Searching for charged Lepton Flavour Violation with the Mu3e Experiment

Ben Gayther - University College London (UCL) On behalf of the Mu3e collaboration

Introduction

- Signal decay
- Backgrounds
- Principle of momentum measurement
- The detector
- Sub-detector overviews
- Integration runs

- Possible in SM via neutrino mixing
- Branching ratio ~ 10⁻⁵⁴ → any observation is a sign of physics beyond the SM
- Limiting factors:

cLFV in SM

- Number of stopped muons
- Background suppression

Mu3e

- Search for the rare cLFV decay $\mu^+ \rightarrow e^+ e^+ e^-$
 - Current limit: $BR < 10^{-12}$ at 90% CL (SINDRUM I, 1988)
- Kinematics:
 - Single vertex, three tracks coincident in time
 - Decay at rest $\rightarrow \sum p_e = m_\mu$
- Mu3e Phase I at existing beam line (πE5) at Paul Scherrer Institute (PSI)
 - Single event sensitivity $\rightarrow 2 \cdot 10^{-15}$

- o No common vertex
- o No time coincidence
- o Accidental combinations

- o e^+ from Michel decays
- o e^- or e^+e^- from:
 - o Bhabha scattering
 - o Mis-reconstruction
 - o Photon conversion

→ Need **good** vertex/time resolutions and low material amount

→ Need excellent momentum resolution ($\sigma_p < 1.0 \ MeV/c$)

Simulated Phase I Mass Reconstruction

March

Measuring momentum

- Challenge → low momentum electrons & positrons!
- Resolution dominated by multiple scattering (MS)
- Track curvature (Ω) and MS angle (Θ_{MS})

Measuring momentum

- Solution:
 - Minimise material amount, decreasing Θ_{MS}
 - Increase bending angle, Ω
 - (Include Θ_{MS} in track reconstruction)

Rencontres du Vietnam

High Voltage – Monolithic Active Pixel Sensors

- Sensor and readout fully integrated
- Fast charge collection (via drift)
- Last prototype MuPix10 meets requirements:
 - Thinned down to 50 μm
 - Active sensor size 2 cm x 2 cm
 - σ_t a few ns

Rencontres du Vietnam

(I.Peric,NIM A 582 (2007) 876)

Scintillating Fibres (SciFi)

- Need timing to supress combinatorial backgrounds
- Each ribbon → three layers of staggered fibres
 - 250 µm fibre diameter
 - 0.2 % X₀
- Silicon photomultiplier (SiPM) arrays detect light at both ends of ribbon
- σ_t a few hundred ps

Scintillating Tiles

- Placed at end of recurler trajectory \rightarrow can be thicker
- Tile is finely segmented plastic scintillator
- Each tile read out by it's own SiPM
- $\sigma_t \sim \text{tens of ps}$

Data Acquisition (DAQ)

- No trigger
- Synchronise data from all sub-detectors
- Online event selection
 - Tracking & vertexing on GPUs
- Only signal candidates saved
- Tested during two integrations runs

Integration run 2021

- Detector setup:
 - Vertex detector prototype with MuPix10
 - Two SciFi ribbons
 - Phase I magnet
- Services:
 - He cooling
 - Cage
 - Beam (πE5)

Layer 0 (chipID

Integration run 2022

- Recently finished
- Same setup but without magnet and only one SciFi ribbon
- Looking for cosmics → requires well tuned detector
- External trigger from scintillator blades

Integration run 2022 results

- (Cosmic) reconstruction integrated into online analyzer
- Observed potential cosmic rays in event display

Summary

- The Mu3e experiment will search for the rare cLFV decay $\mu^+ \rightarrow e^+ e^+ e^-$
- Find or exclude at a branching ratio above 10⁻¹⁵ (Phase I) or 10⁻¹⁶ (Phase II)
- Detector prototypes built and tested together (in Magnet & Helium)
- Commissioning to start in late 2023
- Physics data taking to start in 2024

Thanks for listening!

Mart

• Questions?

