Multistage stochastic optimization of power dispatch and multiperiod duality of CVaR

Martin Densing ¹ János Mayer ²

¹Energy Economics Group, Paul Scherrer Institute, Switzerland

²Institute for Business Administration, University of Zurich

20. Aug. 2012

- 1 Simple models without constraints on risk: Exact solution
- 2 Modeling the hourly trading of electricity on a monthly time scale
 - Occupation Times of an Ornstein–Uhlenbeck Process
 - Futures, Demand
- Incorporation of multiperiod risk measurement
 - Recursive extension of CVaR
 - Extension of CVaR with stopping times
- 4 Case Study

Power plant optimization under risk

Optimal control problem: How to dispatch over several months? Decision criteria: Maximize expected financial profit, under a constraint on financial risk (Mean-risk optimization)

Adaption of decision over time: Multiperiod model (Scenario tree)

Single-period (steady-state) pumped-storage plant model

- No constraint on risk; constraint on water-level in expectation
- $S \in L^1_+(\Omega, \mathcal{F}, \mathbb{P})$ electricity spot price (EUR/MWh), continuous df
- $u^{\pm} : \mathbb{R}_+ \to \mathbb{R}_+$ ctrl-functions, $u^{\pm}(S)$: turbined/pumped water (MWh)
- c ∈ (0,1): efficiency of pumping
- Maximal capacity, initial-, minimal-water-level: $u^+_{
 m max} > \mathit{I}_0 \mathit{I}_{
 m min} > 0$

$$\max_{u^{\pm}} \mathbb{E} \Big[Su^{+}(S) - \frac{1}{c}Su^{-}(S) \Big],$$

s.t.
$$\begin{cases} I_{0} - \mathbb{E} \big[u^{+}(S) - u^{-}(S) \big] \ge I_{\min}, \\ 0 \le u^{\pm}(s) \le u_{\max}^{\pm} \quad \forall s \in \mathbb{R}_{+}. \end{cases}$$

Single-period (steady-state) pumped-storage plant model

- No constraint on risk; constraint on water-level in expectation
- $S \in L^1_+(\Omega, \mathcal{F}, \mathbb{P})$ electricity spot price (EUR/MWh), continuous df
- $u^{\pm} : \mathbb{R}_+ \to \mathbb{R}_+$ ctrl-functions, $u^{\pm}(S)$: turbined/pumped water (MWh)
- $c \in (0,1)$: efficiency of pumping
- Maximal capacity, initial-, minimal-water-level: $u^+_{
 m max} > \mathit{I}_0 \mathit{I}_{
 m min} > 0$

$$\max_{u^{\pm}} \mathbb{E} \Big[Su^+(S) - \frac{1}{c} Su^-(S) \Big],$$

s.t.
$$\begin{cases} I_0 - \mathbb{E} \big[u^+(S) - u^-(S) \big] \ge I_{\min}, \\ 0 \le u^{\pm}(s) \le u_{\max}^{\pm} \quad \forall s \in \mathbb{R}_+. \end{cases}$$

• Optimal solution: $\hat{u}^+(S) = u^+_{\max} \mathbb{1}_{\{S \ge q\}}, \quad \hat{u}^-(S) = u^-_{\max} \mathbb{1}_{\{S \le cq\}}$

Single-period (steady-state) pumped-storage plant model

- No constraint on risk; constraint on water-level in expectation
- $S \in L^1_+(\Omega, \mathcal{F}, \mathbb{P})$ electricity spot price (EUR/MWh), continuous df
- $u^{\pm} : \mathbb{R}_+ \to \mathbb{R}_+$ ctrl-functions, $u^{\pm}(S)$: turbined/pumped water (MWh)
- c ∈ (0,1): efficiency of pumping
- Maximal capacity, initial-, minimal-water-level: $u^+_{
 m max} > \mathit{I}_0 \mathit{I}_{
 m min} > 0$

$$\max_{u^{\pm}} \mathbb{E} \Big[Su^+(S) - \frac{1}{c} Su^-(S) \Big],$$

s.t.
$$\begin{cases} l_0 - \mathbb{E} \big[u^+(S) - u^-(S) \big] \ge l_{\min}, \\ 0 \le u^{\pm}(s) \le u_{\max}^{\pm} \quad \forall s \in \mathbb{R}_+. \end{cases}$$

- Optimal solution: $\hat{u}^+(S) = u^+_{\max} \mathbb{1}_{\{S \ge q\}}, \quad \hat{u}^-(S) = u^-_{\max} \mathbb{1}_{\{S \le cq\}}$
- $u_{\max}^- = 0 \Rightarrow \text{Optimal objective value} = -(l_0 l_{\min})\text{CVaR}_{\frac{l_0 l_{\min}}{u_{\max}^+}}[-S]$
- $c = 1 \Rightarrow$ Newsvendor problem

