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Outline

• SOARCA UA Insights
o Focus on recently released Surry UA (NUREG/CR-7262)
oAlso include interesting insights from the Peach Bottom and Sequoyah UAs

• Some examples of recent Non-LWR work
o Fluoride high-temperature reactor (FHR)
oMolten salt reactor (MSR)
o Sodium fast reactor (SFR)

• Point kinetics feedback example
o Forming feedbacks using vector control functions
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SOARCA Uncertainty Analysis 
Case Studies



Background on SOARCA

SOARCA was initiated to develop a body of knowledge on the 
realistic outcomes of severe reactor accidents; three pilot plant 
analyses complete
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SurryPeach Bottom Sequoyah

• Boiling water reactor 
with Mark I containment

• Located in Pennsylvania
• UA on LTSBO

• 3-loop Westinghouse 
pressurized reactor with 
large, dry containment

• Located in Virginia
• UA on STSBO/  induced 

SGTF

• 4-loop Westinghouse 
pressurized reactor with 
ice condenser 
containment

• Located in Tennessee
• UA on STSBO (no SGTF)



Background on Original SOARCA (2)

• State-of-the-Art Reactor Consequence Analyses

• Multi-year effort by the NRC and SNL completed January 2012

• Considered select accident scenarios postulated for Peach Bottom 
Atomic Power Station and Surry Power Station
o NUREG/CR-7110 “State-of-the-Art Reactor Consequence Analyses Project, Volume 1: Peach 

Bottom Integrated Analysis”

o NUREG/CR-7110, “State-of-the-Art Reactor Consequence Analyses Project, Volume 2: Surry 
Integrated Analysis”

o NUREG-1335, “State-of-the-Art Reactor Consequence Analyses (SOARCA) Report”

• Integrated modeling of nuclear reactor accident progression and 
offsite consequences using modern computational tools and best 
modeling practices

• Included sensitivity analyses but not an uncertainty assessment (UA)
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Objectives of the SOARCA UAs

• Considering one accident scenario specific to each of the Peach Bottom, Surry and 
Sequoyah plants: 
o Identify the uncertain input parameters potentially influential to accident progression 

and source term

o Define informed distributions for the possible values of the uncertain parameters

o Randomly exercise for the specific scenario, thru Monte Carlo sampling, a MELCOR 
model of the plant across the possible values of the uncertain parameters generating a 
distribution of source term outcomes 

o Determine from the distribution of outcomes the importance of the uncertain 
parameters relative to the metrics of Cs and I release to the environment

o Identify the variations in accident phenomena driving differences in the Cs and I release 
metrics

o Identify the linkages between the uncertain parameters and the driving phenomena

o Develop insight into overall sensitivity of results and conclusions from the original 
SOARCA studies to uncertainty in model inputs
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Uncertain MELCOR parameters chosen for the SOARCA UAs
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Peach Bottom – BWR with Mark I 

Containment

Sequoyah – PWR with Ice Condenser 

Containment

Surry – PWR with Large, Dry Sub-atmospheric 

Containment

Sequence Related Parameters

 Safety relief valve stochastic failure to 

reclose 

 Battery duration

 Primary safety valve stochastic 

number of cycles until a failure to close

 Primary safety valve open area fraction 

after failure

 Secondary safety valve stochastic 

number of cycles until failure-to-close

 Secondary safety valve open area 

fraction after failure

 Primary safety valve stochastic number of cycles 

until failure-to-close

 Primary safety valve open area fraction after 

failure

 Secondary safety valve stochastic number of 

cycles until failure-to-close

 Secondary safety valve open area fraction after 

failure

 Reactor coolant pump seal leakage

 Normalized temperature of hottest steam 

generator tube

 Steam generator non-dimensional flaw depth

 Main steam isolation valve leakage

Time within the Fuel Cycle

Not varied Time in the cycle sampled at three points in 

the refueling cycle – near Beginning- (BOC), 

Middle- (MOC), and End-of-Cycle (EOC)

Time in the cycle was discretely sampled at 14 times 

from 0.5 days to 550 days

In-Vessel Accident Progression

 Zircaloy melt breakout temperature

 Molten clad drainage rate

 SRV thermal seizure criterion

 SRV open area fraction upon thermal 

seizure

 Main steam line creep rupture area 

fraction

 Fuel failure criterion

 Radial debris relocation time constants

 Melting temperature of the eutectic 

formed from fuel and zirconium oxides

 Oxidation kinetics model

 Zircaloy melt breakout temperature 

 Molten clad drainage rate 

 Melting temperature of the eutectic formed from 

fuel and zirconium oxides

 Oxidation kinetics model



SOARCA UA NUREG/CRs and NUREG
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• NUREG/CR 7155, “State-of-the-Art Reactor Consequence Analyses Project, 
Uncertainty Analysis of the Unmitigated Long Term Station Blackout of the Peach 
Bottom Atomic Power Station,” U.S. Nuclear Regulatory Commission, Washington, 
DC, May 2016.

• NUREG/CR 7245, “State-of-the-Art Reactor Consequence Analyses Project: Sequoyah 
Integrated Deterministic and Uncertainty Analysis,” U.S. Nuclear Regulatory 
Commission, Washington, DC, October 2019.

• NUREG/CR-7262, “State-of-the-Art Reactor Consequence Analyses Project: 
Uncertainty Analysis of the Unmitigated Short Term Station Blackout of the Surry 
Power Station,” U.S. Nuclear Regulatory Commission, Washington, DC, December 
2022.

• NUREG-2254, “Summary of the Uncertainty Analyses for the State-of-the-Art Reactor 
Consequence Analyses Project,” U.S. Nuclear Regulatory Commission, Washington, 
DC, October 2022.