Bibliography

Mag

- Mu3e:
 - K. Arndt et al., "Technical design of the phase I Mu3e experiment," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 1014, p. 165679, 2021/10/21/ 2021, doi: <u>https://doi.org/10.1016/j.nima.2021.165679</u>.
 - Niklaus Berger, Moritz Kiehn, Alexandr Kozlinskiy, and Andre Schöning. 2017. A New Three-Dimensional Track Fit with Multiple Scattering. Nucl. Instrum. Meth. A 844, (2017), 135. DOI:<u>https://doi.org/10.1016/j.nima.2016.11.012</u>
- SINDRUM I:
 - U. Bellgardt et al., "Search for the Decay mu+ -> e+ e+ e-," Nucl. Phys. B, vol. 299, pp. 1–6, 1988, doi: <u>https://doi.org/10.1016/0550-3213(88)90462-2</u>
- Muon beamline:
 - Felix Anton Berg. 2017. CMBL A High-Intensity Muon Beam Line & Scintillation Target with Monitoring System for Next-Generation Charged Lepton Flavour Violation Experiments. PhD Thesis. ETH Zurich, Zurich. DOI:<u>https://doi.org/10.3929/ethz-b-000213470</u>
- BR for CLFV:
 - Calibbi L, Signorelli G (2018) Charged Lepton Flavour Violation: An Experimental and Theoretical Introduction. Riv Nuovo Cim 41:71–174. <u>https://doi.org/10.1393/ncr/i2018-10144-0</u>

Backup

I Year of data taking

Muon beam rate of 10⁸ Hz

- Find or exclude µ⁺ → e⁺e⁺e⁻ at branching ratio above 10⁻¹⁵
 - Phase II above 10⁻¹⁶

•
$$SES = \frac{1}{\varepsilon \cdot N_{\mu}}$$

Summary of Phase I

Rencontres du Vietnam

Muon beam

- $\pi E5$ at Paul Scherrer Institute
- Demonstrated rates of O(10⁸) Hz

Target

- Maximise stopping power & minimise material amount
- Low Z material, Mylar
- Decay vertices well spread out

 → reduce combinatorial background & even occupancy in vertex layers
- Corresponds to 0.15 % X₀
- Stopping fraction ~ 95.5 %

a)

Rencontres du Vietnam

Ben Gayther - UCL

Magnet

Delivered in 2020 by Cryogenics Ltd.

MAGNET PARAMETER	VALUE
nominal field	$1.0\mathrm{T}$
warm bore diameter	$1.0\mathrm{m}$
warm bore length	$2.7\mathrm{m}$
field inhomogeneity $\Delta B/B$	$\leq 10^{-3}$
field stability $\Delta B/B$ (100 days)	$\leq 10^{-4}$
field measurement accuracy $\Delta B/B$	$\leq 2.0 \cdot 10^{-4}$
outer dimensions: length	$\leq 3.2\mathrm{m}$
width	$\leq 2.0\mathrm{m}$
height	$\leq 3.5\mathrm{m}$

Requirements

Phase II detector

- High intensity muon beamline (HIMB) under study at PSI
 - Would deliver > 10⁹ Hz
- Possible setup:
 - Longer recurl stations
 - Smaller target

Simulated efficiencies

Step	Step efficiency	Total efficiency
Muon stops	100%	100%
Geometrical acceptance, short tracks	38.1%	38.1%
Geometrical acceptance, long tracks	68.0%	25.9%
Short track reconstruction	89.5%	34.1%
Long track reconstruction ¹	67.2%	17.4%
Recurler rejection/Vertex fit convergence	99.4%	17.3%
Vertex fit $\chi^2 < 15$	91.3%	15.8%
CMS momentum < 4 MeV/c	95.6%	15.1%
$m_{ee,low} < 5 \mathrm{MeV/c^2}$ or $> 10 \mathrm{MeV/c^2}$	98.0%	14.9%
$103 \mathrm{MeV/c^2} < m_{rec} < 110 \mathrm{MeV/c^2}$	97.0%	14.4%
Timing	90.0%	13.0%

Acceptance to different interaction types

Track momentum resolutions

Multiple Scattering / Momentum measurements

$$\sigma_{MS} = \frac{13.6 \, MeV}{p\beta c} q \sqrt{\frac{x}{X_0}} \left(1 + 0.038 \ln\left(\frac{x}{X_0}\right) \right) \propto \frac{1}{p} \sqrt{\frac{x}{X_0}}$$

Rencontres du Vietnam

Feynman Diagrams

Integration run 2022 timing results

Observed time correlations between pixels, SciFi and external trigger

