

Mitigation, technological change and international technology spillovers

Adriana Marcucci and Hal Turton Energy Economics Group, Paul Scherrer Institut

International Energy Workshop

Stanford, 8th July 2011

2 Technology learning in MERGE

3 Scenarios analysis

Scenarios analysis 00000 000 00

- Technology learning in MERGE
 MERGE-ETL model
 - Technology spillovers

Scenarios analysis

- Technology deployment
- R&D expenditures
- GDP losses

Technological change

- $\rightarrow\,$ Important role in climate change mitigation
- \rightarrow 3 processes:
 - Learning-by-doing
 - Learning-by-searching
 - Technology spillovers

Technological change

- $\rightarrow\,$ Important role in climate change mitigation
- \rightarrow 3 processes:
 - Learning-by-doing
 - Learning-by-searching
 - Technology spillovers

Integrated assessment models

- \rightarrow Exogenous technology learning
- $\rightarrow\,$ Two parameter learning curves: "learning-by-doing" and "learning-by-searching"

echnology learning in MERGE

Scenarios analysis 00000 000 00

Technological change

- $\rightarrow\,$ Important role in climate change mitigation
- \rightarrow 3 processes:
 - Learning-by-doing
 - Learning-by-searching
 - Technology spillovers

Integrated assessment models

- $\rightarrow\,$ Exogenous technology learning
- $\rightarrow\,$ Two parameter learning curves: "learning-by-doing" and "learning-by-searching"
- → Generally do not account (Bosetti et al. (2008) modeled international R&D spillovers WITCH) or overestimate technology spillovers

2 Technology learning in MERGE

- MERGE-ETL model
- Technology spillovers

3 Scenarios analysis

- Technology deployment
- R&D expenditures
- GDP losses

Technology learning in MERGE MERGE-ETL model

Technology spillovers

3 Scenarios analysis

- Technology deployment
- R&D expenditures
- GDP losses

MERGE-ETL

- Enhanced version MERGE [Magne, Kypreos, Turton (2004)]
- Collective evolutionary process: technology clusters
 - Key components often used across different technologies

		Gasifier	Gas	Coal	Carbon capture		Wind	Solar
			turbine	balance	Pre	Post		
				of plant				
Electricity	gas-r		×					
	NGCC		×					
	NGCC (ccs)		×			×		
	IGCC	х		х				
	IGCC(ccs)	x		x	х			
	Solar							х
	hydro							
	wnd						х	

- Experience with one technology may benefit other technologies
- Learning global process:
 - Key components learn from global cumulative production and R&D expenditures.
 - Technologies are assumed to have full spillovers between all world regions.

For the *y*-key component:

Learning by doing

$$inv_y \propto CC_y^{-b_y}$$

where CC_y is the cumulative capacity; and b_y is the learning-by-doing index

Technology learning in MERGE

Scenarios analysi 00000 000 000

For the *y*-key component:

Learning by doing

$$inv_y \propto CC_y^{-b_y}$$

where CC_y is the cumulative capacity; and b_y is the learning-by-doing index

Learning by searching

$$inv_y \propto CC_y^{-b_y} CRD_y^{-c_y}$$

 CRD_y are cumulative research and development expenditures and c_y is the learning-by-searching index

Technology learning in MERGE

Scenarios analysis 00000 000 00

For the *y*-key component:

Learning by doing

$$inv_y \propto CC_y^{-b_y}$$

where CC_y is the cumulative capacity; and b_y is the learning-by-doing index

Learning by searching

$$inv_y \propto CC_y^{-b_y} CRD_y^{-c_y}$$

 CRD_y are cumulative research and development expenditures and c_y is the learning-by-searching index

Assumes 100% spillovers among the regions

Technological change and climate mitigation

Technology learning in MERGE

Scenarios analysi: 00000 000 000

- Technology learning in MERGE
 MERGE-ETL model
 - Technology spillovers

3 Scenarios analysis

- Technology deployment
- R&D expenditures
- GDP losses

Technology spillovers in MERGE

- Region-to-region spillovers.
- International transfers of experience and knowledge using exogenous absorption parameters
- Innovators
 and imitators

Technology learning in MERGE

000

Scenarios analys 00000 000 00

Two factors learning curve with spillovers

Absorption parameter

Technology learning in MERGE

Scenarios analys 00000 000 00

Two factors learning curve with spillovers

Absorption parameter

• For the *r* region and *y*-key component:

$$inv_{y,r} \propto \left(\sum_{i\in R} a_{i,r} CC_{y,i}\right)^{-b_y} \left(\sum_{i\in R} a_{i,r} CRD_{y,i}\right)^{-c_y}$$

