Energie und Klima
Die Energieforschung am PSI konzentriert sich auf Prozesse, die in nachhaltigen und sicheren Technologien für eine möglichst CO2-freie Energieversorgung eingesetzt werden können. Wichtiger Schwerpunkt sind erneuerbare Energien. Auf der Versuchsplattform ESI (Energy System Integration) können Forschung und Industrie Lösungsansätze zur Einbindung erneuerbarer Energien in das Energiesystem testen. Ein weiterer Schwerpunkt des Bereichs ist die sichere Anwendung von Kernenergie. Diese Aktivitäten werden ergänzt durch Analysen zur ganzheitlichen Betrachtung von Energiesystemen. In der Klima- und Umweltforschung werden chemische Prozesse in der Atmosphäre untersucht.
Mehr dazu unter Überblick Energie und Klima
Die Vermessung des ökologischen Fussbadrucks
Mit ecoinvent betreibt das Paul Scherrer Institut zusammen mit Partnern an der ETH Zürich, der ETH Lausanne, der Empa und am Agroscope seit über 10 Jahren die weltweit führende Datenbank für Ökobilanzen. Die jüngst herausgegebene dritte Version von ecoinvent versammelt neue Daten in Bereichen wie Stromproduktion, Landwirtschaft, Verkehr, Bergbau und Chemikalien. Im für Lebenszyklusanalysen bedeutenden Stromsektor umfasst die Datenbank neu über 80 Prozent der globalen Produktion. Auch zuvor nicht berücksichtigte Technologien wie die Tiefengeothermie finden fortan in ecoinvent Berücksichtigung. Das Ergebnis sind präzisere ökologische Bewertungen von Produkten und Dienstleistungen
Mit gebündelter Sonnenenergie zu reinem Recycling-Zink
Forscher des Paul Scherrer Instituts PSI haben ein solarthermisches Verfahren zur Gewinnung des technologisch wichtigen Wertstoffes Zinkoxid aus Zink-Recyclingprodukten im Labormassstab demonstriert. Der Reinheitsgrad des solaren Produktes übertrifft denjenigen, den man auf der industriell etablierten Route erhält
Physik im Gitter: Strömungen auf engem Raum besser verstehen
Die Gitter-Boltzmann-Methode entstand Anfang der 1990er Jahre als eine Berechnungsmethode, um die Boltzmann-Gleichung numerisch, also mithilfe von Computern zu lösen. Forscher des Paul Scherrer Instituts PSI erweitern nun mit einem neuen Modell den Anwendungsbereich der Gitter-Boltzmann-Methode auf komplexere Situationen. Mit ihrer Arbeit eröffnen sie den Zugang zu realitätsnäheren Computersimulationen von vielen technischen Vorgängen, wie sie sich etwa in den meist mikroporösen Strukturen technischer Katalysatoren, in Dieselpartikelfiltern, Verbrennungsmikroreaktoren oder Brennstoffzellen abspielen.
Aerosolmessungen: PSI-Forscher helfen, regionale Lücken auf dem Globus zu schliessen
Aerosole sind kleine Feinstaubpartikel in der Atmosphäre. Sie können durch direkte Absorption oder Streuung von Sonnenstrahlung oder als Keime für die Entstehung von Wolken das Weltklima beeinflussen. Das Bestreben von Klimaforschern, diese Effekte genau zu quantifizieren und somit die Klimamodelle zu verbessern, wird aber durch das Fehlen eines den gesamten Globus umspannenden Netzwerks von Aerosolmessstationen erschwert. Forscher des Paul Scherrer Instituts PSI engagieren sich im Projekt CATCOS (Capacity Building and Twinning for Climate Observing Systems), um kontinuierliche Aerosolmessungen dort zu ermöglichen, wo die Lücken am grössten sind.
Wie Gesteinsporen im Tiefenlager zuwachsen
Chemische Reaktionen, so viel steht fest, werden die Beschaffenheit des Tiefenlagers sowie des umliegenden Gesteins (Tongestein) verändern. Aber in welchem Ausmass und mit welchen Auswirkungen auf die Sicherheit? Forscher des Paul Scherrer Instituts versuchen diese Frage mit Hilfe einer Kombination von Experimenten und Computersimulationen zu beantworten.