Key Insights from the SOARCA UAs

• Importance varied based on plant design and study emphasis
o Peach Bottom and Surry UAs  source to the environment

o Sequoyah UA  containment response

• Post-SOARCA analysis identified the following important responses affecting the 
accident progression
o Time in the fuel cycle

o Valve failures

o Consequential steam generator tube failure

o Hydrogen behavior

o Containment failure

o Primary system pump leakage

o Other insights
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Time in the fuel cycle - inventory 
and decay heat 

• Only included in the PWR UAs
o Non-uniform impact on the radionuclide 

inventory 
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Small impact on initial (4-hr) integrated 
decay heat after ~75 days
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Time in the fuel cycle – hot leg failure and in-vessel H2 insights

• Earliest time in the fuel cycle had 
substantially delayed hot leg failure
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• Earliest time in the fuel cycle had 
substantially later & higher in-vessel 
hydrogen production



0.5 day time in the cycle

Time in the fuel cycle – containment failure insights

• Earliest time in the fuel cycle did not 
progress to containment failure in 
<72 hr (no LHF) in Surry UA
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• Similar impact in the Sequoyah ice 
condenser UA 

 



Time in the fuel cycle – environmental source term insights

• Generally upward trend in iodine release 
to the environment (i.e., includes some 
gaseous component)
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• Generally upward trend in cesium 
release to the environment (i.e., also 
impacted by 72 hr simulation and CF 
timing)



Valve failure methodology – PWRs

• Important and highly uncertain – few data for SV failure

• Research reviewed each US occurrence (licensing event report), contacting 
nuclear valve testing personnel, and a review of NUREG/CR-7037
o SV FTC is most likely on the initial demand

o If an SV functioned per design on the initial demand, then it would most likely function on all 
subsequent demands

o SVs that fail to close are most likely to fail in either a weeping (i.e., mostly closed) or a mostly 
open position.

o The probability per demand of a valve to fail to open (FTO) is sufficiently small compared to 
the FTC such that FTO may be neglected.

o A valve is more likely to fail if cold water flows through the valve than if saturated water flows 
through the valve.

o Applying MSL SV operational data to pressurizer SVs was judged acceptable due to the lack of 
pressurizer SV operational data. 

15



Valve failure uncertainty distributions – PWRs
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First demand 
FTC

Subsequent  
demands 
FTC

Failure fraction

• Each pressurizer SV and SG MSS 
SV is sampled separately



Valve failure methodology - additional considerations
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• MSIV leakage can impact SG MSS SV cycling

• PWR MSIVs do not have tech specs like BWRs
o PWR MSIV LERs reviewed for insights

o Uniform distribution from 0.01 in2 to 1 in2

o BWR tech spec is 11.5 scfm (< 0.01 in2)

o MSIV leakage impacts SG MSS SV demands

• Impact on the accident progression
o SG MSS SV failure or MSIV leakage

 Increased mechanical stress for C-SGTF

o Pressurizer SV failure
 Reduced stress for hot leg failure

 Increased inventory discharged to the pressurizer 
relief tank
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• Surry UA results - MSS SV failures occurred in 10% of the UA realizations on 
each SG



Pressurizer valve failure – Insights
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• Pressurizer SV cycled ~70 times before hot leg 
failure (small variation  with time-in cycle)
o C-SGTF only occurred with no failures or small 

failure areas (<0.1)

o Most tube ruptures occurred with >50 cycles

• Large SV failure area delayed or prevented 
hot leg failure

• Small SV failure area accelerated hot leg 
failure

• Fail to open of all pressurizer SVs examined as 
a sensitivity study
o Pump seal failure (480 gpm) x 3 loops

C-SGTFs 



Pressurizer valve failure – Insights
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• 54 of 56  SV failure cases with area fraction 
>0.36 led to boiloff and dryout of the 
pressurizer relief tank (PRT) –
o Dryout and revaporization source term

o Revaporization dependent on chemical form

o Occurred before containment failure (time for 
settling) 0
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Valve failure methodology – BWR results
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• BWR SRVs results showed 3 distinct 
accident progressions
o ~50% had a stochastic failure prior to core 

damage

o ~33% had a thermal failure without a MSL 
failure

o ~17% had a thermal failure with a MSL failure

• MSL failure leads to fastest accident 
progression
o Earlier vessel dryout and vessel failure

o Earlier drywell liner melt-through

o Largest environmental source term 
 Bypasses torus scrubbing



Valve failure methodology – Peach Bottom (BWR) UA

• Large impact on accident progression, MSL failure, and magnitude of the source term
o SRV stochastic failure to reclose (SRVLAM) - Beta distribution fit to mean value in Peach Bottom IPE (the 

SOARCA value) using the methodology in NUREG/CR-7037

o SRV thermal seizure criterion (temperature) (SRVFAILT)

o SRV open fraction given thermal seizure (SRVOAFRAC)
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Consequential steam generator tube failure methodology

• C-SGTF monitored in 12 locations
o Hottest tube model with a sampled flaw
o Hot tube in SG with a sampled flaw
o Average tube in SG with a sampled flaw
o Average tube in SG without a flaw

• Hottest plume temperature uncertainty 
distribution  determined from CFD calculations 
[NUREG-1922]
o CFD results quantified plume variability
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𝑇𝑛 =
𝑇ℎ𝑡 − 𝑇𝑐𝑡
𝑇ℎ − 𝑇𝑐𝑡

𝑇𝑛  Normalized hot tube temperature 

𝑇ℎ𝑡  Hottest tube temperature 

𝑇ℎ  Hot leg hot stream temperature 

𝑇𝑐𝑡  Cold tube temperature 

 



Consequential steam generator tube failure methodology
• SG flaw distribution primarily determined 

from two sources 
o NUREG-2195 
o Surry Units 1 & 2 in-service inspection 

reports from 1980 to 2013 
o 76 flawed tubes required replacement (loose 

parts, anti-vibration bar wear, lancing 
equipment damage from historical sludge 
issue)

o 70% on the SG inlet side & 61% below the 
first grid

o Currently, 100% inspection per 2 outages
o Only flaws >0.3 (NUREG/CR-6995) have the 

potential for a C-SGTF (stress multiplier >1.4)

• Flaw distribution is hybrid of all Inconel 
tube SGs for flaw depths <0.5 and Surry ISI 
data for flaw depths >0.5 
o Generic + plant-specific match for estimated 

number for flaws >0.5
o Much more generic data for flaws <0.5
o Overall 4.26 tubes >0.3 but only 0.15 tubes 

