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Abstract

This paper presents a general three-dimensional track fit based on hit triplets. The general track fit considers spatial hit
and multiple Coulomb scattering uncertainties, and can also be extended to include energy losses. Input to the fit are
detector-specific triplet parameters, which contain information about the triplet geometry (hit positions), the radiation
length of the material and the magnetic field. Since the solution is given by an analytical closed-form, it is possible to
use the same fitting code for all kind of tracking detectors.

Fitting formulas are given for the global track fit as well as for the local hit triplets. The latter allows filtering out
triplets with poor fit quality at an early stage of track reconstruction. The construction and fit of local triplets is fully
parallelisable, enabling accelerated computation with parallel hardware architectures. Formulas for the detector-specific
triplet parameters are derived for the two most commonly used field configuration for tracking detectors, namely a
uniform solenoidal field and gap spectrometer dipole. An algorithm to calculate the triplet parameters for an arbitrary
magnetic field configuration is presented too.

This paper also includes a discussion of inherent track fit biases. Furthermore, a new method is proposed to accelerate
track fitting by classifying tracking regimes and using optimal fit formulas.

Keywords: tracking, track fit, track fit bias, hit triplet, multiple scattering, fit quality, software alignment,
spectrometer, energy loss, tracking regimes

1. Introduction

In nuclear and particle physics experiments, the pre-
cise determination of the track parameters for measuring
charged particles is crucial. Therefore an accurate tracking
model is required that takes into account all error sources
of the measurement, the most relevant being hit position
errors, multiple Coulomb scattering (MS), energy losses
and magnetic field errors. What makes track fits so chal-
lenging is the fact that particles in the magnetic fieldd
propagate along complex trajectories, which are highly
non-linear. For track reconstruction, the fit quality is the
most important estimator for finding the correct hit combi-
nations. Especially in high-rate experiments, track finding
is a major challenge due to large hit combinatorics.

The most commonly used track fit today is the Kálmán
filter (KF)[1, 2]. It uses a state vector to parameterize the
track, which is updated with each measurement (hit), to-
gether with the quality of the track fit. An advantage of
the KF is its high flexibility, which allows for a wide range
of applications. Nowadays, many experiments employ an
extended version of the Kalman Filter (KF) for track re-
construction, known as the combinatorial Kalman filter
(CKF), which aims to identify the optimal hit combina-
tions.

The KF, however, also has disadvantages: the algo-
rithm is recursive, and consequently not well suited for
parallel computing. This presents a significant challenge

for accelerating track reconstruction using modern highly
parallel computing hardware. In addition, the KF does not
provide the full covariance matrix of all hit positions, com-
plicating its use for track-based detector alignment. Con-
sidering that detector resolutions continue to improve with
new tracking detector technologies, the software alignment
of the detector system becomes increasingly relevant to
fully exploit the potential of detectors.

For detector alignment, the General Broken Line (GBL)
fit [3, 4] is better suited as it inherently provides the full
hit covariance matrix, which is required to determine cor-
relations and allows for the identification of so-called weak
modes. An example is the Millepede II software tool [5, 6].
The basic concept of the GBL is to linearize an approxi-
mate solution and perform the track fit in a local (curvi-
linear) coordinate system defined by a reference (seed) so-
lution. MS as well as energy losses then show up as kinks
in the transformed trajectory. These kinks are minimized
along with the hit residuals in the fit. As the GBL is
seeded and requires an approximate solution as starting
point, it cannot be used for track finding.

The MS triplet fit [7] is an alternative track fit that
uses a linearization approach quite similar to the GBL
but does not require any seed or approximate solution.
Triplets of hits have the advantage that the reference tra-
jectory for the linearization can be easily calculated from
the triplet geometry itself, for example in a uniform mag-
netic field. Furthermore, hit triplets are over-constrained,
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allowing the calculation of a triplet quality that can be
used to reject fake hit combinations at an early stage of
track reconstruction. With single triplets, even a full track
reconstruction in a high track multiplicity environment like
FCC-hh is possible, as demonstrated in [8].

Because the result of a single triplet fit can be writ-
ten as a simple function of triplet-specific parameters, and
the global track parameters can be calculated from sim-
ple sums of local triplet fits, the MS triplet fit is much
faster than any other track fit. Its parallelization capabil-
ity makes the MS triplet fit ideal for parallel computing, for
example on graphics processing units (GPUs). However,
since hit position errors are not included, the MS triplet
fit is restricted to low-momentum tracks, where MS errors
are dominant. The MS triplet fit is used by the Mu3e ex-
periment [9], which searches for the decay µ → eee using
muons decaying at rest. Here, the triplet fit has been im-
plemented for both offline reconstruction [10] and online
track reconstruction on a GPU-based event filter [11].

This work presents the General Triplet Track Fit (GTTF),
which is an extension of the MS triplet fit ([7]) and takes
into account hit uncertainties as well as all correlations be-
tween different hit triplets. Therefore, this work also goes
beyond Ref.[12], where hit uncertainties in the fit qual-
ity calculation were considered for individual triplets, but
correlations between different triplets were neglected. In-
terestingly, the solution of the GTTF can also be given in
an analytical closed-form solution, similar to [7].

A major difference between the GTTF and other track
fits is the fit input. The Kálmán filter and the GBL use hit
positions as input. In contrast, the GTTF uses so-called
triplet parameters as input, which represent an interface
to all kind of tracking detectors and provide a general de-
scription of the detector (triplet) geometry, including the
hit position errors, the scattering material and the mag-
netic field. For this reason, the GTTF is universal as the
same fitting code can be used for all tracking detectors
and for all experiments. Only the triplet parameters are
experiment- and triplet-specific.

The most important advantage of GTTF is the abil-
ity to perform triplet filtering during track reconstruction.
This, together with the ability to perform track fitting of
triplets on a parallel computing architecture, offers great
potential for accelerating track reconstruction in high par-
ticle rate experiments. In addition, the GTTF also pro-
vides the hit covariance matrix, making the fit ideal for
track-based alignment.

Thanks to the analytical form of the result, the covari-
ance can be directly calculated from the triplet geometries.
It is therefore relatively easy to calculate the tracking res-
olution for a given detector geometry, without the need for
extensive simulation studies. This feature greatly simpli-
fies tracking detector design studies for future experiments.

With the triplet concept one can go even one step
further; from the triplet geometries simple tracking scale
parameters can be calculated, which can be used to de-

fine different tracking regimes, for example MS dominated
and hit uncertainty dominated. Depending on the track-
ing regime, different numerical optimizations can be used
to accelerate track fitting. Furthermore, a tracking regime
analysis can also help in identifying weaknesses of tracking
detector designs.

The paper is organized as follows. The fit methodol-
ogy is introduced in Section 2. The formulas for the global
triplet track fit are derived in Section 3, first for the gen-
eral case, and then in the limit of dominant hit position
errors and dominant MS errors. Results for local triplet
fits are given in Section 4. A detailed analysis of fitting
biases as well as mitigation strategies, including a special
regularized MS fit with reduced bias, is presented in Sec-
tion 5. The triplet parameters, which represent the input
to the fit, are calculated in Section 6 for the case of a uni-
form magnetic field. Triplet parameter solutions for other
setups (gap spectrometer dipole and other inhomogeneous
magnetic fields) are discussed in the appendix. A special
solution obtained from MS in a zero magnetic field is als
presented in Section 6. Energy loss corrections and track
fits including energy losses are described in Section 7. The
potential for exploiting parallel computing for track fit-
ting and track reconstruction using the triplet concept is
presented in Section 8, and the tracking regime concept
is introduced in Section 9. Finally, Section 10 provides a
summary.

2. Fit Methodology and Triplet Representation

The track fit aims at fitting the total particle momen-
tum, p, and the hit positions by simultaneously minimizing
the MS angles and the hit position shifts. The hit posi-
tions are given as shifts with respect to the measured hit
positions δx⃗k = x⃗fit,k− x⃗meas,k, with k being the hit index.
For a given magnetic field, this set of parameters (p and
all δx⃗k) contains the full information about the particle
trajectory.

For track fitting, a χ2 function is defined that includes
MS as well as spatial hit uncertainties according to:

χ2 =

nscatt−1∑
j=0

θ2MS,j

σ2
θMS,j

+

nscat-1∑
j=0

ϕ2MS,j

σ2
ϕMS,j

+

nhit−1∑
k=0

δx⃗ t
k
⃗⃗
Vk

−1

δx⃗k. (1)

The first two sums1 run over all hit triplets (index j) and
describe MS at the nscatt scattering points. Throughout
the work, it is assumed that the position of the scatter-
ers agree with the position of the hits (detector layers).
Using spherical coordinates, the MS kink is described by
polar (θMS,j) and azimuthal (ϕMS,j) angles. The projected

1Throughout this work, counting of hits and triplets starts at 0.
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MS angles are divided by the corresponding expected er-
rors (σθMS,j and σϕMS,j). The third sum runs over all hits
and describes the contribution from the hit position shifts
(residuals). For each hit, the hit position error is described

by a 3× 3 covariance matrix,
⃗⃗
Vk (error ellipse2).

The kink angles in the MS terms of Equation 1 depend
on the total particle momentum, as illustrated in Figure 1.
Instead of the particle momentum, p, the 3D curvature,
defined by:

κ :=
q B

p
, (2)

is used in the following3. Note that for an inhomogeneous
magnetic field, B = B(x⃗), κ is position dependent even if
total momentum is conserved.

Matter effects are described by two parameters, an MS
parameter and an energy loss parameter. For each hit,
both parameters are calculated from the effective path
length in the tracking layer material. Note that both
matter effects have some momentum (energy) dependence.
The error of the MS angle, σMS, depends on the momen-
tum and velocity of the particle [13, 14]. Assuming that
the particle is ultra-relativistic (v ≈ c), MS is inverse pro-
portional to the momentum

σMS ∝ 1

|p|
, (3)

and one can define a MS parameter according to:

bMS =
σMS

|κ|
= σMS

∣∣∣∣ pq B
∣∣∣∣ . (4)

Similarly, an energy loss parameter, ∆E, can be de-
fined for each tracking layer (hit), accounting for the en-
ergy loss, for example due to ionization. An advantage of
the triplet fit is that both, the momentum and the effec-
tive path length can already be derived from the triplet
geometry before fitting (see Section 6).

In the following, it is assumed that the total momen-
tum of the particles is conserved. Energy losses are in-
cluded at a later stage and discussed in Section 7.

2.1. Triplet Parameters

In a magnetic field, the trajectory between two con-
secutive hits is fully defined by the value of the total mo-
mentum4 . Consequently, the total momentum defines the
kink angle ∆ψ = (∆θ, ∆ϕ) for a hit triplet, as shown in

2Throughout this work, single arrows (double arrows) denote vec-
tors (matrices) in Euclidean space. Furthermore, t denotes a trans-
posed vector in Euclidean space.

3In many other papers, κ is used to denote the transverse curva-
ture, which is henceforth denoted as κ⊥ = q B/p⊥ in this paper.

4Note that there might be no solution for low total momentum
tracks, and more than one solution for high momentum tracks, de-
pending on the field configuration.

Δ p Δ p
x⃗k−1 x⃗k x⃗k+1

x

z y

Δ ψ

Figure 1: Sketch of the curvature (momentum) dependence of the
kink angle in a triplet. The middle plane is the scattering plane in the
triplet defined by the hits {k − 1, k, k + 1}. The dashed and dotted
trajectories show the momnentum varations of the solid trajectory.
The kink angle, indicated at the middle layer, has two projections
∆ψ = (∆θ, ∆ϕ), which are not shown.

Figure 1. Throughout this paper, a right-handed coordi-
nate system is used, with the polar angle, θ, being defined
with respect to the z-axis, and the azimuthal angle, ϕ, be-
ing defined with respect to the x-axis. The two projections
of the kink angle at detector layer k are then defined as:

∆θ(p) = ∆θ(κ) := θk,k+1 − θk,k−1, (5)

∆ϕ(p) = ∆ϕ(κ) := ϕk,k+1 − ϕk,k−1, (6)

where the subscript “k, k − 1” (“k, k + 1”) indicates the
particle direction5 at the detector plane before (after) the
scattering at layer k. Both kink angles are functions of
the momentum (∼= 3D curvature), and for typical track-
ing detectors, these functions are transcendental. This is,
for example, the case for tracking in a uniform magnetic
field or a spectrometer setup. Both cases are discussed in
Section 6.