Experimente in der Wolke – Wie Russ das Klima beeinflusst
PSI-Forscher Martin Gysel erhält angesehene europäische Förderung (ERC Consolidator Grant) für Untersuchungen zur Rolle von Russ für Wolkenbildung und Atmosphärenerwärmung
Das Paul Scherrer Institut leitet zwei der Energie-Kompetenzzentren des Bundes
Als Bestandteil der Energiestrategie 2050 haben Bund und Parlament eine verstärkte Förderung der Energieforschung in der Schweiz beschlossen. Dazu gehört die Einrichtung von sieben interuniversitär vernetzten Kompentenzzentren (Swiss Competence Centers in Energy Research SCCER). In den SCCER sollen sich Institutionen aus dem ETH-Bereich, den Universitäten und den Fachhochschulen gemeinsam mit Industriepartnern zusammenschliessen, um neue Kompetenzen und Lösungen in für die Energiewende entscheidenden Aktionsfeldern zu erarbeiten. In zwei SCCER à zu den Themen Speicherung und Biomasse à, die bereits den Zuschlag erhalten haben, ist das Paul Scherrer Institut PSI die federführende Institution. Die beiden Kompetenzzentren werden ihre Arbeit im Jahr 2014 aufnehmen.
Brennstoffzellenmembran aus dem Paul Scherrer Institut besser als kommerzielle Pendants
Eine neuartige Polymermembran aus dem Paul Scherrer Institut PSI hat im Labortest eine längere Haltbarkeit als die besten kommerziell erhältlichen Pendants gezeigt. Der Durchbruch gelang dank Modifizierung eines preisgünstigen Kunststofffilmes durch Bestrahlung und anschliessendes Aufpfropfen funktioneller Komponenten. Der so veränderte Kunststoff hält nicht nur lange à er könnte die Herstellungskosten der Membran um 50 bis 80 Prozent senken. Anwendung finden könnte die Membran etwa in Wasserstoffbrennstoffzellen oder in Elektrolyseuren zur Wasserstoffherstellung aus Wasser.
Schärferes Bild eines Katalysators mit Ecken und Kanten
Ein Katalysator aus dem Edelmetall Ruthenium auf einem Kohlenstoffträger wird industriell häufig eingesetzt. Ein prominentes Beispiel ist die Synthese von Ammoniak, welches unter anderem zur Herstellung von stickstoffhaltigen Düngemitteln dient. Diesen Katalysatortyp zu optimieren ist das Ziel vieler Forschungsgruppen weltweit, würde dies doch die Effizienz eines der ökonomisch bedeutendsten Industrieprozesse erhöhen. Doch das Verständnis dessen, wie es zum Aufbau der katalytisch aktiven Zentren im Katalysator kommt, ist bisher lückenhaft. Forscher des Paul Scherrer Instituts PSI bringen nun ein paar wichtige Erkenntnisse ans Licht.
Zukünftige Computerchips mit "elektronischem Blutkreislauf"
Im Rahmen des Sinergia-Programms fördert der Schweizerische Nationalfonds das dreijährige Forschungsvorhaben REPCOOL. Unter der Leitung von IBM Research à Zürich arbeiten in diesem Projekt Wissenschaftler der ETH Zürich, des Paul Scherrer Instituts in Villigen und der Università della Svizzera italiana in Lugano gemeinsam an der Erforschung eines elektronischen Blutkreislaufs für zukünftige 3D-Computerchips. Vom menschlichen Gehirn inspiriert, entwickeln die Forscher ein Mikrokanalsystem mit einer elektrochemischen Flussbatterie, die 3D-Chipstapel gleichzeitig kühlen und mit Energie versorgen. Ultimatives Ziel ist die Entwicklung eines Supercomputers in PC-Grösse.