>0.5 between inspections
o Distribution considers hottest (3%), hot 

(22%), and cold (75%) zones 23
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Consequential steam generator tube failure methodology

• For each realization, five flaw samples are 
randomly selected
o The maximum of three of the samples are used 

for the cold region flaw depth as only the most 
severely flawed tube in this region will be 
modeled

o One sample will be used for the upflow region

o The fifth flaw sample will be used for the hot 
zone flaw
 The cumulative flaw distribution for the hot region is 

specified so that the sampled flaw is used 14% of the 
time because there is no flaw 86% of the time in this 
small region
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Consequential steam generator tube failure results
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Final R
2

Input R
2
 contr. SRRC Si Ti Si Ti Si Ti

tubeHotA_NFD 0.18 0.75 0.50 0.72 0.81 0.98 0.11 0.99 0.341 0.395

ThotA_norm 0.19 0.42 0.02 0.22 0.03 0.21 0.00 0.05 0.057 0.126

msiv_leak_a 0.14 0.39 0.01 0.04 0.00 0.02 0.00 0.20 0.037 0.078

priSVcyc 0.06 0.41 0.00 0.10 0.01 0.00 0.00 0.52 0.018 0.195

RCP_Leak 0.03 -0.23 0.01 0.17 --- --- 0.00 0.00 0.010 0.050

secSVfrac1 0.02 0.28 --- --- --- --- 0.00 0.02 0.005 0.005

priSVfrac 0.01 -0.19 0.00 0.06 --- --- 0.01 0.00 0.004 0.018

Zr_brkout_T --- --- 0.00 0.00 --- --- 0.01 0.06 0.004 0.015

secSVcyc1 --- --- 0.01 0.04 0.01 0.03 0.00 0.00 0.004 0.016

 * highlighted if main contribution larger than 0.02 or conjoint contribution larger than 0.1
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Surry UA Creep Damage to the Hottest Steam Generator Tubes

• C-SGTF occurred in 
12.5% of the realizations 
(144 realizations)

• Always included a hot 
leg rupture

• C-SGTF more likely if
o Flaw >0.8 m in the cold 

flow region

o Flaw >0.68 in hot upflow
region

• C-SGTF more likely in the hottest region if
o Flaw >0.42

o Flaw >0.31 and peak hot plume temperature (𝑇𝑛) was > 0.48 𝑇𝑛 =
𝑇ℎ𝑡 − 𝑇𝑐𝑡
𝑇ℎ − 𝑇𝑐𝑡



Back-up with regression explanations

• R2 = total explained variance 

• R2contr = incremental variance attributable to a variable by itself (sum to R2)

• SRRC = relative strength and direction of a variable’s influence

• Si = analogous to R2contr but only relative (don’t sum to R2)

• Ti = Si + contribution conjoint with other variables

• Main contribution = relative influence of a variable by itself all methods considered

• Conjoint contribution = relative influence of a variable conjoint with other variables all methods considered

• Meaningful influences highlighted yellow
26
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Consequential steam generator tube failure – source term
• Detailed insights from the C-SGTF reference case

o No over cycling FTC SV occurred on any of the SGs

o No over cycling FTC occurred on the pressurizer SV

o No reactor coolant pump seal failures, which is the most likely outcome from the 
uncertainty distribution.

o The hot leg nozzle rupture occurred on Loop C where the pressurizer surge line 
connects. Loop C heated faster due to the cycling pressurizer SV, which led to the 
preferential failure on this loop.

o Hydrogen deflagrations occurred in containment after the hot leg failure, but they 
did not pose a significant over pressure challenge to the containment boundary.

o The containment design pressure and the pressure associated with liner yield were 
both exceeded. However, the containment pressure was below the rebar failure 
pressure at 72 hr, which is the most likely outcome at 72 hr. 

o Although the containment pressure associated with rebar yield was not reached by 
72 hr, the pressure was expected to exceed this value shortly thereafter.

o The largest contributor to containment pressurization was the continuous heating of 
RCS coolant recast as steam in the containment (rather than addition of non 
condensable gases to the atmosphere from core-concrete interaction [CCI]).

o The C SGTF significantly increased the release to the environment. The reference 
realization without a C SGTF released 0.028% and 0.003% of the iodine and cesium 
inventory, respectively. However, the C SGTF reference realization released 1.42% 
and 0.92% of the iodine and cesium inventory, respectively.

o The concrete ablation from CCI had not slowed by the end of the MELCOR 
calculation at 72 hr. The concrete erosion rate and non condensable gas generation 
was relatively constant after the start of the CCI
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Consequential steam generator tube failure – source term

• Detailed insights from the C-SGTF reference case
o Hot leg failure stops tube creep accumulation

o C-SGTF leakage rate drops after hot leg failure

o C-SGTF leakage is greater than containment leakage through 72 hr

o Only 2.7% and 5% of the total Cs and I are released to environment <5 hr

o 99.9% and 98.8% of the Cs and I to the environment go via the C-SGTF
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Consequential steam generator tube failure – source term

• Focused uncertainty study with multiple tube failures
o Sampled a deep flaw in the hot plume region with other boundary 

conditions that ensured a C-SGTF (tube leakage area varied from 1 to 5 
tubes)

o The SG pressurized with >3 C-SGTFs and was controlled by MSIV leakage

o 1 & 2 C-SGTFs have initial puff and gradual buildup during core degradation

o >3 C-SGTF delayed hot leg failure and overwhelms natural circulation flows 
to unaffected SGs (preferentially sending radionuclides to the affected SG)

• Applicability to other PWRs
o SG design

 𝑇𝑛 ~ 0.43 for Westighouse Model 51 SG (Surry)

 𝑇𝑛 ~ 0.95 for CE SG (shallow inlet plenum)
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Hydrogen behavior – methodology

• Uncertain parameters used to explore hydrogen 
behavior and containment failure

