

Temperature dependence study of data link stability of MuPix11

DPG Spring Meeting Karlsruhe 2024

Florian Schlötzer

for the HD-HVMAPS collaboration Physikalisches Institut Universität Heidelberg

The Mu3e experiment

Goal

The decay $\mu^+ \rightarrow e^+ e^- e^+$

- violates charged lepton flavour conservation
- suppressed to BR of ~ 10^{-55}

Observing the decay would indicate physics beyond the standard model.

The decay $\mu^+ \to e^+ \; e^- \; e^+$ via neutrino oscillations

Phase I

Where? At the π E5 beam line at PSI, providing muon rates up to 10⁸ Hz.

Aim? Single event sensitivity 2×10^{15} on the branching fraction

- \rightarrow > 2.5 × 10¹⁵ stopped muons (290 days)
- → need for detector with a high readout capability

from "Technical Design Report for the Phase I Mu3e Experiment, September 2020"

MuPix11

The MuPix11 is a **H**igh-**V**oltage **M**onolithic **A**ctive **P**ixel **S**ensor (HV-MAPS) developed for Mu3e (2x2cm², 256x250 pixel).

Advantages

- ultra thin (down to 50 µm)
- high readout capability (1,25 Gbps data link speed)
- precise time and spatial resolution

Cooling

Simulated temperature on the outer layer

cooling power of 350 mW/cm²

 \rightarrow linear cooling with gaseous helium parallel to muon beam

 \rightarrow Sensors will be exposed to a large temperature range

 \rightarrow How does the link quality depend on the temperature?

from "Technical Design Report for the Phase I Mu3e Experiment, September 2020"

Eye diagram

An Eye diagram is a graphical overlay of the same signal at different times

 \rightarrow all transitions are summed to a pattern

stable signals with a steady bit rate should have sub-frames of same length

from "DSA8300 Digital Serial Analyzer Printable Application Help"

Eye parameter

Eye Height = (High $- 3\sigma_{high}$) $- (Low + 3\sigma_{low})$ **Eye Width** = $(t_{cross2} - 3\sigma_{cross2}) - (t_{cross1} + 3\sigma_{cross1})$ Eye "size" = signal quality

Stability

Eye diagram for a stable output signal

Eye is too small

 \rightarrow no clear differentiation between 0 and 1

 \rightarrow unstable output signal

connection to PC and power supplies

Setup

Temperature dependence (70 µm thickness)

Temperature dependence Eye Width

• only small changes

Temperature dependence amplitude/Eye Height

→ linear temperature dependence of resistors to amplitude drop

Compensating amplitude drop at 80°C

 \rightarrow higher power consumption (~80mW more per sensor)

Summary and Outlook

in the temperature range from -20°C to 80°C

the default sensor settings the data links are operational

- observation of linear decrease of signal amplitude with increasing temperature
- possible recovery of the signal amplitude at the cost of higher power consumption

To do

- so far one sample investigated
- \rightarrow check for chip to chip variations (70 µm and 50 µm)