A method for solving the non-linear functions ∆θ(κ)
and ∆ϕ(κ), is to perform a linearization around a known
solution. Throughout the paper, the solution

∆ϕref := ∆ϕ(κref) = 0 (7)

is used as reference trajectory, corresponding to no MS
in the x-y plane, which is defined to be the main bend-
ing plane. The reference solution is described by the 3D
curvature, κref, and has a non-vanishing polar kink angle
∆θref := ∆θ(κref), in general. The first order linearization
around the reference solution then reads:

∆ϕ = 0 + (κ− κref) ρϕ +O(κ2) ≈ Φ̃ + ρϕ κ, (8)

∆θ = ∆θref + (κ− κref) ρθ +O(κ2) ≈ Θ̃ + ρθ κ . (9)

The same ansatz was already used in Ref.[7], with the only
difference that the linearization was done as function of

5Note that in uniform magnetic fields the relation θk,k′ = θk′,k
holds for k′ = k ± 1, as the polar angle is an invariant. In contrast,
the inequality ϕk,k′ ̸= ϕk′,k generally holds, due to the bending in
the magnetic field.
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x⃗ k−1
x⃗ k

x⃗ k+1

ΔΦ=0

2~Φ

ccircle ~Φ

x

y

κ straight=0

Figure 2: Sketch of a hit triplet in the bending plane of a uniform
magnetic field. The blue solid line shows the solution for ∆ϕ = 0
(zero kink angle); the brown dashed line shows the zero curvature
solution (κ = 0). The triplet parameter Φ̃ corresponds to the kink
angle of the zero curvature solution, and is related to the bending
angle of the zero kink angle solution via Φ(∆ϕ=0) = 2 Φ̃.

the 3D radius R3D = κ−1, leading to marginally different
numerical results for MS fits.

The four linearization parameters Φ̃, Θ̃, ρϕ and ρθ are
fundamental parameters, which describe the curvature de-
pendence of the triplet kink angles. In the small bending
limit, κ → 0, the fundamental triplet parameters Φ̃ and
Θ̃ can be interpreted as central angle of the hit triplet
(see Figure 2 for Φ̃). The parameter ρϕ is always negative
and its absolute value can be interpreted as effective arc
lengths of the triplet, as will be shown in Section 6. The
parameter ρθ is a small correction factor and has no simple
geometrical interpretation.

2.2. Representation of Hit Position Errors

In Equation 1, the hit positions and their uncertain-
ties are given in global coordinates. However, using local
detector coordinates is often simpler and more intuitive
if it comes to hit position uncertainties. Without loss of
generality, a transformation into local hit coordinates:

x⃗k → x⃗ ′
k = Tk(x⃗k) (10)

is possible, where the position of each hit, k, is described
by local bases (u⃗k, v⃗k, w⃗k). In case that the bases are or-
thogonal, local hit residuals are obtained from the trans-
formation:

δ⃗k =
⃗⃗
Qk ∆x⃗k, (11)

with ∆x⃗k = x⃗meas
k − x⃗fit

k being the hit residuals in global

coordinates, and
⃗⃗
Qk being an orthogonal (rotation) ma-

trix6. The corresponding covariance matrix in local coor-
dinates is given by:

⃗⃗
V ′
k =

⃗⃗
Qk

t ⃗⃗
Vk

⃗⃗
Qk. (12)

6A transformation into local detector coordinates is highly con-
venient when the directions of hit position errors are uncorrelated,
which is normally the case.

Δ ψ hit =

x⃗ k−1 x⃗ k x⃗ k+1

x

z y

Δ x⃗ k−1

(Δ θ hit , Δ ϕ hit)

Figure 3: Illustration of the kink angle variation ∆θhit and ∆ϕhit at
the scattering layer k for a variation of the hit position in layer k−1.

The variation of a hit position leads to a change of the
kink angles as shown in Figure 3. In practically all track-
ing devices, the hit position errors are significantly smaller
than the distance between the hits (tracking layers), and
the kink angles only weakly depend on the hit positions.
The hit position-induced kinks can then be parameterized
using the linearization ansatz:

∆θhit =

2∑
k=0

h⃗θk δ⃗k , (13)

∆ϕhit =

2∑
k=0

h⃗ϕk
δ⃗k , (14)

with h⃗ϕk
and h⃗θk being three vectors defined as directional

gradients of the three hit positions:

h⃗θk = ∇⃗δ⃗k
∆θ(x⃗k)

≈ ∇⃗δ⃗k
Θ̃(x⃗k) + κref ∇⃗δ⃗k

ρθ(x⃗k) , (15)

h⃗ϕk
= ∇⃗δ⃗k

∆ϕ(x⃗k)

≈ ∇⃗δ⃗k
Φ̃(x⃗k) + κref ∇⃗δ⃗k

ρϕ(x⃗k) . (16)

The directional hit gradients can be determined numeri-
cally by shifting the hits by 1-sigma of the hit position error
into the three orthogonal directions and re-calculating the
triplet parameters.

Finally, the MS angles of a triplet entering Equation 1
are expressed as function of the four fundamental triplet
parameters, the 3D curvature and the hit position-induced
kinks:

θMS = Θ̃ + ρθ κ−∆θhit (17)

ϕMS = Φ̃ + ρϕ κ−∆ϕhit. (18)

For the general fit of a single triplet, a total of 23 pa-
rameters are required. These are the four fundamental
triplet parameters, the 3 × 3 components of the hit gra-
dients, the corresponding hit position errors, and one ma-
terial parameter. For MS fits where hit uncertainties are
neglected, the number of parameters reduces to only five.
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3. Global Triplet Track Fit

Using the triplet parameters and the local hit coordi-
nate representation introduced in the last section, the χ2

function (Equation 1) can be re-written as:

χ2(κ, δ⃗) =

nhit−3∑
j=0

(
Θ̃j + ρθj κj −∆θhit,j(δ⃗)

)2
σ2
θMS,j

+

nhit−3∑
j=0

(
Φ̃j + ρϕj κj −∆ϕhit,j(δ⃗)

)2
σ2
ϕMS,j

+

nhit−1∑
k=0

δ⃗ t
k
⃗⃗
V ′
k

−1

δ⃗k. (19)

The fit parameters are the 3D curvature, κ, and the residu-
als7 δ⃗ = (δ⃗0, δ⃗1, ..., δ⃗nhit−1)

⊤. The 3D curvature, κ is here
defined with respect to a reference magnetic field, Bref,
according to:

q

p
=

κ

Bref
=

κj
Bj
, (20)

withBj being the local magnetic field strengths at triplet j.
Note that for inhomogeneous magnetic fields, the field de-
pendence of κ can be “absorbed” by the ρ coefficients in
Equation 19 by replacing: ρj → ρ′j Bref/Bj . In the fol-
lowing, it is assumed that such an replacement has been
made.

In Equation 19, the momentum dependence of the MS
uncertainties (σθMS

and σϕMS
) is deliberately neglected8

in order to have at most quadratic terms as function of
κ and δ⃗. To bring Equation 19 in a more legible form,
it is convenient to define two vectors, which contain all
fundamental triplet parameters of a track:

ρ = (ρθ0 , ... , ρθnhit−3
; ρϕ0

, ..., ρϕnhit−3
)⊤,

Ψ̃ = (Θ̃0, ... , Θ̃nhit−3; Φ̃0, ..., Φ̃nhit−3)
⊤,

and whose length is twice the number of triplets. More-
over, precision matrices are defined for MS and hit position
errors:

DMS = diag

(
1

σ2
θMS,0

, ... ,
1

σ2
θMS,nhit−3

;

1

σ2
ϕMS,0

, ... ,
1

σ2
ϕMS,nhit−3

)
,

⃗⃗
Dhit = diag

(
⃗⃗
V ′
0

−1

,
⃗⃗
V ′
1

−1

, ... ,
⃗⃗
V ′
nhit−1

−1
)
.

7Here (and in the following), bold symbols refer to vectors (low-
ercase variables) and matrices (uppercase variables), either in hit or
triplet space. Furthermore, within this work two different transposi-
tion signs are used. The t operator acts on Euclidean space, whereas
the ⊤ operator acts on both triplet and hit space, also including all
directions of the hit position errors.

8Neglecting the momentum dependence by setting σMS constant,
leads to a small momentum bias in track fits for MS-dominated par-
ticles, see also Section 5.

HΘ

HΦ

1-dim 2-dim 3-dim

n hits

n triplets

n triplets

n hits n hits

Figure 4: Sketch of the rectangular matrix H⃗. The horizontal block
structure originates from the three directions of the hit position er-
rors. The vertical block structure originates from the two projections
of the MS angular error. Only elements in the blue and turquoise
bands, which originate from the three hits contributing to a triplet,
are non-zero.

DMS and
⃗⃗
Dhit are diagonal matrices, whose ranks are

2ntriplet and 3nhits, respectively. Elements in the MS pre-
cision matrix DMS are partially related, since:

σθMS,j = σMS,j , (21)

σϕMS,j = σMS,j/ sin θ̂j , (22)

with σMS,j being the MS angular error (Equation 3) of

the jth triplet and θ̂j being the corresponding estimated

average polar angle in the MS process. The 1/ sin θ̂j factor
in Equation 22 is a geometrical factor originating from
the chosen spherical coordinate representation. Note that
the 1/ sin θ̂j term is treated as a constant, since it enters
only as a weighting factor to the fit and the corresponding
propagated polar angle uncertainties are negligible.

To collect all hit gradients, defined by Equation 15 and
Equation 16, a hit gradient matrix (Jacobian) is defined,
according to:

H⃗ :=

(
h⃗
(0)

θ , ... , h⃗
(nhit−3)

θ ;

h⃗
(0)

ϕ , ... , h⃗
(nhit−3)

ϕ

)⊤

,

where the vectors h⃗
(j)

θ and h⃗
(j)

ϕ are defined in hit-space
and collect all hit gradients of triplet j:

h⃗
(j)

θ :=
(
h⃗
(j)
θ0
, h⃗

(j)
θ1
, ... , h⃗

(j)
θnhit−1

)
,

h⃗
(j)

ϕ :=
(
h⃗
(j)
ϕ0
, h⃗

(j)
ϕ1
, ... , h⃗

(j)
ϕnhit−1

)
.

Note that only elements with the indices k = j, j+1, j+2
(this are the hits forming the triplet) are non-zero. The

matrix H⃗ has in total 2ntriplet × 3nhit components; its
structure is sketched in Figure 4.
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The χ2 function (Equation 19) then reads in compact
form:

χ2(κ, δ⃗) =
(
Ψ+ ρκ− H⃗δ⃗

)⊤
DMS

(
Ψ+ ρκ− H⃗δ⃗

)
+ δ⃗

⊤ ⃗⃗
Dhit δ⃗. (23)

Minimizing Equation 23 results in a system of linear
equations:(

−ρ⊤DMS Ψ⃗

H⃗
⊤
DMS Ψ⃗

)
= (24)(

ρ⊤DMS ρ −ρ⊤DMS H⃗

−H⃗
⊤
DMS ρ

⃗⃗
Dhit + H⃗

⊤
DMS H⃗

) (
κ

δ⃗

)
.

Solving the system above yields for the 3D curvature
and its variance:

κmin = −ρ⊤KΨ

ρ⊤Kρ
, (25)

σ2
κmin

=
1

ρ⊤Kρ
, (26)

with K being the triplet precision matrix. Its inverse, the
covariance matrix, is defined as:

K−1 = D−1
MS + H⃗

⃗⃗
D−1

hitH⃗
⊤
. (27)

K−1 combines the MS and hit position covariance matri-
ces and is called triplet covariance matrix. Inversion of the
triplet covariance matrix is trivial in case of dominant MS
errors since D−1

MS is diagonal (see also Section 3.2). The
inversion is more involved if spatial hit uncertainties con-

tribute. Note that the matrix H⃗
⃗⃗
D−1

hitH⃗
⊤
has a 2×2 block

structure with penta-diagonal sub-matrices.9

The residuals and the corresponding covariance matrix
are calculated as:

δ⃗min =
⃗⃗
D−1

hitH⃗
⊤
Kρ Ψ, (28)

⃗⃗
Covδmin

=
⃗⃗
D−1

hit −
⃗⃗
D−1

hitH⃗
⊤
Kρ H⃗

⃗⃗
D−1

hit , (29)

with

Kρ =

(
K − Kρρ⊤K

ρ⊤Kρ

)
. (30)

Note that the matrix Kρ only exists for det(K) ̸= 0.
Finally, the fit quality is given by:

χ2
min = Ψ⊤KΨ − (ρ⊤KΨ)2

ρ⊤Kρ

= Ψ⊤KρΨ. (31)

9The penta-diagonal structure of the sub-matrices can be ex-
ploited for large matrices where the computational effort for the
inversion scales linearly with the number of hits (tracking layers).

The first term in the first line accounts for the kink angles
of the infinite momentum solution whereas the second term
describes the improvement of the fit quality by fitting the
hit positions and the 3D curvature. The second line of
Equation 31 suggests that Kρ can be interpreted as post-
fit precision matrix for the kink angles.

Note that with Equation 25, and Equation 28 the tra-
jectory is fully determined from the first to the last hit.

3.1. Global Fit for Dominant Hit Position Errors

In the limit of dominating hit position errors, the MS
errors can be neglected: ||DMS||−1 → 0. The solution
looks very similar to the general case discussed above, and
is given in Appendix A, for completeness.