• Sequoyah UA – focus on early containment failure
o Low-design pressure, free-standing steel containment

o Uncertain parameters

 Oxidation kinetics correlation

 Lower flammability limit for combustion

 Containment rupture pressure

 Barrier seal failure pressure and area

 Ice chest open fraction

• Surry UA
o Steel-reinforced concrete containment

o Uncertain parameters

 Oxidation kinetics correlation

 Hydrogen ignition criteria

 Containment fragility curve

 Containment wall heat transfer rate

30

• Peach Bottom UA
o Inerted BWR Mark I containment

o Uncertain parameter

 Reactor building hydrogen ignition criteria

Kumar



Hydrogen behavior – Surry UA results

• No hydrogen induced containment failure
o Early burn with hot leg failure

 Hot leg failure occurs early in the core degradation with limit hydrogen 
production

o Steam generation from accumulator discharge into 
degrading core after HL failure led to steam inerting in the 
containment
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Hydrogen behavior – Sequoyah UA results

• More vulnerable to an early hydrogen induced containment 
failure (ice condenses the steam)
o In-vessel hydrogen generation is ~300 kg

o Ex-vessel hydrogen generation is ~1000 kg by 72 hr

• Only 4 realizations had an early containment failure
o Requires specific & limited range of uncertain parameter values

o Pressurizer SV FTC with <45 cycles and SV failure area > 0.3

o Lower sampled containment failure pressure

o Kinetics correlations with higher low temperature oxidation 
(Urbanic-Heidrich and Catchart-Pawel/Urbanic-Heidrich)

o Small burns from CCI reduced oxygen concentration

o Containment became oxygen-limited with steam and CCI pressurization

• Early pressurizer FTC (<45 cycles) had the highest with iodine 
releases and contributor to early containment failure
o Pressurizer SV FTC with <45 cycles and SV failure area > 0.3

o Focused UA study used to better understand uncertain parameter 
influence failure dynamics & confirmed importance of time in the cycle & 
in-vessel oxidation kinetics model
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Early containment failures 

<45 SV cycles 

Note all BOC 
results in yellow 
had early 
containment failure



Hydrogen behavior – Surry UA results

• Some focused calculations of the Surry long-term station 
blackout (LTSBO) were performed
o LTSBO initially has DC power and successful turbine-driven auxiliary 

feedwater until the batteries are exhausted

o Much slower accident progression

• Delaying ignition until the first burn increases the peak 
pressure and containment failure likelihood
o All calculations include a pressurizer FTC 

o Green line credits ignitors (Ignite hydrogen at a 7% concentration)

o Red line assumes no ignitors but high temperature gases exiting 
the pressurizer relief tank is the first ignition source

o Blue line assumes no ignitors but high temperature gases exiting 
the vessel following hot leg failure is the first ignition source

o Confirms UA results of accumulation of hydrogen gas in the dome 
prior to the first burn
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Hydrogen behavior – Fukushima Unit 1 results



Unit 3 Hydrogen ExplosionHydrogen behavior – Fukushima Unit 3 results



Containment over-pressurization led to release of H2 into the reactor buildings

Hydrogen behavior – Fukushima results



Telephone in containment 
scorched in one area by H2

combustion event.

55 gal. drum collapsed by
overpressure from the 
H2 combustion event.

Hydrogen behavior – TMI-2 results



ΔP ~ 26 psig

Hydrogen behavior – TMI-2 results



Hydrogen behavior – Peach Bottom BWR UA results

• An intact reactor building retains some of the 
released radionuclides

• Peach bottom model included the following 
reactor building failure modes 
o Blowout panels

o Roof 

o Railroad doors at grade level

• When the railroad doors blow open, a buoyant 
draft is established in the reactor building
o Yellow  closed doors

o This contributed to a higher source term
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o Reexamination of MELCOR 1.8.6 UA results using MELCOR 2.2

o Pump seal leakage impact on melt spreading

o Delayed liner melt-through promotes more drywell leakage 
(i.e., a higher containment leakage pathway)
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0.5 day time in the cycle realizations (no C-C-SGTRs) 

Containment failure – Surry results

• Late over-pressurization from steam and 
non-condensable gases generated from CCI (95.1%), 
o Liner failure only (81.2%)
o Liner failure and C-SGTF (12.6%)
o Liner and rebar failure (1.4%)

• No containment failure prior to the end of the 72 hr 
simulation time (4.9%) – earliest time at cycle only
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UA sampled on the 
liner yield point

Impact of C-SGTF

Time for settling



Containment failure methodology – Surry results
• Concrete type impact impacts gases generated from CCI, 

erosion dynamics, and containment pressurization rate
o Basaltic generates less non-condensable gases but has a faster axial 

erosion rate
o Limestone generates lots of CO and H2 but slower axial erosion
o Pressurization is dominated by the steam partial pressure

• Design leakage had a large impact on the cesium release to the 
environment
o Only release mechanism until liner plate failure, which occurs after 

significant settling (non-C-SGTF)
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Large steam 
partial pressure



Other Surry source term results

• Surry UA sampled on iodine gas fraction based on French 
CEA fuel-cladding gap measurements
o Gaseous iodine has an important impact on the environment source term due 

to aerosol settling with late containment failure

• Surry UA showed tighter correlation between cesium and 
iodine with larger releases
o Cesium releases are strongly impacted by the design leakage and time for 

settling. There is less variation with high design leakage when more aerosol 
release occurs before settling
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LWR MELCOR CODE DEVELOPMENTS

MELCOR 2.2

M2.1.3649

MELCOR 2.0 (BETA)

MELCOR 2.X Robustness 
and User Flexibility
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F77 to F95

HTGR Models
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Full-plant models and sample calculations for representative non-LWRs 

2021 

• Heat pipe reactor – INL Design A – public workshop 6/29/2022

• Pebble-bed gas-cooled reactor – PBMR-400 – public workshop 7/20/2022

• Pebble-bed molten-salt-cooled – UCB Mark 1 – public workshop 9/14/2022

2022

• Molten-salt-fueled reactor – MSRE – public workshop 9/13/2022

• Sodium-cooled fast reactor – ABTR – public workshop 9/20/2022

2023

• Additional code enhancements, sample calculations, 

and sensitivity studies

Project scope
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Reactor

• 236 MWth / 100 MWe

• Atmospheric pressure

• 600℃ core inlet

• 700℃ core outlet

• 976 kg/s core flowrate

• FLiBe molten salt coolant

Core

• 470,000 fueled pebbles + 218,000 unfueled 
pebbles in core and defueling chute

• 180 MWd/kgHM discharge burnup

• 19.9% enrichment

• Online refueling

Secondary system: gas-turbine at 18.6 bar 
with natural gas co-firing capability 

UCB Mark 1 FHR

UCB Mark 1 schematic
[UCBTH‐14‐002]