 \rightarrow multiperiod extensions possible

Issue: Hourly variations of electricity price

- Generally, more detailed models are only numerically solvable on a <u>scenario tree</u>.
- Trading should take advantage of variations in electricity price:

Issue: Hourly variations of electricity price

- Generally, more detailed models are only numerically solvable on a <u>scenario tree</u>.
- Trading should take advantage of variations in electricity price:

 \rightarrow Multi-stage stochastic programming problem on hourly time scale \rightarrow Curse of dimensionality: Mid- and long-term models not solvable

M. Densing, J. Mayer

Dynamics of each quantity is modeled on time scale where relative changes are sufficiently large (from the application point of view):

Small time scale: "Hourly"

- Dispatch decisions for production/pumping
- Hourly to weekly variations of spot price
- Hourly water inflow (depends on weather)

Large time scale: "Monthly"

- State of the plant, i.e. relative variations of
 - Cumulative profit-loss
 - Water level of reservoir
- Seasonal variations of spot price
- Seasonal water inflow (winter vs. summer)

Mean-risk optimization model of hydropower plant

- Monthly time steps for the evolution of water-level and profit: $t = 0, 1, \dots, T$
- Electricity price: $(S_{t+\frac{h}{H}})_{h=1,\dots,H}$, changes hourly
- $u_t^{\pm}(S_{t+\frac{h}{H}},\dots) \in \mathbb{R}_+$: production/pumping control variables

$$\max_{\substack{0 \le u^{\pm} \le u_{\max}^{\pm}}} \mathbb{E}[X_T],$$

s.t.
$$\begin{cases} R_0^{(X_0, \dots, X_T)} \ge \rho_{\min}, \\ (L_t, P_t) \in \mathcal{X}_t, \quad t = 0, \dots, T. \end{cases}$$

- L_t : water level (feasible in every scenario, monthly stochastic inflow)
- *P_t*: cumulative profit-and-loss
- X_t : production value := P_t + weight-factor × expected usable water • $R_0^{(X_0,...,X_T)} \in \mathbb{R}$: risk-adjusted value

Hourly time scale replaced by occupation times

 Continuous time. State equations of profit-and-loss and water-level over a month, formally with suitable f: ℝ → ℝ:

$$\int_{t}^{t+1} f(S_{t'}) dt' = \int_{0}^{\infty} f(s) dF_{t+1}(s), \quad F_{t+1}(s) := \int_{t}^{t+1} \mathbb{1}_{\{S_{t} \leq s\}} dt',$$

Stieltjes integral w.r.t. <u>occupation time</u> at level *s*: $F_{t+1}(s)$.

• Discrete time. discrete price levels $s_0 < s_1 < \cdots < s_N$,

$$\sum_{h=1}^{H} f\left(S_{t+\frac{h}{H}}\right) \approx H \sum_{i=1}^{N} f(\bar{s}_i) \left(F_{t+1}(s_i) - F_{t+1}(s_{i-1})\right), \quad \bar{s}_i \in (s_{i-1}, s_i),$$

$$F_{t+1}(s) := \frac{1}{H} \sum_{h=1}^{H} \mathbb{1}_{\{S_{t+\frac{h}{H}} \le s\}} \left(= \frac{\text{Fraction of hours where}}{\text{price} \le s} \right)$$

Futures contracts: modeled with occupation times

'Phelix' future (EEX): Exchange fixed with floating price during a period.

- Assumptions:
 - period of time: [t, t + 1)
 - cash settled
 - position amount: p (MW), initially fixed (hedging position)
- Profit-and-loss:

$$P^{\mathsf{fut}} = p \sum_{h=1}^{H} \left(q - S_{t+\frac{h}{H}} \right),$$

q (EUR/MWh): initially contracted future price.

Approximation with occupation times of electricity price:

$$P^{\mathrm{fut}} pprox p H \Big(q - \sum_{i=1}^{N} \overline{s}_i \big(F_{t+1}(s_i) - F_{t+1}(s_{i-1}) \big) \Big).$$