3.2. Global Fit for Dominant MS Errors

In the case of dominant MS errors, the hit position
errors can be neglected. By replacing the triplet covariance
matrix by the MS covariance matrix, K → DMS, one
obtains for the curvature and its variance:

κMS = −ρ⊤DMS Ψ

ρ⊤DMS ρ
, (32)

σ2
κMS

=
1

ρ⊤DMS ρ
, (33)

and for the fit quality:

χ2
MS = Ψ⊤DMS Ψ − (ρ⊤DMS Ψ)2

ρ⊤DMS ρ
. (34)

Due to the diagonal form of DMS, the global track cur-
vature and the fit quality can be written as simple error-
weighted sums of local triplet quantities:

κMS = σ2
κMS

ntriplet−1∑
j=0

κMS,j
2

σ2
κMS,j

, (35)

1

σ2
κMS

=

ntriplet−1∑
j=0

1

σ2
κMS,j

, (36)

χ2
MS =

ntriplet−1∑
j=0

χ2
MS,j +

ntriplet−1∑
j=0

(κMS − κMS,j)
2

σ2
κMS,j

,

(37)

where the indexed parameters denote the results obtained
from the local triplet fits, which can be given in analyti-
cal closed-form (see Section 4). Note that the fit quality
(Equation 37) has two terms: a sum over the individual
triplet qualities and a weighted sum over the curvature
residuals (curvature consistency term10).

10The combination of triplets using the MS fit was first discussed
in Ref.[7] (Equation 39 therein) where, however, the curvature con-
sistency term is not given.
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Fit Quality Relations

For dominant MS errors, the following inequality can
be derived from Equation 37:

χ2
MS ≥

ntriplet−1∑
j=0

χ2
MS,j . (38)

By summing up the individual triplet fit qualities an lower
limit on the global track fit quality is obtained. Equa-
tion 38 can therefore be used to reject bad track candidates
already at triplet level, thus accelerating track reconstruc-
tion.

The fit quality of the MS fit is also related to the quality
of the general fit:

χ2
min = χ2

MS +
(κmin − κMS)

2

σκMS

− δ⃗
⊤
min

⃗⃗
P δ⃗min, (39)

with

⃗⃗
P = H⃗

⊤
DMS H⃗ +

⃗⃗
Dhit (40)

being the adjoint triplet precision matrix 11, which has the
rank 3nhit. As non-zero hit residuals can only result from
a χ2-improvement, the MS fit quality poses an upper limit
for the general fit quality:

χ2
min ≤ χ2

MS. (41)

This relation is of high relevance for fast track finding:
Since the computational effort for the MS fit is signifi-
cantly lower than for the general fit, which involves matrix
inversion, it is often advantageous to perform the MS fit
first, see discussion in Section 9.

3.3. Large Hit Position Uncertainties

Results obtained with GTTF linearization ansatz (Equa-
tion 8 and Equation 9 are only valid if the hit position
uncertainties are small compared to the distance of track
layers, and so-called rotational triplet uncertainties can
be neglected. However, these rotational uncertainty can
be significant for strip detectors. Correction factors to in-
clude this uncertainty are given in Appendix C.

3.4. Track Parameters For Track Extrapolation

The output of the GTTF are the curvature (momen-
tum) and all hit residuals. These parameters define the
full trajectory, from the first to the last hit. For track ex-
trapolation or vertexing, also the track direction and the
corresponding covariance matrix need to be known. Both
are position depend and, in general, complicated functions
of the hit positions and the curvature.

For the special case of a uniform magnet field, the cal-
culation of all track parameters and the corresponding co-
variance matrix is shown in Appendix D. The track pa-
rameter calculation is very similar for other magnetic field
configurations.

11The triplet precision matrix K and the adjoint triplet precision

matrix P are related by:
⃗⃗
P−1H⃗

⊤
DMS =

⃗⃗
D−1

hitH⃗
⊤
K.

3.5. Additional Material in Tracking Volume

Additional material, which affects the particle trac-
jectory by MS or energy loss, can be easily included in
the GTTF by introducing so-called pseudo-hits in pseudo-
tracking layers. Pseudo-hits can be calculated by inter-
secting an already existing, approximate solution of the
trajectory with the material layer, and by assigning (suf-
ficiently) large hit position uncertainties. It can be easily
proven that the fit result remains stable as the hit uncer-
tainties in the pseudo-tracking layers approach infinity.

4. Local Triplet Fit

The local triplet fit represents the simplest solution of
the GTTF, and is highly relevant for seeding track recon-
struction and filtering. The solution is readily obtained
from Equations 25 to 31. For a triplet, the covariance ma-
trix, K−1, reduces to a 2× 2 matrix. The elements of this
local covariance matrix, defined as

K−1
loc =

(
Γθθ

⋆ Γθϕ
Γθϕ Γϕϕ

⋆

)
, (42)

are given by:

Γθθ
⋆ := Γθθ + σ2

θMS,k

:=
∑

k∈ triplet

h⃗tθk
⃗⃗
V ′
k h⃗θk + σ2

θMS,k
, (43)

Γϕϕ
⋆ := Γϕϕ + σ2

ϕMS,k

:=
∑

k∈ triplet

h⃗tϕk

⃗⃗
V ′
k h⃗ϕk

+ σ2
ϕMS,k

, (44)

Γθϕ :=
∑

k∈ triplet

h⃗tθk
⃗⃗
V ′
k h⃗ϕk

. (45)

The solution of the local triplet fit is a function of those
Γ parameters, and the 3D curvature and its variance are
given by:

κloc =

− Θ̃ ρθ Γϕϕ
⋆ + Φ̃ ρϕ Γθθ

⋆ − Γθϕ (Φ̃ρθ + Θ̃ρϕ)

ρ2θ Γϕϕ
⋆ + ρ2ϕ Γθθ

⋆ − 2ρθ ρϕ Γθϕ
, (46)

σ2
κloc

=
Γθθ

⋆ Γϕϕ
⋆ − Γθϕ

2

ρ2θ Γϕϕ
⋆ + ρ2ϕΓθθ

⋆ − 2ρϕ ρθΓθϕ
. (47)

For the local fit quality, one obtains:

χ2
loc =

(Θ̃ρϕ − Φ̃ρθ)
2

ρ2θ Γϕϕ
⋆ + ρ2ϕ Γθθ

⋆ − 2ρϕ ρθ Γθϕ
. (48)

Furthermore, the residual vector of hit k is given by:

δ⃗k,loc =
⃗⃗
V ′
k

(ρθ h⃗ϕk
− ρϕ h⃗θk)

(ρθΦ̃− ρϕΘ̃)
χ2
loc. (49)
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The covariance matrix of the residuals can be written as:

⃗⃗
Covδ =

⃗⃗
D−1

hit − δ⃗loc δ⃗
⊤
loc

χ2
. (50)

The first term in Equation 50 contains the pre-fit hit po-
sition errors, whereas the second term describes their im-
provement by the track fit.

Special Cases for Local Triplet Fits

In the case of dominant hit position errors, the follow-
ing substitutions are applicable:

Γθθ
⋆ → Γθθ, (51)

Γϕϕ
⋆ → Γϕϕ. (52)

In other words, one obtains the same fitting formulas as for
the general triplet fitting by simply removing the ⋆ from
all equations.

For dominant MS errors, the following substitutions
are applicable:

Γθθ
⋆ → σ2

θMS
(53)

Γϕϕ
⋆ → σ2

ϕMS
(54)

Γθϕ → 0, (55)

and the local triplet fit formulas (Equation 46 to Equa-
tion 48) further simplify. The hit residuals (Equation 49)
vanish by definition and the 3D curvature (Equation 46
simplifies to:

κMS = − ρϕ Φ̃ sin2 θ̂ + ρθ Θ̃

ρ2ϕ sin2 θ̂ + ρ2θ
, (56)

Note that Equation 56 is independent of the angular MS
error, and therefore does not depend on the amount of
material at the scattering layer.

5. Momentum Bias in Track Fits

The tracking model used by the GTTF and other stan-
dard fits, such as the Kálmán Filter and General Broken
Lines, is the same; they all include hit position and MS un-
certainties. The only difference is the way how the tracking
model is implemented or how linearizations are performed.

Due to the momentum dependence of the MS uncer-
tainty, see Equation 3, a fitting bias towards higher mo-
menta (smaller curvatures) naturally arises in all track fits.
The reason is that the estimated MS angular errors (σθMS

and σϕMS
in Equation 1) are smaller for high momentum

tracks than for low-momentum tracks. This bias is an in-
herent property of track fits that include MS uncertainties
and where the particle momentum is a fit parameter.

The analytical form of the GTTF solution facilitates
the study of fitting biases. Below, a detailed study of fit-
ting biases is presented and a method for bias mitigation
is proposed.

5.1. Curvature Pull Distribution

One way to check the goodness of a fit is by study-
ing the pull distributions of the fitted parameters. The
curvature pull for fit i is defined as:

g(κ)i =
κi − κtrue

σκ,i
. (57)

For a fit with statistically correct estimates of κ and σκ,
the arithmetic mean of the pull distribution is expected
to vanish, IE[g(κ)] = 0, and the variance is expected to be
unity, Var[g(κ)] = 1. In the following, the pull distribution
is studied for the Local Track Fit and the Global Track Fit
in a scenario where MS errors dominate.

5.1.1. Curvature Pull in the Local Track Fit

For a single triplet, the curvature pull can be calcu-
lated by smearing the particle momentum with a Gaussian
distribution and recalculating the curvature error from
the smeared quantity. For small curvature errors, i.e.,
σ2
κ ≪ κ2, one obtains:

IE[g(κ)] ≈ −|σκMS |
κ

. (58)

The expected curvature pull is shifted toward smaller cur-
vatures (corresponding to higher momenta). It is interest-
ing to note that the curvature itself is correctly fitted, i.e.,
IE[κ] = κtrue. Since the bias of the curvature pull distri-
bution is caused by the a priori unknown MS uncertainty,
this effect is henceforth referred to as MS normalization
bias.

5.1.2. Curvature Pull in Global Triplet Track Fit

For dominant MS angular errors, the 3D curvature in
the global fit becomes a weighted sum of the local triplet
fits (see Section 3.2). Due to the MS normalization bias
discussed in the previous section, high momentum triplets
receive a higher weight in the fit than low-momentum
triplets. This leads to the so-called weighting bias of the
curvature.

For demonstration, the weighting bias has been studied
for a simple detector geometry with equidistant tracking
layers. Using a toy Monte Carlo, the following relation
was empirically found for the weighting bias:

IE[κ]− κtrue = −
(
2− 2

ntriplet

)
σ2
κMS

κtrue
. (59)

with ntriplet being the number of triplets combined. The
weighting bias depends quadratically on the curvature er-
ror and is negative.

All together, the pull distribution (Equation 57) is in-
fluenced by two effects: the weighting bias, which leads to
a shift in the curvature, and the MS normalization bias,
which creates an asymmetry in the pull distribution.
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5.2. Bias Mitigation in the Global Triplet Fit

The size of the bias depends on the accuracy with which
the MS uncertainties are known prior to the fit. For the
global fit, there are several options to calculate the MS
angular errors that enter the MS precision matrix DMS

(listed in order of increasing precision):

• from triplet parameter based estimates of the cur-
vature (momentum), for example using the simple
relation: κest = Φ̃/ρϕ,

• from locally fitted curvatures derived before the global
fit, κest = κloc (Equation 46),

• by repeating (“updating”) the global fit (Equation 25
or Equation 32), where the MS angular errors are
calculated from the curvature obtained in the first
fit: κest = κglobal(1

st fit)12.

Since the global fit has a significantly higher precision than
the local fits, the bias is significantly reduced by using the
third method. The downside is that the precision matrix
K must be re-calculated (matrix inversion) after updating
the MS angular errors, essentially doubling the computa-
tional effort.

Note that the same fitting bias also occurs in the KF.
However, due to the gradually increasing momentum preci-
sion, the bias in the KF in smaller compared to the GTTF
without updating. After the final smoothing step (KF)
and update of the MS uncertainties (GTTF), the fitting
biases of both methods are expected to be identical, as
they use the same MS uncertainties as input for the track
fit.

5.3. Regularized MS Fit

The weighting bias of the curvature can be reduced by
explicitly including the momentum dependence of the MS
angular errors (Equation 3) in the fit. If included, mini-
mization of the general χ2 formula (Equation 19) yields a
system of equations that contains non-linear κ2 · δk terms,
which is difficult to solve. However, since the bias is mainly
relevant for the case of prevailing MS errors, hit position
errors are ignored in the following. The MS precision ma-
trix can then be replaced by a new matrix that depends
only on the MS parameters, defined in Equation 4:

DMS → 1

κ2
BMS, with

BMS := diag

(
1

b2MS,0

, ... ,
1

b2MS,nhit−3

;

sin2 θ̂0
b2MS,0

, ... ,
sin2 θ̂nhit−3

b2MS,nhit−3

)
.

12The updating of the GTTF corresponds to the smoothing step
of the KF.