Fluoride‐salt‐cooled High-
Temperature Reactor Fission 
Product Inventory/Decay 
Heat Methods and Results
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• Objective

• Provide input for MELCOR accident simulation

 Radionuclide inventory

 Decay heat profile

 Reactivity feedback coefficients

 Reactivity from xenon transient

• Approach

• Apply SCALE to generate fuel composition for 

an equilibrium core

• Equilibrium core – operated for several years 

so the average burnups are no longer changing

• Evaluate neutronic characteristics

FHR analysis with SCALE

SCALE model of the UCB 
Mark 1 core
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Isothermal reactivity temperature coefficients from SCALE

2s statistical error bars are displayed

a b c d

Fuel 4.57E-02 -7.08E-05 1.59E-08

Moderator -2.02E-03 -2.48E-05 3.88E-08 -2.16E-11

Inner graphite -2.18E-02 2.07E-05 -7.55E-09

Outer graphite -3.10E-02 3.49E-05 -1.31E-08

𝜌 = 𝑎 + 𝑏𝑇 + 𝑐𝑇2 + 𝑑𝑇3

Linear fit: 
-0.479 pcm/K

1. Linear fit for salt temperature coefficient
2. Polynomial fit or tabulated values for fuel, moderator, 

and graphite temperature coefficients

Polynomial fit

Polynomial fits



MELCOR FHR Models
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Intact TRISO Particles
• One-dimensional finite volume diffusion equation solver for 

multiple zones (materials)

• Temperature-dependent diffusion coefficients (Arrhenius form) 

Radionuclide Diffusion Release Model 
In
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O

 
C

o
n
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n

tr
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n

s

𝜕𝐶
𝜕𝑡
= 1

𝑟𝑛
𝜕
𝜕𝑟

𝑟𝑛𝑫
𝜕𝐶
𝜕𝑟

−𝜆𝐶+𝛽

Layer

FP Species
Kr Cs Sr Ag

D (m2/s) Q 
(J/mole)

D (m2/s) Q 
(J/mole)

D (m2/s) Q 
(J/mole)

D (m2/s) Q 
(J/mole)

Kernel (normal) 1.3E-12 126000.0 5.6-8 209000.0 2.2E-3 488000.0 6.75E-9 165000.0

Buffer 1.0E-8 0.0 1.0E-8 0.0 1.0E-8 0.0 1.0E-8 0.0

PyC 2.9E-8 291000.0 6.3E-8 222000.0 2.3E-6 197000.0 5.3E-9 154000.0

SiC 3.7E+1 657000.0 7.2E-14 125000.0 1.25E-9 205000.0 3.6E-9 215000.0

Matrix Carbon 6.0E-6 0.0 3.6E-4 189000.0 1.0E-2 303000.0 1.6E00 258000.0

Str. Carbon 6.0E-6 0.0 1.7E-6 149000.0 1.7E-2 268000.0 1.6E00 258000.0

Data used in the demo calculation
[IAEA TECDOC-0978]

𝐷 𝑇 = 𝐷0𝑒
−
𝑄
𝑅𝑇

Diffusivity Data Availability

Radionuclide UO2 UCO PyC
Porous 

Carbon
SiC

Matrix 

Graphite

TRISO 

Overall

Ag Some

N
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t 
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e
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N
o

t 
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u
n

d

Extensive Some Extensive

Cs Some Some Extensive Some Some

I Some Some Some Not found Not found

Kr Some Some Not found Some Some

Sr Some Some Extensive Some Some

Xe Some Some Some Some Not found

Iodine assumed to behave like Kr



54

• Recent failures – particles failing within latest time-step (burst release, diffusion release in time-step) 

• Previous failures – particles failing on a previous time-step (time history of diffusion release) 

• Contamination and recoil

Radionuclide Release Models

Failing Intact 
TRISO

Released to the 
matrix

Transition 
from Intact-

to-failed

Failed 
TRISO

Contamination

Release from failed 
TRISO 

(Modified Booth)

Intact 
TRISO

Failed 
TRISO

recoil

Released to 
the matrix

Transfer to 
failed TRISO
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Standard treatment

Feedback models
• User-specified external input

• FHR example includes multiple feedbacks

• Fuel

• Molten salt around the fuel

• Inner reflector

• Outer reflector and unfueled pebbles

• Moderator (matrix around fueled pebbles)

Point Kinetics Modeling
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𝑃 +

𝑖=1

6
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Molten Salt Chemistry and Radionuclide Release
Radionuclides grouped into forms found in the 

Molten Salt Reactor Experiment
MELCOR-

provided state

Atmospheric 

Release 

Mechanisms

Evaluation of thermochemical 
state
• Gibbs Energy Minimization with 

Thermochimica

• Provides solubilities and vapor 
pressures

Thermodynamic database
• Generalized approach to utilize any 

thermodynamic database

• An example is the Molten Salt 
Thermal Database

 FLiBe-based systems

 Chloride-based systems

Solubility determined from empirical evidence 
(P. Britt ORNL 2017)

Solubilities mapped to 17 MELCOR fission product 
classes

Insoluble MELCOR classes are assigned to be colloidal

Model Scope

Initial Model Form

 



57

Core and reactor vessel

Core nodalization – light blue lines
• Assumes azimuthal symmetry

• Subdivided into 11 axial levels and 8 radial rings

• Core cells model molten salt fluid volume, reflector 
structures, the pebble-bed core, and the pebbles in the 
defueling chute

Fluid flow nodalization – black boxes
• Molten salt enters through the downcomer and flows into the 

center reflector and into the bottom of the pebble bed

• Molten salt leaves through the periphery of the core and 
upwards through the refueling chute

• Unfueled graphite pebbles in box labeled “180”
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Recirculation loops

