of time horizon. Climate targets and nuclear phase-out promote earlier deployments.

CCS only attractive under nuclear phase-out and stringent climate targets. First, new renewables are deployed.

CCS has effects on end-use sectors:
- Residential heating: Electrification of energy system → more heat pumps, less saving measures
- Car sector: Decarbonisation of electricity sector → lower efficiency and more fossil fuels in car sector

Costs: Nuclear phase-out → increase in system costs. CCS could reduce costs for climate mitigation under nuclear constraint (dependent on stringency of climate target).
Outlook

- Improvements and extension of technology detail in services and industrial sectors (including energy efficiency options)
- Sensitivity analysis on crucial model input parameters (technology costs, discount rate)
- Extension of CCS module in Swiss MARKAL model and analysis of additional CCS scenarios
- Energy service demand update (to be implemented in Swiss MARKAL and Swiss TIMES models)

Thank you for your attention

Acknowledgements:
Prof. A. Wokaun, Dr. S. Hirschberg, Dr. H. Turton
Members of Energy Economics Group, Laboratory for Energy Systems Analysis
CARMA (Carbon management in power generation) - Project