The fit quality after linearization then reads in compact
form:

χ2
MSreg(κ) =

(Ψ+ ρκ)⊤ BMS (Ψ+ ρκ)

κ2
, (60)

and minimization of above equation yields:

κMSreg = −Ψ⊤BMS Ψ

ρ⊤BMS Ψ
, (61)

σ2
κMSreg

=
(Ψ⊤BMS Ψ)3

(ρ⊤BMS Ψ)4
. (62)

Finally, the fit quality is given by:

χ2
MSreg = ρ⊤BMS ρ − (ρ⊤BMS Ψ)2

Ψ⊤BMS Ψ
. (63)

For completeness, formulas for the regularized local triplet
fit are given in Appendix B.

The regularized MS fit has the advantage that the cur-
vature pull distribution is free of bias, see Section 5.4. An-
other advantage is that the fit depends only on the MS
parameters (BMS), and no longer on the estimated MS
errors (DMS). Therefore, there is no need to estimate the
MS angular error before (global) fitting.

5.4. Comparison of Regularized and Unregularized MS Fits

The biases of the regularized and unregularized MS fit
are quantitatively compared using an example: A relativis-
tic particle with a momentum of 300MeV/c is simulated
in a uniform magnetic field of 3T using three tracking
layers over a total distance of 60mm. The material thick-
ness of the middle tracking layer corresponds to 2%X0.
Assuming that hit position errors are negligible, the cor-
responding relative curvature (momentum) resolution of
this setup is about 23%.

A comparison of the two fits reveals contrasting results:
For ntriplet = 1, the unregularized MS fit has a mean curva-
ture pull of−25% (towards higher momenta), see Figure 5,
which further increases if more triplets are combined. The
regularized MS fit has no pull, as expected. The negative
curvature pull of the unregularized MS fit is a combined
effect of the MS normalization bias (Section 5.1.1) and the
weighting bias (Section 5.1.2), which can be described by
a function that adds both sources quadratically, resulting
in:

IE[gκ] = −
√

8n2 − 5n+ 4

n

σκMS

κtrue
, (64)

As shown in Figure 5, Equation 64 describes the simulation
data reasonably well.

In Figure 6, the curvature bias of both fits is shown.
For ntriplet = 1, the unregularized MS fit has no curvature
bias. However, the regularized MS fit has a relative bias of
+5% (towards lower momenta). This positive curvature
bias compensates for the negative normalization bias, so
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Figure 5: Simulated mean curvature pull (Equation 57) as function
of the number of triplets for a relative curvature (momentum) reso-
lution of 23%. The results are shown for regularized (blue squares)
and unregularized (red points) MS fits. The statistical errors are of
the order of 1 per mil. The data points are compared with empirical
functions. See text for more explanation.

that the pull distribution of the regularized MS fit is free
of errors.

Of particular interesting is the case when several triplets
are combined (ntriplet > 1). For the unregularized MS fit,
the weighting bias causes a shift towards negative curva-
tures (see Figure 6), which increases with ntriplet and is
quantitatively described by Equation 59. For the regular-
ized MS fit, the curvature bias decreases, according to:.

IE[κMSreg]− κtrue =
1

ntriplet

σ2
κMSreg

κtrue
. (65)

Note that already for ntriplet = 2, the (positive) bias of
the regularized MS fit is smaller than the (negative) bias
of the unregularized MS fit.

As demonstrated for the discussed example, both the
MS normalization bias and the weighting bias can signif-
icantly deteriorate the curvature measurement if the un-
regularized MS fit is used. Therefore, preference should
be given to the regularized fit if MS uncertainties domi-
nate, since the unregularized MS fit requires an update to
reduce the fitting bias.

6. Calculation of Triplet Parameters

The triplet parameters are the input for the global and
local triplet fit (Section 3 and Section 4); they are detector-
specific and depend on the tracker geometry and the mag-
netic field. In this section, the four fundamental triplet
parameters (Φ̃, Θ̃, ρϕ and ρθ) are calculated for the most
commonly used detector design, which features tracking
planes within a uniform solenoidal field (Section 6.1). In
section Section 6.2, the case of zero magnetic field is dis-
cussed and formulas for measuring the particle momentum
just through MS are given.

Figure 6: Simulated relative bias of the curvature, IE[κMSreg]/κ
true−

1, as a function of the number of triplets per track for a relative
curvature (momentum) resolution of 23%. For more information,
see caption of Figure 5.

A gap spectrometer dipole as well as an algorithm
for determining the triplet parameters for any (inhomo-
geneous) magnetic field, are discussed in appendices (Ap-
pendix E and Appendix F).

6.1. Uniform Magnetic Field

A sketch of a hit triplet in a uniform magnetic field is
shown in Figure 7. The z-axis of the spherical coordinate
system is aligned with the magnetic field direction, and
the x-y plane is the bending plane. In this plane, the line
connecting hit 0 and 1 (hit 1 and 2) defines the azimuthal
chord angle φ01 (φ12), according to:

φ01 := ∢φ(x⃗1 − x⃗0), φ12 := ∢φ(x⃗2 − x⃗1). (66)

The polar angles, θ01 and θ12, are defined in the longitu-
dinal s-z plane as:

θ01 := acot

(
z01
s01

)
, θ12 := acot

(
z12
s12

)
, (67)

with s01 and s12 being the transverse arc lengths of the
first and second triplet segment, respectively. The corre-
sponding bending angles, Φ01 and Φ12, are related to the
transverse arc lengths via

Φ01 :=
s01
R01

= s01 κ̄⊥01
, Φ12 :=

s12
R12

= s12 κ̄⊥12
,

(68)

with κ̄⊥01
= κ/ sin(θ01) and κ̄⊥12

= κ/ sin(θ12) being the
transverse curvatures of the two segments13.

13Here and in the following, arcs indicate segment curvatures,
which always have two indices indicating the connected hits.
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Figure 7: Hit triplet in a uniform magnetic field in the x-y bending plane (left) and the s-z non-bending plane (right). Hit positions are given
by the three points x⃗0, x⃗1 and x⃗2. R01 and R12 are the transverse bending radii before and after the middle layer. s01 and s12 denote the
transverse arc lengths and Φ01 and Φ12 the corresponding bending angles. d⃗01 and d⃗12 denote the transverse distance vectors between hits in
the transverse plane and φ01 and φ12 are the corresponding azimuthal angles. ∆ϕ is the kink angle in the bending plane. In the non-bending
plane, z01 and z12 define the longitudinal distances between adjacent hits, θ01 and θ12 the corresponding polar angles and ∆θ is the kink
angle. Modified from Ref.[7].

With above definitions, the kink angles in the bending
and non-bending plane are given by14:

∆ϕ = (φ12 − φ01)−
Φ01 +Φ12

2
, (69)

∆θ = θ12 − θ01 . (70)

In a uniform magnetic field, the bending angles Φkk′

and polar angles θkk′ fulfill the following relations [7]:

sin2
Φkk′

2
=

1

4
κ2 d2kk′ + κ2 z2kk′

sin2 (Φkk′/2)

Φ2
kk′

, (71)

sin θkk′ =
1

2
κ dkk′ cosec

(
κ zkk′

2 cos θkk′

)
, (72)

where k and k′ denote two consecutive hits that delimit a
segment.

Above equations are transcendent and have multiple
solutions, in general. For the hit triplets considered here,
only the solution with the smallest bending angle is rele-
vant. Instead of solving the equations above numerically,
Equation 71 and Equation 72 are solved with the lineariza-
tion ansatz introduced in Section 2.1.

For the linearization, the triplet trajectory with ∆ϕ =
0 (no kink in the bending plane) is chosen as the reference
and will be referred to as the circle solution and denoted
by the superscript“C” hereafter. The circle solution serves
as a suitable reference for linearization, provided that the
MS angles are not too large. The transverse curvature of
the circle solution, κC⊥ , is readily obtained from the three

14Note that different symbols are used for denoting azimuthal an-
gles: φ is used to describe relative hit positions, ϕ is used to describe
the track direction, and Φ is used for bending angles.

triplet hit positions 0, 1, 2:

κC⊥ =
2 sin(φ12 − φ01)

d02
(73)

= 2
[(x⃗1 − x⃗0)× (x⃗2 − x⃗1)]z

d01 d12 d02
. (74)

Here, dkk′ := ||(x⃗k⊥ − x⃗k′
⊥
)|| are the hit distances in the

transverse plane. For the circle solution, the bending and
polar angles are given by:

ΦC
kk′ := 2 arcsin

(
dkk′ κC⊥

2

)
, (75)

cot θCkk′ :=
zkk′

dkk′

sin (ΦC
kk′/2)

ΦC
kk′/2

=
zkk′ κC⊥
ΦC

kk′
, (76)

with indices kk′ = 01 for the first, and kk′ = 12 for the
second segment.

By using the linearization ansatz of Equation 8 and
Equation 9, the four fundamental triplet parameters are
eventually obtained:

Φ̃ =
1

2
(ΦC

01 n
C
01 +ΦC

12 n
C
12), (77)

Θ̃ = θC12 − θC01

+ (1− nC12) cot θ
C
12 − (1− nC01) cot θ

C
01, (78)

ρϕ = − 1

2κC⊥

(
ΦC

01 n
C
01

sin θC01
+

ΦC
12 n

C
12

sin θC12

)
, (79)

ρθ =
1

κC⊥

(
(1− nC01)

cot θC01
sin θC01

− (1− nC12)
cot θC12
sin θC12

)
. (80)

The fundamental triplet parameters depend on two index
parameters, nC01 and nC12, which were first introduced in
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Ref.[7] and read15:

nCkk′ =

(
ΦC

kk′

2
cot

ΦC
kk′

2
sin2 θCkk′ + cos2 θCkk′

)−1

. (81)

Note that the index parameters might become singular for
recurling tracks, i.e., |ΦC

kk′ | ≥ π. In that case, the corre-
sponding track segment provides an excellent momentum
resolution as MS uncertainties vanish in first order [7].

6.1.1. Small Bending Limit

In the limit of small bending angles, Φkk′ → 0 (e.g.
high momentum tracks) the index parameters approach
unity, nCkk′ → 1. The fundamental triplet parameters then
simplify to:

lim
κ→0

Φ̃ = φ12 − φ01, (82)

lim
κ→0

Θ̃ = θ2 − θ1, (83)

lim
κ→0

ρϕ = −1

2

√
d202 + z202 = −1

2
||x⃗2 − x⃗0||, (84)

lim
κ→0

ρθ = 0. (85)

In this limit, the parameters Θ̃ and Φ̃ become the triplet
kink angles, the ρϕ parameter becomes half the negative
chord length of the line connecting the first and third hit,
and the ρθ parameter vanishes. All fundamental triplet
parameters are very simple functions of the triplet geom-
etry in this limit.

6.2. Triplets in Zero Magnetic Field

In the case of zero magnetic field, the triplet trajectory
is described by two straight lines with a kink. Although
the momentum cannot be measured via the Lorentz force
(both triplet ρ-parameters are zero), the amount of MS
at the middle tracking layer can be used as an indirect
measure of the momentum. The compatibility of the kink
angles with MS theory can be tested using the relation:

χ2
MS(B=0) = Ψ⊤DMS(p)Ψ. (86)

Here hit position errors are neglected for the sake of sim-
plicity. Because of the momentum dependence of the MS
errors: σMS ∝ 1/p, the right side of Equation 86 can be
rescaled:

χ2
MS(B=0) =

p2

p20
(Ψ⊤DMS(p0)Ψ), (87)

where p0 is a reference momentum that can be freely cho-
sen. Minimizing above equation is not a promising strat-
egy as this would result in p = 0, an unphysical solution.
A better approach is to “calibrate” the momentum such
that the χ2-value per degree of freedom is 1. This method
works reliably for a large number of triplets (hits).

15The index parameters were called α1 and α2 in [7].

For each triplet, the momentum is the only degree of
freedom. After summing over all triplets, the expected
mean value of the χ2 distribution is IE[χ2] = ntriplet and
the expected variance is Var[χ2] = 2ntriplet. The best esti-
mate for a momentum estimation is therefore given by the
condition:

χ2
MS(B=0)

!
= ntriplet, (88)

resulting in:

pMS(B=0) = p0

√
ntriplet

Ψ⊤ DMS(p0) Ψ
, (89)

σ(p)2MS(B=0) = p20
2ntriplet

Ψ⊤ DMS(p0) Ψ
. (90)

Both equations can be combined to:

σ(p)2MS(B=0) =
2 p2MS(B=0)

ntriplet
. (91)

As expected, the relative momentum resolution σ(p)/p im-
proves with 1/

√
ntriplet.

In the presence of hit position errors, the same method
can be used by making the following replacement (see also
Equation 27):

DMS(p0)
−1 → K−1 = DMS(p0)

−1 +
p2

p20
H⃗
⃗⃗
D−1

hitH⃗
⊤

(92)

However, as the momentum determines the relative weight
between MS and hit position errors, the solution needs to
be determined iteratively.

Above method can be used for time projection cham-
bers or spectrometers, where trackers are located outside
the magnetic field region, like the LHCb experiment [15].