Each loop has a pump, a heat 
exchanger, and a standpipe

Molten salt has free surface in the 
hotwell and the standpipes

Argon gas above the free surfaces 
with connection to the cover-gas 
system

• Over-pressurization relief passes 
through the cover gas system

• Cover gas enclosure leaks into the 
containment when over-
pressurized

Secondary-side air cools primary-
side molten salt
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Direct Reactor Auxiliary Cooling System (DRACS)
 

3 trains – 2.36 MW/train
• 236 MWt reactor

Each train has 4 loops in series
• Primary coolant circulates to DRACS heat exchanger

• Molten-salt loop circulates to the thermosyphon-cooled 
heat exchangers (TCHX)

• Water circulates adjacent to the secondary salt tube 
loop in the TCHX

• Natural circulation air circuit cools and condenses 
steam

Start-up: RCS-pump trip causes ball in valve 
to drop

Additional system information
• DHXs are in the reactor vessel

• TCHXs are in the shield building
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Containment
Shield dome

• Protection against aircraft and natural gas detonations (co-fired 
turbine concept)

• Contains water for DRACS and RCCS

• DRACS air natural circulation chimneys connected to the shield dome

Reactor cavity

• Fire-brick insulation

• Low free volume

• Low-leakage bellows between reactor cavity and adjacent cavities

Separate compartments for the other RCS components

• Below-grade compartment includes the cover-gas enclosure for 
reactor cavity over-pressurization

Reactor cavity cooling subsystem in reactor cavity wall

• Water circulation

• Cooling tubes affixed to reactor cavity steel liner

• Cools concrete during normal operation

Leak rate assumed consistent with BWR Mark 1 reactor building

• 100% vol/day at 0.25 psig
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MELCOR model inputs (2/2)

Fission product diffusivities through the 
TRISO and the pebble matrix from 
IAEA‐TECDOC‐978, Appendix A

• Primarily based on values from German 
experiments with UO2 TRISO pebbles

 UO2 data can be easily updated to UCO data*

• Limited data based on nuclides of Xe, Cs, Sr, 
and Ag

• Iodine assumed to behave like Kr
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TRISO diffusivity and UO2 failure data were used. Both are changeable 
through user input with design-specific data.
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Loss-of-onsite power with failure to SCRAM
• Salt pumps shut off

• Reactor fails to SCRAM

• Secondary heat removal ends

• 0 to 3 trains of DRACS operating

Includes preliminary analysis with xenon transient
• Guided by ORNL calculations

• Xenon reactivity feedback model being implemented into MELCOR

ATWS
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starts increasing

The long-term fuel temperatures increase to 
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Fluid fuel core defined within the graphite stringers

• The fluid volume within the graphite stringers comprise the active “Core”

• “Loop” volumes comprise a portion of the primary fuel flow loop 

OUTSIDE the active core 

• Allows specification of the axial and radial power distribution from 

SCALE

 Feedbacks and power governed by flowing fluid fuel point reactor kinetics 

model

Fission power generation in “core” and “loop” control volumes

• Fission power and feedbacks are calculated for the “core” volumes 

• No fission power energy generation in “loop” volumes 

• Decay heat (due to radionuclide class mass carried in pool) for both 

volume types

• Graphite heating due to neutron absorption 

• Provisions for shutdown in a spill accident

Fluid Core and Power Distribution
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Fluid Fuel Neutronic Transients – Modified Point Kinetics

A B C

D EA – In-Vessel DNP gain by fission 
B – In-Vessel DNP loss by decay and flow
C – In-Vessel DNP gain by Ex-Vessel DNP flow
D – Ex-Vessel DNP gain by In-Vessel DNP flow
E – Ex-Vessel DNP loss by decay, flow

Fission inside core
• Neutrons generated and moderated
• DNPs generated
DNPs that do not decay in core-region flow into loop
• Decay in loop or advect back into core-region

** DNP = Delayed Neutron Precursor 
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MELCOR nodalization - core and reactor vessel

Vessel nodalization
• Assumes azimuthal symmetry

• The graphite core structure is subdivided into 
10 axial levels and 5 radial rings

 Next slide shows mapping from SCALE

• Molten fuel salt enters through an annular distributor 
(cv-100) that directs the flow into the annular 
downcomer (cv-105) and the core inlet plenum 
(cv-110)

• The core is formed by graphite stringers that include 
flow channels

• The molten fuel salt flows through the stringers 
(CV-210 through CV-259), where the fuel fissions

Core region
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Total core power

• Fission = 8.8 MW

• Graphite heating = 0.7 MW

• Decay heat = 0.4 MW

Flows

• Primary loop = 1200 gpm

• Intermediate loop = 850 gpm

Helium off-gas flows
• Pump shaft = 1279 l/d

• Pump bowl = 3456 l/d

• Overflow tank = 1279 l/d

Recirculation flows
• Pump bowl spray = 50 gpm

• Pump shaft = 15 gpm
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MELCOR nodalization – reactor cell, condensing tank, and reactor 
building

Leakages

• Reactor cell = 0.42 scfh at 12.7 psia

• Reactor bldg = 10% per day at 0.25 psig

 

Reactor Building 
CV-520 

FL-525  

FL-520  

HVAC supply  

HVAC exhaust  

FL-599 

Bldg leakage  

FL-515 

Reactor cell leakage 

CV-530 FL-550 
Vacuum brkr  

Water 

FL-545 

Condensing tank 
CV-535 

 

Gas retention tank 
CV-540 
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FL-560  
To filters & stack 

FL-525 – Vacuum pump 

 

Rupture disks 
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Reactor Cell 

Drain Tank Room 
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Pump furnace 

 

Bldg leakage  

FL-598 
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MELCOR nodalization - offgas system
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MCA1 salt spill base case – Primary System Response
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MCA1 salt spill base case – Reactor Cell Response
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• Selected for the SCALE/MELCOR SFR demonstration

• ABTR Design Specifics

 250 MWth

 Pool-type SFR, near atmospheric pressures

 355℃ core inlet / 510℃ core outlet

 1260 kg/s core flowrate

 2 mechanical or EM pumps

 2 internal intermediate heat exchangers

• Design features

 Guard vessel

 Short-term fuel storage in the reactor

 Primary connects to an intermediate loop inside the vessel

 Power conversion system: Super-critical CO2 Brayton cycle

ABTR – Reactor Design

ABTR Vessel
[ANL-AFCI-173]