Demand: modeled with occupation times

 $(D_{t+\frac{h}{H}})_{h=1,2...}$: hourly stochastic demand process; *c*: retail selling price. Profit-and-loss over a time period:

$$P_t^{\text{dem}} = \sum_{h=1}^H D_{t+\frac{h}{H}} (c - S_{t+\frac{h}{H}}).$$

Approximation:

$$\begin{split} D_{t+\frac{h}{H}} &\approx \sum_{i=1}^{M} \bar{d}_{i} \mathbb{1}_{\{d_{i-1} < D_{t+\frac{h}{H}} \leq d_{i}\}}, \quad d_{0} < d_{1} \cdots < d_{M}, \ \bar{d}_{i} \in (d_{i-1}, d_{i}). \\ &\to \quad P_{t}^{\mathsf{dem}} \approx H \sum_{i,j=1}^{N,M} \bar{d}_{j} (c - \bar{s}_{i}) \Big(F_{t+1}(s_{i}, d_{j}) - F_{t+1}(s_{i-1}, d_{j-1}) \Big), \end{split}$$

with joint price-demand occupation time:

$$F_{t+1}(s,d) := \frac{1}{H} \sum_{h=1}^{H} \mathbb{1}_{\{S_{t+\frac{h}{H}} \leq s, D_{t+\frac{h}{H}} \leq d\}}.$$

Occupation times of Ornstein–Uhlenbeck (O–U) process

Goal: Dimensional reduction of stochastic vector of occupation times, $(F_t(s_0), \ldots, F_t(s_N))$ with N large: Principal Component Analysis (PCA).

Widely adopted (sub-)model of a spot price process $(S_{t'})_{t'\geq 0}$ in continuous time is the O–U process:

$$dS_{t'} = -\mu S_{t'} dt' + \sigma dW_{t'}, \qquad t' \in \mathbb{R}_+,$$

or standardized O–U process (after scaling of value and time):

$$dX_t = -X_t dt + dW_t, \qquad t \in \mathbb{R}_+.$$

Covariance of occupation time $F(\cdot) := \frac{1}{\tau} \int_{0}^{\tau} \mathbb{1}_{\{X_t \leq \cdot\}} dt$ to levels $x_1, x_2 \in \mathbb{R}$:

$$COV[F(x_1), F(x_2)] := \mathbb{E}[F(x_1)F(x_2)] - \mathbb{E}[F(x_1)]\mathbb{E}[F(x_2)].$$

Covariances of occupation times of O–U process

Ansatz: Moment-generating function in $s_1, s_2 \in \mathbb{R}_+$ [Feynman–Kac, 1949], $\mathbb{E}[e^{-s_1\tau F(x_1)-s_2\tau F(x_2)}] = e^{-\tau E(s_1,s_2)},$

 $E(s_1, s_2)$ is lowest eigenvalue of perturbed quantum harmonic oscillator:

$$\mathcal{H} = 1/4 \left(\partial^2 / \partial x^2 + x^2 \right) + s_1 \mathbf{1}_{\{x \le x_1\}} + s_2 \mathbf{1}_{\{x \le x_2\}}.$$

Perturbation analysis yields, $\tau \to \infty$:

$$COV[F(x_1), F(x_2)] = \frac{1}{\pi} \sum_{n=0}^{\infty} \frac{1}{2^{n+1}(n+1)(n+1)!} H_n(x_1) e^{-x_1^2} H_n(x_2) e^{-x_2^2},$$

 $H_n(\cdot)$ *n*th Hermite polynomial.

A functional principal component f with variance λ given by eigenvalue equation:

$$\int_{-\infty}^{\infty} COV[F(x_1), F(x_2)]f(x_2) dx_2 = \lambda f(x_1).$$

Fredholm equation of second kind \rightarrow numerical solutions

Functional PCA of occupation times of O–U process

M. Densing, J. Mayer

PCA of occupation times of empirical electricity prices

Monthly occupation times from hourly electricity prices (EEX market, 2003-2005). Principal component analysis:

PCA of occupation times of electricity price (cont.)

NordPool market, 2008-2010, weekly time steps, constant price steps:

Coefficients

 \rightarrow Principal-component factor model

Mean-risk optimization with risk-adjusted values

Risk constraint for the financial value process (X_0, \ldots, X_T) by a lower bound on a coherent risk-adjusted value $R_0^{(X_0, \ldots, X_T)}$:

$$\max \mathbb{E}[X_T], \qquad \max \mathbb{E}[X_T], \qquad \max \mathbb{E}[X_T],$$

s.t.
$$\begin{cases} R_0^{(X_0,...,X_T)} \ge \rho_{\min}, \\ \cdots \end{cases} \qquad \stackrel{\text{equiv.}}{\longleftrightarrow} \quad \text{s.t.} \begin{cases} r_0 \ge \rho_{\min}, \\ \mathbf{A}(X_0,\dots,X_T,r_0,\dots)^\top \le \mathbf{0}, \\ r_0 \in \mathbb{R}, & \cdots \end{cases}$$

1. Example:

Conditional Value-at-Risk [Acerbi and Tasche, 2001; Pflug, 2007]