7. Energy Loss Correction

Any tracking detector causes energy losses of parti-
cles through ionization. For electrons and positrons, also
Bremsstrahlung has to be considered. The expected en-
ergy loss depends on the effective path length in the mate-
rial, which is the same as used for the calculation of the MS
parameters (Equation 4), and is already known at triplet
level.

For thin tracking layers, the corrections to the track fit
are typically minor. A simple method to consider small
expected energy losses is discussed in Section 7.1 for the
local, and in Section 7.2 for the global track fit. For thick
tracking layers, however, energy straggling might be sig-
nificant, requiring a combined fit of the track parameters
and the energy losses, which is presented in Section 7.3.

For the sake of simplicity, it is assumed that the par-
ticle is highly relativistic, such that the relation p ∼ E
can be exploited. Furthermore, the calculations below are
performed for a uniform magnetic field.
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Figure 8: Sketch of a particle trajectory (red solid line) with energy
loss at the middle triplet layer in a uniform magnetic field. The track
curvatures of the segment before and after the energy loss are denoted
by κ̃01 and κ̃12, respectively. For comparison a trajectory without
energy loss is shown, which also connects all hits (blue dashed line).

7.1. Energy Loss Correction in Local Fit

A hit triplet with hits k = {0, 1, 2} is considered. The
energy loss at the middle tracking layer ∆E1

changes the
3D curvature, κ, and the trajectory as sketched in Fig-
ure 8. Under the assumption of small energy losses, ∆E1 ≪
qB/κ01, the curvature change is given by:

∆κ1 = κ̂12 − κ̂01 =
∆E1

|p⃗|
κ̂01 ≈ ∆E1

qB
κ̂01

2
, (93)

with κ̂01 and κ̂12 being the curvature of the first and second
segment, respectively, and ∆κ1 being the curvature change
at the hit position k = 1. The curvatures before and after
the energy loss are related to the solution of the triplet fit
without energy loss, κ0, through:

κ̂01 = κ0 − s12
s02

∆κ1, (94)

κ̂12 = κ0 +
s01
s02

∆κ1. (95)

Due to the curvature difference between the two segments,
the azimuthal track angles are rotated with respect to the
∆κ1 = 0 (∆E1

= 0) solution. Using the notation from
Section 2.1, the rotations in the bending plane at the three
hit positions are given by:

∆ϕ01 = ϕ
∆E1
01 − ϕ01 = +

s01 s12
2 s02

∆κ1 sin θ̂, (96)

∆ϕ10 = ϕ
∆E1
10 − ϕ10 = − s01 s12

2 s02
∆κ1 sin θ̂, (97)

∆ϕ12 = ϕ
∆E1
12 − ϕ12 = − s01 s12

2 s02
∆κ1 sin θ̂, (98)

∆ϕ21 = ϕ
∆E1
21 − ϕ21 = +

s01 s12
2 s02

∆κ1 sin θ̂, (99)

with ϕ
∆E1

kk′ and ϕkk′ being the azimuthal track angles with
and without energy loss at the middle hit position, respec-
tively. Note that the angles ϕ10 and ϕ12 change in the
same way; thus the kink angles and the fit quality of the
local fit are not affected by the energy loss, in first order.

7.2. Energy Loss Correction in Global Fit

The expected energy losses at the detection layers are
assumed to be known, for example by calculating the ex-
pected particle-specific ionization loss from the material
distribution. The energy losses are then treated as fixed
parameters in the global fit.

The curvature of the segment κ̄kk′ can be expressed by
the curvature of the first segment, κ̂01 and the sum of all
curvature changes at the detector layers:

κ̄kk′ = κ̂01 +

k∑
ℓ=1

∆κℓ. (100)

For triplet k, the relation between triplet curvature and
segment curvature (compare Equation 94) then reads:

κj=k = κ̄kk′ +
sk′k′′

skk′′
∆κk′ , (101)

where the convention k′′ = k′ + 1 and k′ = k + 1 is used.
Furthermore, an integrated energy loss at the hit posi-

tion k is defined as:

Ik :=

k∑
ℓ=1

∆Eℓ
. (102)

Using the approximation:

κ̄kk′ ≈ κ̂01 +
Ik
qB

κ̂01
2
, (103)

the triplet curvature at triplet j can be written as:

κj=k ≈ κ̂01 +
I⋆k
qB

κ̂01
2
, (104)

Here, I⋆j denotes an effective integrated energy loss, de-
fined by:

I⋆k = Ik +
sk′k′′

skk′′
∆Ek′ , (105)

which takes into account the energy loss inside the triplet
j, see Equation 101.

In this global fit, the first segment curvature κ̂01 is
chosen as fit parameter. In order to avoid higher order
terms of κ̂01 in the fit, Equation 104 is linearized using the
ansatz:

κ̂01
2

= κ̂2j + 2(κ̂01 − κ̂j) + O
(
(κ̂01 − κ̂j)

2
)
, (106)

with κ̂j being the curvature obtained from the local triplet
fit without energy loss.

Equation 104 in linearized from then reads:

κj ≈ κ̂01

(
1 +

2 I⋆j
qB

κ̂j

)
−

I⋆j
qB

κ̂ 2
j . (107)

By comparing Equation 107 with the linearization ansatz
in Equation 17 and Equation 18, one sees that the energy
loss inside a triplet corresponds to a change of the triplet
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parameters. The linear relationship between κj and κ̂01
enables the use of the global track fit formulas presented in
Section 3 to include energy losses, by making the following
substitutions:

Θ̃j → Θ̃′
j = Θ̃j − ρθ,j

I⋆j
qB

κ̂2j , (108)

Φ̃j → Φ̃′
j = Φ̃j − ρϕ,j

I⋆j
qB

κ̂2j , (109)

ρθ,j → ρ′θ,j = ρθ,j

(
1 +

2 I⋆j
qB

κ̂j

)
, (110)

ρϕ,j → ρ′ϕ,j = ρϕ,j

(
1 +

2 I⋆j
qB

κ̂j

)
. (111)

With above re-interpretation of the fundamental triplet
parameters, energy corrections can easily be included in
the global triplet track fit16.

7.3. Combined Track and Energy Loss Fit

For thick tracking detectors, energy straggling might
be significant, motivating to include energy losses in the
tracking layers as additional fit parameters. Energy losses
have usually non-Gaussian tails. However, for the sake of
simplicity, a normal distribution is used to derive the fit
formulas.

A difficulty arises from the quadratic curvature depen-
dence of the curvature shifts (see e.g. Equation 93) that
creates non-linearities in the fit17. This problem can be
tackled either by using the linearization ansatz from the
previous section (Equation 108 to 111) or by re-iterating
the fit. In order not to add too much complexity to the
discussion, it is assumed that the track curvature (momen-
tum) is known well enough, either from the local triplets
or a previous global fit, such that the curvature shifts can
be approximated by:

κj − κ̂01 ≈
I⋆j
qB

κ2pre , (112)

with κpre being the curvature obtained pre-fit.
If hit position errors are neglected, the fit function

reads in matrix representation:

χ2(κ̂01, ε) = ε⊤Dloss ε + (113)

(Ψ+ ρ κ̂01 −R∆E)
⊤
DMS (Ψ+ ρ κ̂01 −R∆E) ,

with κ̂01 being the fit parameter describing the curvature
of the first track segment, ∆E being a vector describing
the energy losses for each tracking layer, ε being a vector

16It is important to note that the locally fitted curvatures κ̂j should
only be used in above equations if they are reliably measured by the
triplets. An alternative strategy is to repeat the global fit, after
neglecting the energy loss in the first step, and using the curvature
result of the first fit as reference.

17This problem does not arise if the 3D radius R3D = κ is chosen
as fit parameter, as done in Ref.[7].

(fit parameter) describing the difference between the fitted
energy losses and the expected energy losses, according to
ε := ∆E−∆exp

E , and Dloss being the energy loss precision
matrix (inverse covariance matrix).

The relation between energy losses and kink angle shifts
is described by the matrix R, which is of size 2ntriplet ×
ntriplet, and given by:

R =
κ2pre
q B

(
diag(ρθ) Σ
diag(ρϕ) Σ

)
. (114)

Σ is a quadratic integration matrix, which sums up all
energy losses before the respective tracking layer:

(Σ)jj′ =


1 if j > j′

sj,j+1

sj−1,j+1
if j = j′

0 if j < j′
.

Note that the index j runs over all triplets and that the
energy loss in the very first tracking layer (k = 0) and the
last tracking layer (k = nhit − 1) are not accounted for in
the fit.

The minimization of Equation 113 gives the result:

κloss = −ρ⊤K loss Ψloss

ρ⊤K loss ρ
, (115)

σ2
κloss

=
1

ρ⊤K loss ρ
, (116)

withK loss being the triplet precision matrix for the energy
loss fit, defined as:

K−1
loss = D−1

MS + RD−1
loss R

⊤, (117)

and Ψloss being a modified kink angle vector, which in-
cludes energy loss effects:

Ψloss = Ψ + R∆exp
E . (118)

The fit quality then becomes:

χ2
loss = Ψ⊤

lossKρlossΨloss, (119)

with

Kρloss =

(
K loss −

K loss ρρ
⊤K loss

ρ⊤K loss ρ

)
. (120)

Above results are identical to the general fit that includes
hit position errors when the hit residuals are replaced by
the energy losses, and the matrix H⃗ is replaced by the
matrix R. Accordingly, one obtains for the fitted energy
loss vector:

∆E = ∆exp
E + D−1

loss R
⊤ Kρloss Ψloss, (121)

and for the corresponding covariance matrix:

Covε = D−1
loss − D−1

loss R
⊤Kρloss R D−1

loss. (122)

It is straightforward to also include hit errors in the fit.
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8. Triplet Fit Parallelization and Computational
Effort

The approach of splitting a set of hits into triplets pri-
marily aims to enhance the parallelizability of track fitting
and track reconstruction programs, which is especially im-
portant for high-rate experiments where the track recon-
struction is rate-limited. The GTTF has three steps: the
calculation of the triplet parameters, the local triplet fit
(optional filtering step), and the global triplet track fit.
The possible savings in computational effort through par-
allelization for each step are discussed below.

Triplet Parameters and Hit Gradients. Two main cases
can be distinguished. In the most general case (e.g. in-
homogeneous magnetic field) the triplet parameters need
to be derived from at least 2× 4 track extrapolations per
triplet (see Appendix F for details), which are independent
and can be parallelized.

In case that an analytical solution for the triplet pa-
rameters exists (e.g. uniform magnetic field, see Section 6.1),
computationally expensive track extrapolations are not re-
quired. The determination of the up to 3× 3 hit gradients
then only involves simple geometrical (re-)calculations. If
MS errors dominate, the calculation of the hit gradients is
not required. Since the triplet parameters of all triplets are
independent, the triplet parameter calculation can be fully
parallelized. Note that in track reconstruction tasks, each
triplet parameter needs to be calculated only once, even if
it belongs to several track candidates. This step can sig-
nificantly profit from parallel hardware architectures like
GPUs.

Local Triplet Fit as Filtering Step. Hit triplets are often
used as seeds in track reconstruction; an early filtering step
can be very useful to reduce hit combinatorics and speed
up processing time. The filtering step consists of calculat-
ing the local triplet fit quality (Equation 48) and applying
a quality cut. Only for accepted triplets, the momentum
and its error need to be calculated to enable checking the
consistency of the momentum with other triplets. This
step can also be fully parallelized.

Global Triplet Track Fit. In the general case, where hit
position errors cannot be neglected, the inversion of the
triplet covariance matrix,K−1, is the most time-consuming
step, if the number of tracking layers is large. The limited
ability to accelerate this step highlights the importance of
the local triplet fit as an early filtering step. The situation
is different in case of dominant MS errors, where K−1 is
diagonal, and full parallelization is possible. The global
fit quality, the track curvature, and its error can then
be easily calculated from simple sums, see Equations 32
to 34. The computational effort is then marginal and
the required calculations can be efficiently implemented
on parallel hardware architectures like GPUs.

Modern silicon pixel detectors offer superb spatial reso-
lution; and high-momentum particles – for which hit posi-
tion uncertainties dominate – are relatively rare in hadron
collider experiments. As a result, the GTTF can be imple-
mented in an almost fully parallelized manner. An inter-
esting aspect is the collection of filtered triplets and their
subsequent combination into track candidates, ultimately
forming a graph whose size depends on the purity of the
filtered triplets. Resolving triplet (hit) ambiguities is ac-
tually equivalent to disconnecting the graphs [16], a task
that can be efficiently tackled by GNNs [17] and cellular
automata [18]. The latter has been studied in a recent
work in combination with the GTTF [19].

9. Tracking Regimes

The GTTF provides closed-form expressions for the
track parameters and the covariance matrix, enabling an
easy identification of the dominant sources of the track
parameter uncertainties, and an assessment of the mea-
surement accuracy of the triplet. By using a classifica-
tion scheme, which is described below, different tracking
regimes can be defined. For the classification, two new
quantities are introduced: the tracking scale parameter
and the curvature significance parameter. Both parame-
ters provide important input for accelerating track recon-
struction, see discussion in Section 8, and can also aid in
optimizing tracking detector designs.