SCALE SFR Inventory, Decay 
Heat, Power, and Reactivity 
Methods and Results 
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• Litany of model perturbations were performed to calculate reactivity 
coefficients 

• Axial Fuel Expansion:
• A 1% expansion was considered, representing a 575K increase in fuel temperature

• Density was correspondingly adjusted

• Radial Grid Plate Expansion:
• Uniform, radial thermal expansion of the SS-316 grid plate (increasing assembly pitch)

• Cold (293K) to operating (628K)

• Pitch increase of 0.087 cm (0.6%)

Reactivity Coefficients
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• Fuel Density:
• A 1% density reduction while conserving dimensions (decreasing mass)

• Enhanced response relative to axial fuel expansion due to lost mass

• Structure Density:
• All HT-9 components (cladding, ducts, reflector, structure, followers, barrel)

• A 1% density reduction results from a 720K increase (decreasing mass)

• Sodium Void Worth:

• Flowing sodium was voided within fuel assembly ducts, active fuel region and above

• Varied from literature values, but known issues exist in calculating void worth with 
homogenized methods common for SFRs, as well as an XS library dependence [4,5]

Reactivity Coefficients, cont.

[4] W. S. Yang, et al. (2007).Preliminary Validation Studies of Existing Neutronics Analysis Tools for Advanced Burner Reactor Design Applications Technical Report ANL-AFCI-186, Argonne National Laboratory.

[5] NEA (2016).Benchmark for Neutronic Analysis of Sodium-cooled Fast Reactor Cores with Various Fuel Types and Core Sizes Technical Report NEA/NSC/R(2015)9, Nuclear Energy Agency.
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• Doppler:
• Nine fuel temperatures were utilized to determine the Doppler coefficient

• Logarithmic response expected from fast spectrum HPR experience, so coefficient is 
calculated as derivative at nominal fuel temperature (with respect to reactivity, not keff)

Reactivity Coefficients, cont.

• Linear approach can cause 
underestimation of Doppler 
coefficient 

 -0.079 cents/K linear with 2 points

 -0.098 cents/K linear with 9 points



MELCOR SFR Plant Model and 
Source Term Analysis
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Core

Core nodalization – light blue lines
• Subdivided into 15 axial levels and 8 radial 

rings

• Core divided according to assembly power 
and function (similar to SFP modeling)

 Ring 1 through 6 = 60 fueled assemblies 
combined according to power

 Ring 7 = 10 control and 3 material test 
assemblies

 Ring 8 = 78 reflector and 58 shield assemblies

 The 8 rings share a common inlet plenum and 
the lower cold pool

Fluid flow nodalization – black boxes
• Sodium enters through the inlet plenum and 

flows into the assemblies
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Vessel

All primary system sodium is contained within the 
vessel

Sodium exits into a hot pool and circulates through the 
shell side of 2 intermediate heat exchangers (iHX)

A redan (wall) separates the hot pool from the cold 
pool

2 EM or mechanical pumps circulate sodium into the 
vessel inlet

Free surfaces at the top of the hot and cold pools

Argon gas above the free surfaces with connection to 
the cover-gas system

• Assumed leak path for fission products
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Direct Reactor Auxiliary Cooling System (DRACS)

4 trains – 625 kW/train
• 0.25% of rated power per train (passive mode)

• Passive or forced circulation operation (only passive mode 
modeled)

Each train has 3 loops in series
• Cold pool primary coolant circulates through DRACS heat 

exchanger

• A Na-K secondary side loop transfers heat from the DRACS 
HX to the natural draft heat exchanger (NDHX) 

 Pump-driven or passive (only passive flow modeled)

• Air flows through the NDHX to the plant stack

 Fan-driven or passive (only passive flow modeled)

Start-up: Damper on air flow springs open

 

Damper min 
area is 1%
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Initial and boundary conditions
• Primary and intermediate pumps trip resulting in no secondary heat 

removal

• Reactor safety control rods fail to insert

• 4 DRACS trains are available in passive mode

Sensitivity analysis on DRACS availability
• 0, 1, 2, and 3 DRACS trains available

Unprotected loss-of-flow (ULOF)
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The initial fuel heatup has strong negative expansion, 
fuel density, and fuel Doppler fuel feedbacks that 
greatly offsets the positive sodium density feedback 
that shuts down fission

The net reactivity oscillates near zero after 
1000 sec

Reactivity Feedbacks Reactivity Feedbacks
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ULOF
The long-term core power matches the 
DRACS heat removal rate after 20,000 sec 
(5.6 hr)

The fission power is 1000 kW at 10,000 sec 
and gradually increases to offset the decrease 
in decay heat

The fuel and vessel liquid sodium temperatures 
quickly stabilize

The natural circulation flow moves heat from 
the core, through the iHXs to the cold pool, and 
through the DRACS
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ULOF – with variable DRACS sensitivity

• Core power eventually converges on the DRACS 
heat removal rate

• Dampers are normally 1% open

1xDRACS case shows a small heatup but other 
DRACS cases have similar responses

• Thermal inertia of the DRACS and vessel mitigate 
heatups

Expansion of sodium leads to hot to cold pool spill-over 
and eventually a filled vessel in 1% damper case

DRACS heat removal and core power
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Initial and boundary conditions
• Inlet to a fuel assembly is blocked

• Primary and intermediate pumps remain 
running

• Control rods are assumed to insert after an off-
gas high-radiation signal

• The cover gas system leaks in the containment

 Assumed radionuclide release pathway

Single blocked fuel assembly
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Single blocked fuel assembly
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Single blocked fuel assembly
• The fluid in the duct starts voiding within 

3 seconds 

• The assembly sodium is boiled and expelled 
within ~10 sec

• The fuel cladding temperature responses (below) also 
indicate the fuel temperature response

• The cladding temperature rise pauses while the fuel 
melts and then increases to the cladding melting 
temperature

• The cladding melts and collapses when the minimum 
thickness reaches a structural integrity limit

Indicates 
collapse

Blocked assembly liquid sodium level Fuel cladding temperatures by axial level
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Single blocked fuel assembly

Solid debris is 
supported by 
lower fuel

Molten debris is 
supported by solid 
debris

Molten debris in 
inlet plenum
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Single blocked fuel assembly

• After the cladding failure, there is a 
prompt release of the plenum gas 
inventory followed by thermal releases 
from the hot debris

• The analysis assumed blockage of a 
high-powered center assembly with 
approximately 2.2% of the core 
radionuclides

• 97% of the noble gases

• ~6% of iodine and cesium

Fraction representing 100% of radionuclides in the blocked  assembly

Radionuclide release fraction from the fuel based 
on whole core inventory

Release from gas 
plenum and fuel 
voids
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Single blocked fuel assembly

• Xe bubbles through the hot sodium pool above the core to the gas space.