Ein Blick in die Zukunft der globalen Energieversorgung
Wie wird sich die Welt im Jahr 2050 mit Energie versorgen und was werden die ökonomischen, ökologischen und sozialen Folgen verschiedener Entwicklungsziele und politischer Rahmenbedingungen sein? Diese Fragen beantworten Forscher des Paul Scherrer Institus PSI in Zusammenarbeit mit dem Weltenergierat WEC durch eine Untersuchung von zwei Szenarien, einem eher marktwirtschftlich und einem eher regulatorisch orientierten. Die Ergebnisse der nun abgeschlossenen Untersuchung werden vom 13. bis 17. Oktober am World Energy Congress des WEC in der südkoreanischen Stadt Daegu präsentiert werden
Partikelbildung in der Atmosphäre
Wolken bestehen aus Wolkentröpfchen, die sich aus winzigen Partikeln bilden, die in der Atmosphäre schweben. Wie diese Partikel entstehen, ist in grossen Teilen noch nicht verstanden. Nun gelang erstmals die Beschreibung der Partikelbildung aus Aminen und Schwefelsäure. Ein Meilenstein in der Atmosphärenforschung.
Computersimulationen: wichtige Stütze für die KKW-Sicherheit
Ohne Computersimulationen wäre der Betrieb von Kernkraftwerken kaum möglich. Ob es um den Einbau neuer Komponenten oder um Tests und Versuche zur Wahrung der Sicherheit geht, fast alles muss vorher am Computer im Voraus berechnet und analysiert werden. Im Labor für Reaktorphysik und Systemverhalten des Paul Scherrer Instituts PSI werden dafür Rechenmodelle und Computerprogramme entwickelt. Die PSI-Forscher fungieren damit als unabhängige Forschungspartner der Aufsichtsbehörde, des Eidgenössischen Nuklearsicherheitsinspektorats ENSI, und leisten so einen wichtigen Beitrag zur Gewährleistung der Sicherheit von schweizerischen Kernkraftwerken.
Eine runde Sache für weniger nuklearen Abfall
Bereits in den 1960er Jahren entstand die Idee, die Brennstoffe für Kernkraftwerke in Form von dicht gepackten Kugeln statt der heutigen üblichen Pellets herzustellen. Man versprach sich davon eine Vereinfachung der Brennstoffherstellung sowie eine deutliche Verminderung der radioaktiven Abfallmenge sowohl bei der Herstellung des Brennstoffs selbst als auch nach dessen Nutzung in einem Kernkraftwerk. Der kugelförmige Brennstoff kam jedoch nie zum Einsatz, weil sich die schnellen Reaktoren, für die er vorgesehen war, nicht durchsetzen konnten. Auch das Paul Scherrer Institut PSI trug in der Vergangenheit zur Erforschung des kugelförmigen Kernbrennstoffes bei. Zurzeit laufen am PSI wieder mehrere, zum Teil EU-finanzierte Projekte, um die Herstellung der Brennstoffkügelchen weiter zu verfeinern. Zum Einsatz kommen könnte diese Art von Brennstoff entweder in speziellen Anlagen zur Reduktion von radioaktivem Abfall (sogenannten ADS-Anlagen) oder in schnellen Reaktoren der vierten Generation, die in einem geschlossenen Zyklus ebenfalls weniger langlebigen Abfall produzieren.
Rekonstruktion des Nuklearunfalls von Fukushima
Forscher des Paul Scherrer Instituts PSI beteiligen sich zurzeit an einem internationalen Projekt mit dem Ziel, die Vorgänge zu rekonstruieren, die sich beim Nuklearunfall vom März 2011 im Inneren der Reaktoren des japanischen Kernkraftwerks Fukushima Daiichi ereigneten. Insbesondere die Rekonstruktion des Endzustandes der Reaktorkerne soll dem Betreiber des havarierten Werkes, der Tokyo Electricity Company TEPCO dabei helfen, die Dekontaminierungsarbeiten in der Reaktorschutzhülle vorzubereiten. Zudem soll die Übung auch zur weiteren Verfeinerung der Computerprogramme beitragen, mit deren Hilfe Nuklearunfälle simuliert werden.