9.1. The Tracking Scale Parameter

The track parameter uncertainties are determined by
the triplet precision matrix K (Equation 27), which de-
pends on the triplet uncertainties Γϕϕ

⋆ and Γθθ
⋆ (Equa-

tion 43 and Equation 44). These parameters combine hit
position and MS errors.

For each triplet, the relative fraction of the hit position
errors (variance) can be used to define two tracking scale
parameters:

µ2
ϕ :=

Γϕϕ
Γϕϕ

⋆ , µ2
θ :=

Γθθ
Γθθ

⋆ . (123)

The values of µϕ and µθ are in the range from 0 for domi-
nant MS errors (low momentum regime) to 1 for dominant
hit position errors (high momentum regime).

The tracking scale parameters are of practical relevance
for track fitting. In the case that the tracking scale pa-
rameters are small (µϕ,θ ≲ 0.15), the fast MS fit can be
used18, whereas in all other cases the general fit should be
used, which requires the inversion of the triplet covariance
matrix K−1. The tracking scale parameter thus defines
a criterion for determining whether the track fit can be
accelerated.

18For ρ2ϕ ≫ ρ2θ (small bending), only the tracking scale parameter

µϕ is relevant.
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9.2. The Curvature Significance Parameter

The curvature significance parameter, ξ, is defined by
the ratio of the curvature over its error:

ξ2 :=
κ2

σ2
κ

, (124)

and quantifies how precisely the track curvature is mea-
sured. The parameter allows to distinguish between the
strong bending regime, ξ2 ≫ 1, where a precise momentum
measurement is possible, and the weak bending regime,
ξ2 ≈ 0, where no momentum measurement is possible.

9.2.1. Dominant MS Uncertainties (µ2 = 0)

For a tracking detector in a uniform magnetic field,
the following relation is obtained if MS uncertainties dom-
inate:

ξ2MS =
κMS

2

σ2
κMS

≈ Φ̃2

σ2
ϕMS

. (125)

In the small bending limit (Section 6.1.1), the last expres-
sion can be rewritten as:

ξ2MS ≈ a2

4 b2MS

, (126)

with a being the length of the triplet in Euclidean space
(compare Equation 84) and bMS being the MS parameter
(Equation 3). ξMS is independent of the particle momen-
tum and characterizes the tracking detector quality for MS
dominance. The requirement to measure the track cur-
vature with 3σ significance corresponds to the condition

a
2 bMS

≳ 3, a criterion first formulated in Ref.[7].
It should be remarked that ξMS is also related to the

fitting bias discussed in Section 5 and that for ξMS < 10
significant biases (> 1%) of the momentum (curvature)
can occur.

9.2.2. General case

For non-negligible hit position errors (general case),
the curvature significance parameter (Equation 124) can
be generalized by including the tracking scale parameter
(Equation 123):

ξ = ξMS ·
√

1− µ2
ϕ. (127)

As expected, the curvature significance decreases as the
contribution of hit position errors increases (larger µϕ),
which corresponds to higher track momenta.

9.3. Examples of Tracking Regimes in Pixel Detectors

For illustration, the µϕ and ξ parameters are calcu-
lated for several pixel detectors: the upgraded ALICE ex-
periment [20, 21], the upgraded ATLAS experiment [22],
and the Mu3e experiment [9]. These detectors are here se-
lected as they cover a wide range of particle momenta from
O(10MeV/c) at the Mu3e experiment up toO(1000GeV/c)
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Figure 9: Parameter space spanned by the normalized MS parameter
scale ξ and the tracking scale parameter µϕ for various pixel tracking
detectors: ALICE ITS II inner and outer pixel tracking detector
(black), ATLAS ITK (blue) and Mu3e (red). The curves cover the
momentum range 0.1− 100GeV/c for ALICE, 1− 1000GeV/c for
ATLAS, and 10 - 53MeV/c for Mu3e.

at the ATLAS experiment. Based on the detector descrip-
tion in the respective technical design reports, the tracking
regime parameters are derived from hit triplets in the cen-
tral tracking regions. The µϕ - 1/ξ parameter space for
the above mentioned pixel trackers is shown in Figure 9,
and discussed below.

ALICE Inner Tracking System (ITS II). The ITS II de-
tector [20, 21] is in operation since 2024. It consists of
three inner pixel layers with a radiation length of X/X0 =
0.35% and four outer pixel layers with a radiation length
of X/X0 = 1%. The distance between the inner pixel lay-
ers is only ∼ 10mm, which, together with the relatively
moderate field of B = 0.5T, results in a low curvature sig-
nificance of ξMS ∼ 3.8, despite the small amount of track-
ing material. With the Inner ITS II detector alone, a 3σ
measurement of track curvatures is only possible for very
low momenta (p ≲ 150MeV/c). However, it should be
mentioned that the main purpose of the Inner ITS II de-
tector is vertexing and not the momentum measurement.

The situation is different for the Outer ITS II detector,
where the tracking layers are separated by about 80mm.
The curvature significance for low-momentum tracks is
ξMS ∼ 18 and a 3σ measurement of track curvatures is
possible for a single triplet up to 15GeV/c, thanks to the
high resolution of the ALPIDE sensors [23].

ATLAS Inner TracKer (ITK). The ITK tracking system[22]
of the high luminosity upgraded ATLAS experiment was
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optimized to reconstruct charged particles at very high
particle rates, with up to 200 collisions per bunch crossing.
Similar to the Inner ITS II detector, the main purpose of
the ATLAS pixel detector is to reconstruct primary and
secondary vertices. Due to the high radiation length of
about X/X0 = 1.5% per tracking layer in the central re-
gion, a curvature significance of ξMS ∼ 11 is only reached
for very low-momentum tracks. A 3σ measurement of the
curvature is possible for a single triplet up to 20GeV/c,
thanks to the high field of B = 2T.

Mu3e Pixel Tracker. The Mu3e pixel detector [9] has an
ultra-light pixel detector design with a radiation length of
about X/X0 = 0.11% per tracking layer, and was opti-
mized for tracking low-momentum electrons and positrons
from muon decays in the momentum range 12−53MeV/c.
The tracking scale parameter is µ2

ϕ ≤ 0.1 for all momenta,
such that the fast MS track fit can be exploited for all
tracks. The curvature significance is about ξ ∼ 14 in the
full momentum range. Note that the Mu3e pixel detector
exploits recurling tracks, which provide an about 7 times
better momentum resolution, corresponding to ξ ∼ 100.

The above examples show how the tracking scale pa-
rameter µϕ and the curvature significance ξ distinguish dif-
ferent tracking regimes, which would require different im-
plementations to accelerate the GTTF. Furthermore, the
curvature significance also defines a metric for the ability
to resolve inevitable hit ambiguities in the track recon-
struction: triplets with large ξ-values restrict the phase
space more than low ξ triplets. For track reconstruction,
high ξ triplets are better suited than low ξ triplets as they
provide higher precision in track extrapolations and more
stringent consistency checks (e.g. consistency of triplet
momenta). Consequently, the proposed tracking regime
analysis can serve as a valuable tool for track reconstruc-
tion optimization.

10. Summary

In this paper a new track fit, the General Triplet Track
Fit (GTTF) was presented. The solution of the fit is given
in an analytical closed-form. All formulas are based on
so-called triplet parameters which contain the detector-
specific information such as geometry, detector material
and the magnetic field. The fit is generic and takes into
account material effects such as MS and energy loss, as well
as hit position uncertainties. The triplet representation
makes the track fit universal, since the same fitting code
can be used for all kind of tracking detectors.

Triplet parameters are derived for various tracking de-
tector configurations. It is shown that in the case of small
bending (high momentum tracks), the triplet parameters
become simple geometrical constants. For the triplet pa-
rameter calculation in a general (inhomogeneous) mag-
netic field, an algorithm employing track extrapolation is

presented. Furthermore, two methods for including en-
ergy losses are described: one that treats the expected en-
ergy loss as an additional input (suitable for small energy
losses), and one that fits the energy loss for each tracking
layer (suitable for large energy losses).

The output of the GTTF consists of the particle mo-
mentum (3D curvature), all hit residuals, and the full co-
variance matrix. From this, the state vector of the track,
which is needed for track extrapolation (vertexing), can be
calculated at any point of the trajectory. Formulas to cal-
culate the state vector and the corresponding covariance
matrix are provided in the appendix.

The GTTF can be fully parallelized on triplet level.
Due to the high degree of parallelization, the GTTF is
ideal for its implementation on parallel hardware architec-
tures such as GPUs. Furthermore, the fit of a single hit
triplet is over-constrained, thus making it possible to cal-
culate a fit quality on triplet level and to apply filters. This
(optional) filtering step offers the possibility to accelerate
track reconstruction at an early stage.

The GTTF provides several options for algorithmic ac-
celeration, the most important being the MS fit, which
does not require a computationally expensive matrix in-
version, in contrast to the global fit. Two new parameters
are introduced, the tracking scale parameter and the cur-
vature significance parameter, to classify different tracking
regimes, for which different track fit approximations and
optimizations apply.

An interesting application for the tracking regime-spe-
cific track fit acceleration is track reconstruction at hadron
colliders. Since most particles produced in hadron inter-
actions are at low momenta and dominated by MS, signif-
icant amount of computating time can be saved by per-
forming the fast MS fit. It is recommended to execute the
more time-expensive generic fit only if hit position errors
cannot be neglected (µϕ,θ ≳ 0.15). An optimization of the
track reconstruction based on the tracking regime concept
is of high relevance for real-time applications, in particu-
lar in environments with high particle rates. The analysis
of tracking regimes can also provide useful information for
the design of new tracking detectors.

The analytical closed-form of the GTTF also enables
the study of the inherent fitting bias in the MS tracking
model. A detailed study of the bias in MS dominated track
fit is performed. Mitigation strategies are discussed and a
regularized track fit is presented, which reduces track fit
biases.

Finally, it is important to note that the GTTF can
be easily extended to incorporate geometric alignment pa-
rameters, which will be addressed in a follow-up article.
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A. Global Fit for Dominant Hit Position Errors

In the limit of dominant hit position errors, the MS
errors can be neglected. According to Equation 27, the
precision matrix becomes:

K → Khit := (H⃗
⃗⃗
D−1

hitH⃗
⊤
)−1. (A.1)

The 3D curvature and its uncertainties are then given by:

κhit = −ρ⊤Khit Ψ

ρ⊤Khit ρ
, (A.2)

σ2
κhit

=
1

ρ⊤Khit ρ
. (A.3)

Furthermore, the hit positions shifts and the correspond-
ing covariance matrix are given by:

δ⃗hit =
⃗⃗
D−1

hitH⃗
⊤
Kρhit Ψ, (A.4)

⃗⃗
Covδhit

=
⃗⃗
D−1

hit −
⃗⃗
D−1

hitH⃗
⊤
Kρhit H⃗

⃗⃗
D−1

hit . (A.5)

Here, Kρhit is defined similar to Equation 29:

Kρhit =

(
Khit −

Khit ρρ
⊤Khit

ρ⊤Khit ρ

)
.

Finally, the fit quality is given by:

χ2
hit = δ⊤

⃗⃗
Dhit δ (A.6)

= Ψ⊤KρhitΨ. (A.7)

Note that in the first line of Equation A.6 the sums are
executed over all hit uncertainty directions whereas in the
second line (Equation A.7) the sums run over twice the
number of triplets.

B. Regularized Local MS Fit

The formulas for the regularized global MS fit are dis-
cussed in Section 5.3. For a single triplet, the fit result is
given by:

κMSreg = − Φ̃2 sin2 θ̂ + Θ̃2

Φ̃ ρϕ sin2 θ̂ + Θ̃ ρθ
, (B.1)

σκMSreg
= bMS

(Φ̃2 sin2 θ̂ + Θ̃2)
3
2

(Φ̃ ρϕ sin2 θ̂ + Θ̃ ρθ)2
, (B.2)

χ2
MSreg =

1

b2MS

(Φ̃ ρθ − Θ̃ ρϕ)
2

Φ̃2 + Θ̃2/ sin2 θ̂
. (B.3)

C. Strip Detectors

In this section, the local triplet fit is discussed for a
barrel-type strip detector in a uniform magnetic field. In
the context of the triplet fit, a detector is defined to be
a strip detector if large hit position errors in one detec-
tor direction create a significant rotational triplet uncer-
tainty. In the following formulas for the local triplet fit are
derived, which include the hit position dependence of the
triplet parameters that has been neglected in Section 3 and
Section 4. Rotational uncertainties in the global triplet fit
are usually negligible if several triplets are combined.

The configuration with strips oriented in axial direction
is considered here, which is used in many experiments.
Since σz ≫ σϕ, such a detector is not able to precisely
measure the polar angle. This, however, affects the 3D
curvature via the relation κ = κ⊥ sin θ.