• Leakage rate through the failed off-gas line to the containment
 Assumed a sweep flow of 1 reactor gas space change per hour persisted during the transient

 Xe environmental release is very small due to the large containment volume and the low leak rate

• The cesium and other radionuclides retained in the sodium

Xe radionuclide distribution
Cs radionuclide distribution

Cesium retained in-
vessel



MELCOR Point Kinetics 
Feedback Example
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Required inputs (cor_pkm0x)
• All relevant feedbacks in dollars [$] – example uses vector control functions

• Control rod worth for SCRAM [$]

• Any neutron sources [neutron/s]

cor_tavg & cor_pkm03 input is optional
• Not used in non-LWR models

Disable built-in feedbacks (sensitivity coefficient 1404)
• Default feedbacks originally formulated for high-temperature gas reactor (HTGR)

MELCOR Point Kinetics

cor_sc      6

1    1404    0.0     1

2    1404    0.0     2

3    1404    0.0     3

4    1404    0.0     4

5    1404    0.0     5

6    1404    0.0     6

7    1404    0.0     7
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6 delayed-neutron group decay constants in sensitivity coefficient 1405
• Default developed for a high-temperature gas reactor (HTGR) (thermal neutron 

reactor)

Other reactor-specific point kinetics data in sensitivity coefficient 1406
• For example, sc-1406(2) is the total effective delayed neutron fraction, β

MELCOR Point Kinetics
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SFR feedback example

Feedback Effect SCALE Value

Axial fuel expansion coefficient (cents/K) -0.1347 ± 0.0033

Radial grid plate expansion coefficient (cents/K) -0.3376 ± 0.0067

Fuel density coefficient (cents/K) -0.2444 ± 0.0044

Structure density coefficient (cents/K) -0.0125 ± 0.0021

Sodium void worth ( $) -0.4623 ± 0.0165

Sodium density coefficient (cents/K) -0.1252 ± 0.0389

Doppler coefficient ( $ with T in K) -1.004 ln(T) + 15.67

Sodium voided Doppler coefficient ( $ with T in K) -0.776 ln(T) + 13.68

Primary control assemblies ( $) -22.07

Secondary control assemblies ( $) -15.77
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SFR fuel Doppler feedback example

cf_range RANGEFU cells 1

construct  1  ! Axial Radial

1     4-13   1-6

First, define fuel temperatures vector range

cf_id 'Tfu'  4001  formula                  

cf_sai 1.0    0.0   0.0000E+00               

cf_vcf #RANGEFU                                                       

cf_formula 1  T                                              

1  T  cor-celltemp(#RANGEFU,fu)

Second, get fuel temperatures

cf_id 'fb-Dopp0'   4014   formula         
cf_sai 1.0          0.0    0.0000E+00      
cf_vcf #RANGEFU                                              
cf_formula 3    a*ln(T)+b                             

1    a   -1.004          
2    b   15.67           
3    T   cf-valu('Tfu')

Third, calculate feedback
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SFR fuel Doppler feedback example

cf_id 'fb-Dopp1'  4015    add                      

cf_sai 1.0         0.0     0.0000E+00               

cf_arg 60                                                             

1     cf-valu('fb-Dopp0')[1]    1.7647E-03 

2     cf-valu('fb-Dopp0')[2]    8.8236E-03 

3     cf-valu('fb-Dopp0')[3]    9.7116E-03 

4     cf-valu('fb-Dopp0')[4]    3.0481E-02 

5     cf-valu('fb-Dopp0')[5]    1.5723E-02 

…

58    cf-valu('fb-Dopp0')[58]   2.4429E-02 

59    cf-valu('fb-Dopp0')[59]   1.2601E-02 

60    cf-valu('fb-Dopp0')[60]   1.3301E-02 

!                                           1.0000E+00

Fourth, apply weighting factors (e.g., volume, power, power2)

cf_id 'fb_Dopp-ss'    4016      formula                

cf_sai 1.0   0.0       0.0000E+00             

cf_formula 4     l-a-ifte(t>t0,self,fb)                       

1     t         exec-time              

2     t0        -10.0                  

3     self      cf-valu('fb_Dopp-ss')  

4     fb        cf-valu('fb-Dopp1') 

Fifth, freeze steady state values
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SFR fuel Doppler feedback example

cf_id 'del_Dopp'   4017   formula              

cf_sai 1.0          0.0    0.0000E+00           

cf_formula 2  fb-fbss

1  fb        cf-valu('fb-Dopp1')  

2  fbss cf-valu('fb_Dopp-ss')

Sixth, calculate the Doppler change from full-power steady state conditions

cf_id 'React'      4029   formula                        

cf_sai 1.0          0.0    0.0000E+00                     

cf_formula 8     Axial+Radial+FuRho+Doppler+NaVoid+NaRho+CRout+CRin

1     Axial     cf-valu('fb-FuExp')            

2     Radial    cf-valu('fb-RadExp')           

3     FuRho cf-valu('fb-FuRho')            

4     Doppler   cf-valu('del_Dopp')            

5     NaVoid cf-valu('del_void')            

6     NaRho cf-valu('del_NaRho')           

7     CRout cf-valu('CR-out')              

8     CRin cf-valu('CRs-in') 

Seventh, sum feedbacks
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SFR fuel Doppler feedback example
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