 $(\Omega,\mathbb{P},\mathcal{F});\ X_{\mathcal{T}}\in L^{\infty};\ lpha\in(0,1):$

$$\mathsf{CVaR}^{\alpha}[X_{\mathcal{T}}] := \min \mathbb{E}_{\mathbb{Q}}[X_{\mathcal{T}}] = \max_{q \in \mathbb{R}} \left(q - \frac{1}{\alpha} \mathbb{E}[(q - X_{\mathcal{T}})^+] \right).$$
$$\left\{ \mathbb{Q} \colon \frac{d\mathbb{Q}}{d\mathbb{P}} \leq \frac{1}{\alpha} \right\}$$

2. Example: Time consistent risk-adjusted values

Finite setting: Scenario tree \leftrightarrow Filtration $(\mathcal{F}_t)_{t=0,...,T}$ Recursively defined risk-adjusted value process [Artzner et al., 2007]:

$$\mathcal{R}_t^{(X_0,\ldots,X_T)} := \begin{cases} X_T, & \text{if } t = T, \\ \min \Big(X_t, \ \min_{\mathbb{Q} \in \mathcal{P}^\alpha} \mathbb{E}_{\mathbb{Q}}[\mathcal{R}_{t+1}^{(X_0,\ldots,X_T)} | \mathcal{F}_t] \Big), & \text{if } t = 0,\ldots, T-1. \end{cases}$$

Proposition (Densing and Mayer, 2012)

If \mathcal{P}^{α} is suitably chosen, then $R_{0}^{(X_{0},...,X_{T})} = \max R_{0},$ s.t. $\begin{cases}
R_{t} \leq X_{t}, & t = 0, \dots, T, \\
R_{t} \leq Q_{t} - \frac{1}{\alpha} \mathbb{E}[Z_{t+1}|\mathcal{F}_{t}], & t = 0, \dots, T-1, \\
Z_{t} \geq Q_{t-1} - R_{t}, & Z_{t} \geq 0, & t = 1, \dots, T, \\
R_{t}, Q_{t}, Z_{t} \quad \mathcal{F}_{t}\text{-measurable } \forall t.
\end{cases}$

3. Example: Stopped CVaR

- Stopping time $\tau : \Omega \to \{0, 1, \dots, T\}$, with $\{\tau = t\} \in \mathcal{F}_t \ \forall t$
- $X_{\tau}(\omega) := X_{\tau(\omega)}(\omega)$
- \mathcal{T} : set of stopping times

Proposition (Densing, 2012, forthcoming)

$$\begin{split} \min_{\tau \in \mathcal{T}} CVaR^{\alpha}[X_{\tau}] &= \max \ R_0, \\ \text{s.t.} \begin{cases} R_t \leq \mathbb{E}[R_{t+1}|\mathcal{F}_t], & t = 0, \dots, T-1, \\ R_t \leq q - \frac{1}{\alpha}Z_t, & t = 0, \dots, T, \\ Z_t \geq q - X_t, & t = 1, \dots, T, \\ Z_t \geq 0, & t = 1, \dots, T, \\ q \in \mathbb{R}, & R_t, Z_t \ \mathcal{F}_t\text{-measurable } \forall t. \end{split}$$

Profit distribution over time (5-stage tree)

Model-runs with different risk measurement:

- CVaR (on final values)
- Extension of CVaR recursively
- Extension of CVaR with stopping times

profit distribution function

 \rightarrow differences in intermediate times for cumulated profit-and-loss

Mean-risk frontier: effect of futures, of stochastic inflow

- -: Deterministic water inflow into reservoir
- —: Stochastic water inflow (\rightarrow reduction of the expected final value)

Selected references

Energy optimization with SLP (abbreviated titles):

- Eichhorn, Heitsch, Römisch: SP of elect. portfolios (2010)
- Güssow, Frauendorfer: MSP for power systems (2002)
- Hochreiter, Wozabal: MSP for risk-optimal elect. portfolios (2010)
- Kovacevic, Wozabal: Semiparam. model for elect. prices (2012)
- **Vespucci et al.:** SP for the daily coordination of pumped storage and wind (2012)
- Densing: Occupation Times of O-U process (Physica A, 2012)
- **Densing:** SP for Hydro-Power Dispatch Planning: Exact Solutions and Occupation Times (submitted)

Coherent Risk Measurement:

- Pflug, Pichler: Decomposition of Risk Measures (2011)
- **Densing, Mayer:** MSP with Time-Consistent Risk Constraints (OR 2011 Proc., 2012)

Conclusion

- Simple models of pumped-storage plants are exactly solvable (bang-bang solutions)
- Hourly trading in mid- and long-term models possible (← principal component analysis of occupation times of Ornstein–Uhlenbeck process)
- Multiperiod constraints on risk can be incorporated

