Stochastic programming formulations of coherent multiperiod risk measurement

Martin Densing

Paul Scherrer Institute (PSI), Switzerland

Vilnius, 9. July 2012

PAUL SCHERRER INSTITUT

1 Risk-adjusted value CVaR

Multiperiod Extensions:

- **2** Recursive extension of CVaR \rightarrow Coherency, Time Consistency
- $\textbf{3} CVaR on the product space \rightarrow Coherency$

Single-period risk-adjusted values, CVaR

- Probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- Financial value $X \in L^{\infty}$

Representation of coherent risk-adjusted values [Artzner et al., 2007]:

$$\pi[X] = \inf_{\mathbb{Q}\in\mathcal{P}} \mathbb{E}_{\mathbb{Q}}[X],$$

with (convex) set \mathcal{P} of probability measures on (Ω, \mathcal{F}) .

Single-period risk-adjusted values, CVaR

- Probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- Financial value $X \in L^\infty$

Representation of coherent risk-adjusted values [Artzner et al., 2007]:

$$\pi[X] = \inf_{\mathbb{Q}\in\mathcal{P}} \mathbb{E}_{\mathbb{Q}}[X],$$

with (convex) set \mathcal{P} of probability measures on (Ω, \mathcal{F}) .

Special case: Conditional-Value-at-Risk

 $\alpha \in (0, 1)$; finitely discrete \mathcal{F} , realizations x_1, \ldots, x_n , probabilities $p_1, \ldots, p_n > 0$:

$$\mathsf{CVaR}^{\alpha}[X] := \min \sum_{i=1}^{n} q_i x_i.$$

$$\left\{ 0 \leq \frac{q_i}{p_i} \leq \frac{1}{\alpha} \left| \sum_{i=1}^{n} q_i = 1, \ q_i \geq 0 \right. \right\}$$

Single-period risk-adjusted values, CVaR

- Probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- Financial value $X \in L^\infty$

Representation of coherent risk-adjusted values [Artzner et al., 2007]:

$$\pi[X] = \inf_{\mathbb{Q}\in\mathcal{P}} \mathbb{E}_{\mathbb{Q}}[X],$$

with (convex) set \mathcal{P} of probability measures on (Ω, \mathcal{F}) .

Special case: Conditional-Value-at-Risk

 $\alpha \in (0,1)$; finitely discrete \mathcal{F} , realizations x_1, \ldots, x_n , probabilities $p_1, \ldots, p_n > 0$:

$$\begin{aligned} \mathsf{CVaR}^{\alpha}[X] &:= \min \sum_{i=1}^{n} q_i x_i. \\ \left\{ 0 \leq \frac{q_i}{p_i} \leq \frac{1}{\alpha} \left| \sum_{i=1}^{n} q_i = 1, \ q_i \geq 0 \right. \right\} \end{aligned}$$

Generally:
$$\mathsf{CVaR}^{\alpha}[X] := \min \mathbb{E}_{\mathbb{Q}}[X]$$

 $\left\{ \mathbb{Q} \left| \frac{d\mathbb{Q}}{d\mathbb{P}} \leq \frac{1}{\alpha} \right. \right\}$

Time-inconsistency of CVaR (for final values)

- Binary scenario tree with random values X and Y on terminal nodes
- Terminal nodes are equiprobable
- $\alpha = 1/2$; CVaR^{α}[·] conditional on non-terminal nodes n_0, n_1, n_2 :

There is only a single tree (duplicated for readability).

Today (i.e. n_0), Y has larger risk-adjusted value

Time-inconsistency of CVaR (for final values)

- Binary scenario tree with random values X and Y on terminal nodes
- Terminal nodes are equiprobable
- $\alpha = 1/2$; CVaR^{α}[·] conditional on non-terminal nodes n_0, n_1, n_2 :

There is only a single tree (duplicated for readability).

Today (i.e. n_0), Y has larger risk-adjusted value; tomorrow (n_1 and n_2), X has larger risk-adjusted value.

Time-inconsistency of CVaR (for final values)

- Binary scenario tree with random values X and Y on terminal nodes
- Terminal nodes are equiprobable
- $\alpha = 1/2$; CVaR^{α}[·] conditional on non-terminal nodes n_0, n_1, n_2 :

There is only a single tree (duplicated for readability).

Today (i.e. n_0), Y has larger risk-adjusted value; tomorrow (n_1 and n_2), X has larger risk-adjusted value. \rightarrow mean-risk criterium is no cure

Monte-Carlo analysis of time-consistency

- Tree with 2 time steps (as before)
- Equiprobable terminal nodes (as before)
- X and Y values randomly sampled from U[0, 1]
- Counts of time consistency (for samples yielding an order over time):

branches (at non-terminal nodes)	α	X,Y time-consistent w.r.t. CVaR
2	0.5	95%
2	0.4	98%
2	0.3	99%
4	0.2	99%
4	0.1	99%
8	all	$\sim 100\%$

Multiperiod extension of CVaR: stepwise-CVaR

- Time steps: $t = 0, 1, \ldots, T$
- Finite setting: Gain of information given by scenario tree

Example: $\mathbb{P} \cong (p_{11}, p_{12}, p_{21}, p_{22}, p_{23}, p_{24})$

Multiperiod extension of CVaR: stepwise-CVaR

- Time steps: $t = 0, 1, \ldots, T$
- Finite setting: Gain of information given by scenario tree
- Identification: probability measure P, Q, ...
 [^] = transition probabilities
 on the tree
 *p*₂₁