With the assumptions Γθθ ≫ σ2
MS and Γθθ ≫ Γϕϕ,

Equation 46 (and the following equations) can be approx-
imated as:

κz-strip ≈ − Φ̃

ρϕ
+ ∆κrot, (C.1)

σ2
κ,z-strip ≈ Γϕϕ

⋆

ρ2ϕ
+ ∆σ2

κ,rot, (C.2)

χ2
z-strip ≈ Θ̃2

Γθθ
, (C.3)

where additional correction term are added to account for
the rotational uncertainty. They are calculated as:

∆κrot = − Φ̃

ρϕ
∆θrot cot θ̂, (C.4)

∆σ2
κrot

= κ2z-strip σ
2
θrot cot θ̂, (C.5)

and depend on the triplet rotation and its error:

∆θrot =
Θ̃

2Γθθ

(
δ⃗2 h⃗θ2 − δ⃗0 h⃗θ0

)
, (C.6)

σ2
θrot =

1

4
(⃗htθ0

⃗⃗
V ′ h⃗θ0 + h⃗tθ2

⃗⃗
V ′ h⃗θ2) . (C.7)

D. Track Parameters and Covariance Matrix

In a broken line fit such as the GTTF, kinks in the
trajectory must be taken into in the determination of the
track parameters. In the following it is assumed that all
detector material in the active tracking region is located at
the tracking layers. The position of the kinks thus agrees
with the position of the hits. For vertexing (extrapolation
to the track origin), the track parameters need to be de-
termined at the first hit (k = 0). For track extrapolation
in the other direction, the track parameters need to be de-
termined at the last hit (k = nhit−1). Note that for track
extrapolation the material in the first (last) detector layer
must be considered as extra scatterer (like any other ma-
terial, e.g. beam pipes) since this material is not included
in the track fit.
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For track parameterization, the following representa-
tion is used:

t̄ = (x⃗, κ, θ, ϕ), (D.1)

with the corresponding covariance matrix defined as:

¯̄Covt =


⃗⃗
Cov(x⃗, x⃗) Cov(κ, x⃗) Cov(θ, x⃗) Cov(ϕ, x⃗)
Cov(x⃗, κ) Var(κ) Cov(θ, κ) Cov(ϕ, κ)
Cov(x⃗, θ) Cov(κ, θ) Var(θ) Cov(ϕ, θ)
Cov(x⃗, ϕ) Cov(κ, ϕ) Cov(θ, ϕ) Var(ϕ)


(D.2)

Here and below, the bar ¯ indicates a vector and the dou-
ble bar¯̄ a matrix in the six-dimensional track parameter
space.

D.1. Track Position and Uncertainties

Be hit k the starting point of the track extrapolation,
the track position in global coordinates is obtained from
the fitted residuals (Equation 28) via the relation:

x⃗k,fit = x⃗k +
⃗⃗
Q

⊤

k δ⃗k, (D.3)

with
⃗⃗
Q

⊤

k being the back-rotation from local to global coor-
dinates, see also Equation 10. The corresponding covari-
ance matrix in global coordinates is derived from the local
covariance matrix via the transformation:

⃗⃗
Cov(x⃗k, x⃗k) = (

⃗⃗
Covx)k = (

⃗⃗
Q⊤ ⃗⃗

Covδ
⃗⃗
Q)k, (D.4)

where
⃗⃗
Covδ is given by:

⃗⃗
Covδ =

⃗⃗
D−1

hit −
⃗⃗
D−1

hit H⃗
⊤
Kρ H⃗

⃗⃗
D−1

hit . (29)

D.2. Track Parameter Representation

The track vector in local coordinate transformation,
t̄loc, is defined equivalent to Equation D.1:

t̄loc = (δ⃗, κ, θ, ϕ). (D.5)

For the transformation to global coordinates a 6×6 matrix
is defined:

¯̄G :=


⃗⃗
Q⊤ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (D.6)

The track parameters and the corresponding error matrix
then transform as:

t̄ = ¯̄G
−1
t̄loc (D.7)

¯̄Covt =
¯̄G ¯̄Covtloc

¯̄G
−1
. (D.8)

Note that the curvature and track angles are defined in
global coordinates and not transformed.

k+1
φ k −

x

y sk −

k−1
B⃗

ϕ k −

ϕ k +

φ k +

k

sk +

z

s

θ k +

B⃗

zk −

zk +sk −

sk +

θ k −

Figure D.10: Azimuthal (left) and polar (right) track angles at the
hit position k using the short-hand notation introduced in Equa-
tion D.12 and Equation D.11. In a uniform magnetic field, the arc
lengths are related to the bending angles via sk± = Φk±Rk± , with
Rk± being the bending radius.

D.3. Track Curvature

For the general case, the 3D curvature and its variance
are given by (see Section 3):

κ = −ρ⊤KΨ

ρ⊤Kρ
, (25)

Var(κ) =
1

ρ⊤Kρ
. (26)

The correlated error between the fitted curvature and the
hit position k is given by:

Cov(δ⃗k, κ) = (C⃗ovδ/κ)k, (D.9)

with

C⃗ovδ/κ =
⃗⃗
D−1

hitH⃗
⊤
K ρ

ρ⊤K ρ
. (D.10)

D.4. Track Direction

The determination of the track direction is more evolved
since the track direction is position dependent in a mag-
netic field. For an inhomogeneous magnetic field, the track
direction can be determined using the method described
in Appendix F.

For a uniform magnetic field (Section 6.1) the polar
and azimuthal angles of a trajectory at hit position k are
given as follows:

θk± = acot

[
zk±

dk±

sin (Φk±/2)

Φk±/2

]
, (D.11)

ϕk± = φk± ∓ Φk±

2
, (D.12)

where a short-hand notation for the indices is used: k± =
“k, k ± 1”. The ± sign refers here to the two solutions
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after/before the scattering at tracking layer k, see Fig-
ure D.10. Note that for the first (last) hit of a track only
a solution with the + (−) sign exists and that φk± is de-
fined by Equation 66. Further note that all parameters in
Equation D.11 and Equation D.12 are post-fit.

Curvature Dependence. Both Equation D.11 and Equa-
tion D.12 require knowledge of the bending angle Φk± ,
which in turn depends on the curvature κ. The GTTF
consistently employs the small multiple scattering approx-
imation, which assumes that the triplet trajectory can be
linearized around the circle solution in the bending plane
(Equation 7).

At segment level, the linearization of the polar and
bending angle yields:

θ(κ)k± = θCk± + τk± + κ Ùρθk± , (D.13)

Φ(κ)k± = νk± + κ ıρϕk± , (D.14)

where new segment-specific linearization parameters are
introduced: Ùρθk± :=

nCk± − 1ÛκCk±

cot θCk± , (D.15)ıρϕk± :=
nCk±ÛκCk±

ΦC
k± , (D.16)

τk± := (1− nCk±) cot θCk± , (D.17)

νk± := (1− nCk±) ΦC
k± , (D.18)

with ÛκCk± being segment-wise 3D curvatures, given by:ÛκCk± = κC⊥j
sin θCk± (D.19)

As in Section 6.1, the index C always refers to the circle
solution.

The triplet index j ∈ k − 1, k indicates which of two
possible triplets per segment is chosen to determine the
circle solution. Note that the Û is used here and below to
distinguish the segment-wise defined Ûρ parameters (Equa-
tion D.15 and Equation D.16) from the triplet-wise de-
fined ρ parameters (Equation 8 and Equation 9). Further
note that the segment-wise Ûρ parameters are related to
the triplet ρ parameters (see also Section 6.1) via ρϕ =
− 1

2 (ıρϕk+ +ıρϕk−) and ρθ = Ùρθk+ − Ùρθk− .
Note that all linearization parameters (Equation D.15

to Equation D.18) depend on known parameters given by
the circle solution (see Section 6.1), which makes it very
easy to calculate the track direction.

Hit position dependence:. The track angles can be related
to the pre-fit triplet parameters (denoted by superscripts

pre or C) using the fitted residuals:

ϕk± = φpre
k± − δ⃗

⊤
f⃗
±
φk

∓ 1

2

[
νprek± + κ ρpreϕk±

− δ⃗
⊤ (

f⃗
±
νk

+ κ f⃗
±
ρϕk

)]
(D.20)

θk± = θCk± − δ⃗
⊤
f⃗
±
θk

+
[
τprek± + κ ρpreθk±

− δ⃗
⊤ (

f⃗
±
τk

+ κ f⃗
±
ρθk

)]
, (D.21)

The vectors f⃗
±
X are Jacobians whose elements are defined

for each hit by the derivatives:

(f⃗
±
X)k′ :=

∂ X±

∂ δ⃗k′
with X = {φk, θk, νk, τk, ρϕk

, ρθk}.

(D.22)

D.4.1. Small Bending Approximation

In the small bending limit, i.e. Φk k+1 ≪ 1, the seg-
ment length approaches the chord length. The bending
angles can then be approximated by:

Φk± ≈ ±κ ||x⃗k±1 − x⃗k||. (D.23)

and the track direction at hit k is then given by:

ϕk± = φk± − δ⃗
⊤
f⃗
±
φk

∓ κ

2

(
||x⃗k±1 − x⃗k|| − δ⃗

⊤)
f⃗
±
ρϕk

,

(D.24)

θk± = θk± − δ⃗
⊤
f⃗
±
θk
. (D.25)

D.5. Track Direction Uncertainties

The track direction uncertainties are derived by prop-
agating both the momentum and spatial hit uncertainties
in Equation D.20 and Equation D.21. Note that the az-
imuthal and polar angle uncertainties are fully correlated
due to the requirement of momentum conservation. One
obtains:

Var[θ±] =
[
f⃗

±
θ + f⃗

±
τ + κ f⃗

±
ρθ

]⊤ ⃗⃗
Covδ

[
f⃗

±
θ + f⃗

±
τ + κ f⃗

±
ρθ

]
− 2

[
f⃗

±
θ + f⃗

±
τ + κ f⃗

±
ρθ

]⊤
C⃗ovδ/κ

[
ρθ± − δ⃗

⊤
f⃗

±
ρθ

]
+ σ

2
κ

[
ρθ± − δ⃗

⊤
f⃗

±
ρθ

]2
, (D.26)

Var[ϕ±] =

[
f⃗

±
φ ∓

1

2

(
f⃗

±
ν + κ f⃗

±
ρϕ

)]⊤
⃗⃗
Covδ

[
f⃗

±
φ ∓

(
f⃗

±
ν + κ f⃗

±
ρϕ

)]
±

[
f⃗

±
φ ∓

1

2

(
f⃗

±
ν + κ f⃗

±
ρϕ

)]⊤
C⃗ovδ/κ

[
ρϕ± − δ⃗

⊤
f⃗

±
ρϕ

]
+

1

4
σ
2
κ

[
ρϕ± − δ⃗

⊤
f⃗

±
ρϕ

]2
. (D.27)

The first term in Equation D.26 and Equation D.27
comes from the hit position shifts, the last term from the
curvature shifts, and the middle term is a combination of
both.
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The covariance between azimuthal and polar track an-
gle is given by:

Cov[θ±, ϕ±] =
[
f⃗

±
θ + f⃗

±
τ + κ f⃗

±
ρθ

]⊤ ⃗⃗
Covδ

[
f⃗

±
φ ∓

1

2

(
f⃗

±
ν + κ f⃗

±
ρϕ

)]
±

1

2

[
f⃗

±
θ + f⃗

±
τ + κ f⃗

±
ρθ

]⊤
C⃗ovδ/κ

(
ρϕ± − δ⃗

⊤
f⃗

±
ρϕ

)
−

[
f⃗

±
φ ∓

1

2

(
f⃗

±
ν + κ f⃗

±
ρϕ

)]⊤
C⃗ovδ/κ

(
ρθ± − δ⃗

⊤
f⃗

±
ρθ

)
∓

1

2
σ
2
κ

(
ρθ± − δ⃗

⊤
f⃗

±
ρθ

) (
ρϕ± − δ⃗

⊤
f⃗

±
ρϕ

)
. (D.28)

The covariance between the track angles and the cur-
vature is given by:

Cov[κ, θ±] = σ
2
κ

(
ρθ± − δ⃗

⊤
f⃗

±
ρθ

)
−

[
f⃗

±
θ + f⃗

±
τ + κ f⃗

±
ρθ

]⊤
C⃗ovδ/κ,

(D.29)

Cov[κ, ϕ±] = ∓
1

2
σ
2
κ

(
ρϕ± − δ⃗

⊤
f⃗

±
ρϕ

)
−

[
f⃗

±
φ ∓

1

2

(
f⃗

±
ν + κ f⃗

±
ρϕ

)]⊤
C⃗ovδ/κ. (D.30)

Finally, the covariance between the track angles and
the track position is given by:

Cov[⃗δ, θ±] = − ⃗⃗
Covδ

[
f⃗

±
θ + f⃗

±
τ + κ f⃗

±
ρθ

]
+ C⃗ovδ/κ

(
ρθ± − δ⃗

⊤
f⃗

±
ρθ

)
,

(D.31)

Cov[⃗δ, ϕ±] = − ⃗⃗
Covδ

[
f⃗

±
φ ∓

1

2

(
f⃗

±
ν + κ f⃗

±
ρϕ

)]
∓

1

2
C⃗ovδ/κ

(
ρϕ± − δ⃗

⊤
f⃗

±
ρϕ

)
. (D.32)

All formulas above have been validated by a numerical
simulation.