Fünfmal weniger Platin: Brennstoffzellen könnten dank neuem Aerogel-Katalysator wirtschaftlich attraktiver werden
Wasserstoff-Brennstoffzellen haben das Potenzial, die individuelle Mobilität in eine umweltfreundliche Zukunft zu führen. Das Paul Scherrer Institut PSI erforscht und entwickelt seit mehr als 10 Jahren solche Brennstoffzellen. Erste Praxistests haben deren erfolgreichen Einsatz in Autos und Bussen demonstriert. Weitere Forschung bleibt jedoch nötig, um ihre Langlebigkeit und Wirtschaftlichkeit zu verbessern. Ein internationales Forscherteam mit PSI-Beteiligung hat nun ein neues Nanomaterial hergestellt und charakterisiert, das Leistungsfähigkeit und Haltbarkeit dieser Brennstoffzellen um ein Vielfaches erhöhen könnte - bei gleichzeitiger Senkung der Materialkosten.
Wie Radionuklide durchs Gestein irren: Erkenntnisse für ein Tiefenlager
Wie bewegen sich radioaktive Substanzen durch das Wirtsgestein in einem Tiefenlager für nukleare Abfälle? Dieser Frage gehen Forscher der Gruppe für Diffusionsprozesse im Labor für Endlagersicherheit am Paul Scherrer Institut PSI nach. Recht gut bekannt sind die Transporteigenschaften von negativ geladenen Radionukliden, die von den ebenfalls negativ geladenen Oberflächen von Tonmineralien abgestossen werden und somit kaum am Gestein haften. Für positiv geladene und daher stark haftende Radionuklide werden derzeit die entsprechenden Erkenntnisse im Rahmen eines EU-Projekts erarbeitet, an dem sich auch das PSI beteiligt.
Wissen für morgen aus den „heissen Zellen“
Die Manipulation und Untersuchung von bestrahlten und daher radioaktiven Materialien, sei es aus Kernkraftwerken oder aus Forschungsanlagen, erfordert strenge Sicherheitsvorkehrungen. Untersuchungen dürfen nur in sogenannten heissen Zellen durchgeführt werden, hinter deren bis zu einem Meter dicken Beton- und Bleiwänden die Radioaktivität hermetisch eingeschlossen und abgeschirmt wird. In den heissen Zellen des Hotlabors am PSI werden regelmässig die abgebrannten Brennstäbe aus den Schweizer Kernkraftwerken materialwissenschaftlich untersucht. Die gewonnenen Erkenntnisse helfen den KKW-Betreibern, die Effizienz und Sicherheit ihrer Kraftwerke zu optimieren. Neben dieser Dienstleistung für die Kernkraftwerke beteiligt sich das Hotlabor an internationalen Forschungsprojekten.
Kein Tröpfchen zuviel
In vielen technischen Prozessen spielt die Bereitstellung eines mit Dampf gesättigten Gasgemisches eine entscheidende Rolle. So werden zum Beispiel durch eine hohe Dampfsättigung der Gasmischung bei der Dieselverbrennung die Emissionen von Stickoxiden reduziert. Ein Forscher des Paul Scherrer Instituts sorgt mit einer neuen Erfindung dafür, dass dies in Zukunft durch eine einfache, flexible und robuste Technik industriell umgesetzt werden kann.
Schnelle Neutronen für mehr Sicherheit
Neutronen sind ein hervorragendes Mittel zur zerstörungsfreien Abbildung des Innern von Gegenständen. Sie bieten sich als Ergänzung zur vorherrschenden Röntgenradiografie an. Bei bestimmten Materialien, die unter Röntgenstrahlung praktisch undurchsichtig sind oder kaum unterscheidbar sind, stellen Neutronen das einzige aussagekräftige Sezierwerkzeug dar. Untersuchungen mittels Neutronenradiographie finden in der Regel in spezialisierten Laboren oder auf ortsfesten Anlagen statt, da die Erzeugung der Neutronen auf komplexe, teure und nicht transportierbare Maschinen angewiesen ist. Forscher des Paul Scherrer Instituts PSI wollen nun mit einer Bildgebungstechnik auf der Basis von schnellen Neutronen eine flexible Alternative anbieten.