Technological change and climate mitigation

Technology learning in MERGE

Scenarios analysi 00000 000 00

2 Technology learning in MERGE

- MERGE-ETL model
- Technology spillovers

3 Scenarios analysis

- Technology deployment
- R&D expenditures
- GDP losses

Scenario description

Technology learning in MERGE

Scenarios analysis

2 Technology learning in MERGE

- MERGE-ETL model
- Technology spillovers

3 Scenarios analysis

- Technology deployment
- R&D expenditures
- GDP losses

Wind technology cost

0% spillovers

BAU: 24-30 % higher cost, large regional differences
400ppm: 15 % higher cost, smaller regional differences

Scenarios analysis

Wind technology cost

Spillovers within each group

Cross point imitators and innovators:

- learning-by-searching vs. learning-by-doing
- Earlier in the 400ppm case

Scenarios analysis OOOOO OOO OO

Wind technology cost

Inter-regional spillovers

• BAU: 15% difference; 400ppm: 6%

 No cross point: importance of spillovers from learning-by-doing from imitators to innovators

Technological change and climate mitigation

echnology learning in MERGE

Scenarios analysis

Technology mix

400ppm

• Reduction electricity demand: efficiency improvements

Fechnology learning in MERGE

Scenarios analysis

Technology mix

400ppm

 Reduction electricity demand: efficiency improvements spillovers?

Fechnology learning in MERGE

Scenarios analysis

Technology mix

400ppm

 Reduction electricity demand: efficiency improvements spillovers?

• Technologies with high share of learning component (wind vs. CCS)

Technological change and climate mitigation

echnology learning in MERG

Scenarios analysis OOOOO OOO OOO OOO

2 Technology learning in MERGE

- MERGE-ETL model
- Technology spillovers

3 Scenarios analysis

- Technology deployment
- R&D expenditures
- GDP losses

Mostly of the R&D done by the innovators

Technology learning in MERGE

Scenarios analysis

Imitators do their own research

Technology learning in MERGE

Scenarios analysis

- Innovators behave like 0% scenario: not need to help imitators
- Imitators behave like 100% case: spillovers from the other regions (learning-by-doing)

echnology learning in MERGE

Scenarios analysis

- Innovators reduce their R&D efforts compared to the 100% scenario
- Imitators do not have an incentive to research: spillovers from innovators and small effect on global learning

Technological change and climate mitigation

Fechnology learning in MERGE

Scenarios analysis

Discounted R&D expenditures

- Innovators all R&D efforts with 100% and regional spillovers
- China and India: research development in regional case
- Need of technology transfer to accomplish the needed R&D spillovers

2 Technology learning in MERGE

- MERGE-ETL model
- Technology spillovers

3 Scenarios analysis

- Technology deployment
- R&D expenditures
- GDP losses

GDP losses

• No learning spillovers \rightarrow higher GDP losses

GDP losses

• No learning spillovers \rightarrow higher GDP losses

GDP losses

- No learning spillovers \rightarrow higher GDP losses
- Less GDP losses when regional spillovers

echnology learning in MERGE

Scenarios analysis

2 Technology learning in MERGE

- MERGE-ETL model
- Technology spillovers

3 Scenarios analysis

- Technology deployment
- R&D expenditures
- GDP losses

Important linkages between learning spillovers, technology deployment and climate change mitigation.

Scenarios analysis 00000 000 000

Important linkages between learning spillovers, technology deployment and climate change mitigation.

• Less technology cost reductions due to learning when using regional instead of global spillovers

Important linkages between learning spillovers, technology deployment and climate change mitigation.

- Less technology cost reductions due to learning when using regional instead of global spillovers
- Learning-by-doing has a crucial role for imitators

Important linkages between learning spillovers, technology deployment and climate change mitigation.

- Less technology cost reductions due to learning when using regional instead of global spillovers
- Learning-by-doing has a crucial role for imitators
- Global climate mitigation target
 - $\rightarrow\,$ Lower energy demand. Important role for energy efficiency
 - $\rightarrow \mbox{ Global technology learning might overestimate spillover effect } \label{eq:global} Importance of technology transfer \end{tabular}$

• Different absorption parameters: LBD and LBS

Scenarios analysis 00000 000 000

- Different absorption parameters: LBD and LBS
- Costs or benefits of getting/giving knowledge to the pool incentives for technology transfer

Scenarios analysis 00000 000 00

- Different absorption parameters: LBD and LBS
- Costs or benefits of getting/giving knowledge to the pool incentives for technology transfer
- Spillovers in energy efficiency measures

Thank you for your attention