E. Gap Spectrometer Dipole

Figure E.11 shows the simplest spectrometer setup with
three detector planes (triplet) and one gap dipole. Note
that the notation of variables here differs from the case of
a uniform magnetic field in the previous section. The gap
dipole is placed between detector layers 1 and 2 at dis-
tances ν1 and ν2, respectively, and has a gap size of νB. In
the following, it is assumed that all measurement planes
and the gap dipole entrance and exit windows are parallel.
The magnetic field is pointing in z-direction such that the
x-y plane is the bending plane.

The elevation angle, β, measures the particle angle
with respect to the x-y plane and is related to the po-
lar angle via θ = π/2−β . Note that the elevation angle is
an invariant in the plane transverse to the magnetic field,
i.e., β1 = βB = β2.

Since the region between tracking layers L0 and L1 has
no magnetic field, it is easy to calculate the angles φ0 and
β0 for the first segment. For the trajectory between track-
ing layers L1 and L2, the situation is far more complicated:
the trajectory has first a field-free segment, then a mag-
netic field segment, and then another field-free segment.

First, the trajectory in the bending plane is calculated.
The bending angle, Φ, is defined as ratio of the arc length,

B
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Figure E.11: Sketch of a gap spectrometer dipole with three layers
(L0-L2) with L1 being the scattering layer of the triplet. The upper
half shows the (x-y) bending plane and the definition of the azimuthal
angles for the different track segments and the bending angle Φ; the
lower half shows the (y-z) plane with the elevation angles β projected
to the y-axis.

sB , over the bending radius, R. Both parameters are re-
lated to the gap size, νB, through:

Φ =
sB
R

= 2 arcsin
νB

2R cosφB
, (E.1)

with cosφB being the average azimuthal angle in the field
region19. The azimuthal angles in the field-free region are
related to the bending angle in the field via:

φ1,2 = φB ∓ Φ

2
. (E.2)

With the above relation, the bending radius in Equation E.1
is calculated as function of the azimuthal angle φ1:

R =
νB

sin(φ1 +Φ)− sinφ1
. (E.3)

The horizontal offset, x12 := x2−x1, measured between
tracking layers L1 and L2, is a function of all azimuthal
angles:

x12 = ν1 tanφ1 + νB tanφB + ν2 tanφ2 (E.4)

= ν1 tanφ1 + νB tan

(
φ1 +

Φ

2

)
+ ν2 tan (φ1 +Φ).

Since ν1, ν2 and ν3 are geometric constants, and x12 is
a measured quantity, Equation E.4 defines a unique rela-
tionship between the azimuthal angle φ1 and the bending
angle Φ. This relation, however, is highly non-linear in
both φ1 and Φ/2, making it difficult to derive a solution

19In this calculation, stray fields are neglected.
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for the general case (see also Section E.1).

In the non-bending plane, the elevation angle, β1, is
given through the relation:

tanβ1 =
z12

s1 + sB + s2
, (E.5)

with z12 being the measured vertical offset, z12 := z2− z1.
The parameters s1 and s2 are the lengths of the no-field
track segments in the bending plane, given by:

s1 = ν1 secφ1, (E.6)

s2 = ν2 sec(φ1 +Φφ1
). (E.7)

Here the notation Φφ1
:= Φ(φ1) is used, where the in-

dex indicates the functional dependence given by Equa-
tion E.4.

Finally, using the bending radius (Equation E.3) and
the relation for the elevation angle (Equation E.5) the 3D
curvature is calculated as:

κ = R−1 cosβ1 =
sin(φ1 +Φφ1

)− sinφ1

νB
× (E.8)

1√
1 +

z2
12(

ν1 sinφ1 + ν2 sin(φ1+Φφ1 )+ νB
Φφ1

sin(φ1+Φφ1
)−sinφ1

)2

.

This equation is non-linear in φ1 and Φφ1 . Since the func-
tion Φ(φ1) is also non-linear, the linearization around a ref-
erence solution is here much more complicated than in the
case of a triplet in a uniform magnetic field (Section 6.1).

As motivated in Section 2, the solution with zero kink
angle in the bending plane, φ1,ref = φ0, is chosen as ref-
erence for the linearization. In the following, the solution
for the general case and the small bending approximation
is discussed.

E.1. General Solution

The general solution involves solving Equation E.4 nu-
merically to determine the reference bending angle Φref =
Φ(φ1,ref). With the help of Φref, all parameters of the
reference trajectory can be calculated; most importantly,
the reference elevation angle βref (Equation E.5), and the
reference curvature κref (Equation E.8).

For the determination of the ρ parameters, the deriva-
tives dκ/dφ1 and dκ/dθ1 are needed. An analytical solu-
tion can be derived by differentiation of Equation E.8 and
Equation E.5, respectively, and by using the relations:

ρθ = ρϕ
∂(∆θ)

∂(∆ϕ)
= ρϕ

∂θ1
∂φ1

= −ρϕ
∂β1
∂φ1

. (E.9)

However, the equations obtained in this way will be very
unwieldy. In fact, it is much easier to determine the ρ
parameters numerically from a small variation, ϵ, of the
azimuthal angle φ1,ref → φ ϵ

1,ref = φ1,ref + ϵφ. This yields

a second solution, which is denoted as κ ϵ
ref and β

ϵ
1,ref. The

fundamental triplet parameters are then given by:

ρθ = −
β ϵ
1,ref − β1,ref

κ ϵ
ref − κref

, (E.10)

ρϕ =
ϵφ

κ ϵ
ref − κref

, (E.11)

Θ̃ = −ρθ κref − (β1,ref − β0), (E.12)

Φ̃ = −ρϕ κref. (E.13)

E.2. Approximation for Small Bending Angles

In the case of small bending angles Φ, Equation E.4 can
be linearized to first order in Φ. In this approximation, the
fundamental triplet parameters are given by:

Φ̃ ≈ arctan

(
x12
y12

)
− φ0, (E.14)

Θ̃ ≈ arctan

(
z12
d12

)
− θ0, (E.15)

ρϕ ≈ −
√
d212 + z212

2

νB
y12

(
1− ν2 − ν1

y12

)
, (E.16)

ρθ ≈ 0, (E.17)

with d12 :=
√
x212 + y212 being the distance between hit 1

and 2 in the bending plane. Similar to the weak bending
case in a uniform magnetic field, the parameter ρθ vanishes
here. For symmetric setups, i.e., ν1 = ν2, the parameter
ρϕ is equivalent to half the effective track length in the
dipole field. In the limit ν1 → 0 and ν2 → 0 (the tracking
layer L1 and L2 are positioned at the dipole entrances and
exit), this parameter becomes: ρϕ = −

√
d212 + z212/2. Sim-

ilar to the uniform magnetic field setup, the ρϕ parameter
corresponds to half the length that the particle travels in
the magnetic field, consistent with the naive expectation
from the Lorentz force law.

F. Triplet with General Field Configuration

An inhomogeneous or irregular magnetic field repre-
sents the greatest challenge for the calculation of the triplet
parameters. The main difficulty is that trajectories con-
necting the hit positions x⃗0, x⃗1, and x⃗2 need to be found,
and this by means of track extrapolation since no analyt-
ical solution exists, see also Figure F.12.

In the following, an algorithm is presented that finds
a reference trajectory for an arbitrary (inhomogeneous)
magnetic field by means of track extrapolation. This al-
gorithm will be used to calculate the fundamental triplet
parameters and the hit gradients.

F.1. Finding a Reference Trajectory

In the following, it is assumed that an approximate so-
lution for the hit triplet exists and is known. This could be,
for example, a solution obtained with a constant averaged
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Figure F.12: Sketch showing the first step of the extrapolation al-
gorithm for inhomogeneous magnetic fields. The red dashed line
shows the trajectory obtained by extrapolating the track vector at
the middle layer from the hit position x⃗1 to both sides.

magnetic field strength. The reference trajectory can then
be found using Newton’s method in 2 dimensions (θ − ϕ
space). A procedure tailored for hit triplets is described
in the following paragraphs.

At the middle hit position, the initial approximated
solution is described by five track parameters:

• κini: 3D curvature of the approximate trajectory;

• θini10 (θini12 ): polar angle of the track at the middle hit
position before (after) scattering;

• ϕini10 (ϕini12 ): azimuthal angle of the track at the middle
hit position before (after) scattering.

By extrapolating the trajectory from the middle hit
position to both sides, as sketched in Figure F.12, the ex-
trapolated hit positions x⃗ ini

0 and x⃗2(0) = x⃗ ini
2 are obtained.

In the next step, the polar and azimuthal angles are var-
ied by ϵθ and ϵϕ, respectively, and a new set of angles is
obtained for track extrapolations:

θ
(ϵθ)
1k = θini1k + ϵθ

ϕ
(ϵϕ)
1k = ϕini1k + ϵϕ

 k = 0, 2 (F.1)

Two more extrapolations to the tracking planes L0 and L2

are performed on each side. Let x⃗
(ϵθ)
k and x⃗

(ϵϕ)
k be the ex-

trapolated points from the polar angle and azimuthal angle
variations, respectively, the matching condition reads:

x⃗ ′
k = x⃗k + ηθ,k

x⃗
(ϵθ)
k − x⃗ ini

k

ϵθ
+ ηϕ,k

x⃗
(ϵϕ)
k − x⃗ ini

k

ϵϕ

!
= x⃗ hit

k ,

with x⃗ ′
k being the calculated interception points and x⃗ hit

k

being the measured hit positions. For each side (k = 0, 2),
a system of three equations with two unknown correction
parameters: ηθ,k and ηϕ,k are obtained. The third degree
of freedom corresponds to the segment length, which is
indirectly determined by the extrapolation procedure.

Above system of equations can be solved by minimizing
the spatial distance ||x⃗ hit

k − x⃗ ′
k||. Using the short-hand

notations:

a⃗θ,k := x⃗
(ϵθ)
k − x⃗ ini

k ,

a⃗ϕ,k := x⃗
(ϵϕ)
k − x⃗ ini

k ,

the solution for each side (k = 0, 2) is given by:(
ηθ,k/ϵθ
ηϕ,k/ϵϕ

)
=

x⃗ hit
k − x⃗ ini

k

a⃗ 2
θ,k a⃗

2
ϕ,k − (⃗aθ,k a⃗ϕ,k)2

(F.2)

·
(
a⃗ 2
ϕ,k a⃗θ,k − (⃗aθ,k a⃗ϕ,k) a⃗ϕ,k
a⃗ 2
θ,k a⃗ϕ,k − (⃗aθ,k a⃗ϕ,k) a⃗θ,k

)
.

In case of non-linearities, the matching condition might
not be fulfilled in one extrapolation step and the procedure
needs to be iterated until ηθ,k and ηϕ,k are determined
with the required accuracy, i.e., ||x⃗ ′

k − x⃗ hit
k || < accuracy.

Finally, the track parameters for the reference solution at
the middle layer are given by:

θ1k = θini1k + ηθk , (F.3)

ϕ1k = ϕini1k + ηϕk
. (F.4)

F.2. Determination of the Triplet Parameters

For the determination of the ρ parameters, the curva-
ture is varied according to:

κ(ϵκ) = κini + ϵκ. (F.5)

Using the so modified curvature, the trajectory is extrap-
olated again from the middle layer to both sides. Similar
to the procedure described in Section F.1, a new set of

polar θ
(ϵκ)
1k and azimuthal ϕ

(ϵκ)
1k angles is determined such

that both reconstructed track segments match the actual
hit positions. The four fundamental triplet parameters are
then obtained from:

ρθ =
θ
(ϵκ)
12 − θ

(ϵκ)
10 − θ12 + θ10
ϵκ

, (F.6)

ρϕ =
ϕ

(ϵκ)
12 − ϕ

(ϵκ)
10 − ϕ12 + ϕ10
ϵκ

, (F.7)

Θ̃ = −ρθ κini + θ12 − θ10, (F.8)

Φ̃ = −ρϕ κini + ϕ12 − ϕ10. (F.9)

F.3. Determination of the Hit Gradients

For the determination of the hit gradients (see Sec-
tion 2.2), no further track extrapolations are required. By
solving Equation F.2 for the in total 3× 3 1σ hit position
shifts, a set of nine polar and azimuthal angle shifts is ob-
tained, which serves as input for the calculation of the hit
gradients according to Equation 15 and 16.

To summarize, for the determination of the triplet pa-
rameters, at least four track extrapolations are needed for

23



each segment of the triplet: one for the starting trajectory
(estimate), two for the track direction variation, and one
for the curvature variation. In case of large non-linearities,
more extrapolations might be required. This method is
universal and can be used for any tracking detector with
any arbitrary field configuration.
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