Example:
$$\mathbb{P} \cong (p_{11}, p_{12}, p_{21}, p_{22}, p_{23}, p_{24})$$

Def.: Stepwise-CVaR set \mathcal{P}^{α} of probability measures:

$$\mathcal{P}^lpha := \left\{ (q_{11}, q_{12}, q_{21}, q_{22}, q_{31}, q_{32}) \ \Big| \ rac{q_{ij}}{p_{ij}} \leq rac{1}{lpha}, \quad \sum_{j=1}^2 q_{ij} = 1, \ q_{ij} \geq 0 \quad orall i, j
ight\}$$

Risk-adjusted value for stochastic processes

- Notation: scenario tree $\hat{=}$ finite filtration $(\mathcal{F}_t)_{t=0,...,T}$
- Stepwise-CVaR set \mathcal{P}^{lpha}
- $(X):=(X_t)_{t=0,...,T}$ stochastic process of values, $X_t \mathcal{F}_t$ -measurable $\forall t$

Risk-adjusted value process [Artzner et al., 2007]:

$$R_t^{(X_0,\ldots,X_T)} = R_t^{(X)} := \begin{cases} X_T, & \text{if } t = T, \\ \min\left(X_t, \inf_{\mathbb{Q} \in \mathcal{P}^\alpha} \mathbb{E}_{\mathbb{Q}}[R_{t+1}^{(X)} | \mathcal{F}_t]\right), & \text{if } t = 0,\ldots, T-1. \end{cases}$$

Risk-adjusted value for stochastic processes

- Notation: scenario tree $\hat{=}$ finite filtration $(\mathcal{F}_t)_{t=0,...,T}$
- Stepwise-CVaR set \mathcal{P}^{lpha}
- $(X):=(X_t)_{t=0,...,T}$ stochastic process of values, $X_t \mathcal{F}_t$ -measurable $\forall t$

Risk-adjusted value process [Artzner et al., 2007]:

$$R_t^{(X_0,\ldots,X_T)} = R_t^{(X)} := \begin{cases} X_T, & \text{if } t = T, \\ \min\left(X_t, \ \inf_{\mathbb{Q} \in \mathcal{P}^\alpha} \mathbb{E}_{\mathbb{Q}}[R_{t+1}^{(X)} | \mathcal{F}_t]\right), & \text{if } t = 0, \ldots, T-1. \end{cases}$$

*R*₀^(X) ∈ ℝ: risk-adjusted value measured at time *t* = 0
(*R*_t^(·))_{*t*=0,...,*T*} is coherent, and time-consistent (arbitrary *P* possible) → Def. on next slide Time-consistency preserves orderings over time:

$$R_t^{(X_1,...,X_T)} \ge R_t^{(X_1,...,X_{t-1},Y_t,...,Y_T)} \text{ a.s.} \Rightarrow R_0^{(X_1,...,X_T)} \ge R_0^{(X_1,...,X_{t-1},Y_t,...,Y_T)}$$

Coherency (multiperiod):

Example for
$$R_0^{(\cdot)}$$
, $(X + Y) := (X_t + Y_t)_{t=0,...,T}$:
(i) $R_0^{(X+Y)} \ge R_0^{(X)} + R_0^{(Y)}$, $\forall (X), (Y)$, adapted,
(ii) $R_0^{(\lambda X)} = \lambda R_0^{(X)}$, $\forall \lambda \ge 0, \lambda \in \mathbb{R}$,
(iii) $X_0 \le Y_0, \ldots, X_T \le Y_T$ a.s. $\implies R_0^{(X)} \le R_0^{(Y)}$,
(iv) $R_0^{(X+c)} = R_0^{(X)} + c \quad \forall c \in \mathbb{R}$.

Approach on product space of state and time

Previous slides: Recursive calculation → Coherency, Time Consistency
 Next: Extend CVaR formally to product space → Coherency

Approach on product space of state and time

Previous slides: Recursive calculation → Coherency, Time Consistency
 Next: Extend CVaR formally to product space → Coherency

Definition

Stopping time $\tau : \Omega \to \{0, 1, ..., T\}$, with $\{\tau = t\} \in \mathcal{F}_t \ \forall t$. \mathcal{T} : set of stopping times.

Example:

 $\tau: \Omega \to \{0, 1, 2, 3\}, \\ \Omega := n_1 \cap n_2 \cap n_3 \cap n'_3$

 $egin{array}{ll} \tau|_{n_2} &= 2, \ \tau|_{n_3} &= 3, \ \tau|_{n_3'} &= 3, \ \tau|_{n_3'} &= 3, \ \tau|_{n_1} &= 1. \end{array}$

 $X_{ au}(\omega) := X_{ au(\omega)}(\omega)$, for a process $(X_t)_{t=0,...,T}$

Submitted

- Time-consistent and a formal coherent extension of CVaR can be incorporated in multi-stage mean-risk problems
- Which properties of risk measurement are important in practice?

Selected References:

- Artzner et al.: Coherent Multiperiod Risk-Adjusted Values And Bellman's Principle (2007)
- Eichhorn, Römisch: Polyhedral Risk Measures in Stochastic Programming (2005)
- Kovacevic, Pflug: Are time consistent valuations information monotone? (2011)
- Pflug, Pichler: Decomposition of Risk Measures (2011)
- **Densing, Mayer:** Multiperiod Stochastic Optimization Problems with Time-Consistent Risk Constraints, OR Proceedings (2012)