
Swiss Light Source - SLS
COVID-19: SLS is in full 24/7 user operation
The SLS is in full 24/7 user operation with safety measures against COVID-19 infections in place. Currently international business travel is still restricted and thus not all users can reach Switzerland. Please see below or on the user office pages further information entitled 'Important information for SLS and SwissFEL users'.
The Swiss Light Source (SLS) at the Paul Scherrer Institut is a third-generation synchrotron light source. With an energy of 2.4 GeV, it provides photon beams of high brightness for research in materials science, biology and chemistry.
SLS is part of the Photon Science Division. The facility has world-leading instruments at its beamlines for unraveling the structure of proteins, for in-depth 3D imaging of matter, and for investigating how the electrons of atoms and molecules keep matter together and render it properties such as magnetism and electron conduction at zero resistance (‘superconductivity’).
- The beamlines for protein structure determination are intensively used by pharmaceutical companies in Switzerland and abroad. SLS is also leading in the development of pixelated X-ray detectors. The company DECTRIS has been spun off from these activities.
- In something as complex as a human being structures and processes occur on all length scales from macroscopic down to atomic dimensions. The SLS host a variety of techniques to address problems on different length scales.
- Materials with new, functional properties are the scope of intense research, since they offer fascinating insights into fundamental interactions and hold promise for advanced technologies which is highly needed. The SLS host world-leading capability in advanced materials spectroscopy ranging from photoemission spectroscopy, over spectromicroscopy to different X-ray absorption, scattering and diffraction techniques.
- A further focus is to provide advanced micro- and nanofabrication technologies to academic and industrial users, in particular in the area of polymer nanotechnology.
Current operation status
Latest Scientific Highlights and News
HERCULES SCHOOL 2021 AT PSI
During the week of March 15 – 19, we had the pleasure to welcome 20 international PhD students, PostDocs and assistant professors at PSI, taking part in the first virtual HERCULES SCHOOL on Neutrons & Synchrotron Radiation.
Looking inside airborne particles for the chemistry responsible for their adverse health effects.
Chemical changes inside of breathable airborne particles can cause reactive oxygen species (ROS) and carbon centered radicals (CCRs) to form, which are harmful to our bodies and induce oxidative stress in lungs. Using X-ray spectromicroscopy at the PolLux beamline and mimicking the environmental and sunlit conditions aerosol particles experience in the atmosphere near the Earth Surface, it was recently found that highly viscous organic particles with low water content can attain high concentrations of ROS and CCRs that persist over long times. Natural particles like these will occur in ambient humidity below 60% and effectively trap ROS and CCRs inside that react when exposed to light.
Buried moiré supercells through SrTiO3 nanolayer relaxation
The authors find that an annealing process can create a highly ordered network of two-dimensional line defects at the buried interface between a relaxed film and its substrate. The low dimensional network spacing is directly related to the lattice mismatch and can correspondingly be tuned by the choice of substrate.