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Abstract
After an introduction to related basics of cyclotrons, this article describes in-
jection and extraction schemes in cyclotrons. Often these represent the critical
aspects of cyclotron designs. For injection internal sources, electrostatic in-
flectors, horizontal injection and matching are discussed. For extraction the
scaling of turn separation, electrostatic septa and charge exchange extraction
are covered. Low loss extraction of high intensity beams is discussed in par-
ticular detail.
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1 Introduction
Cyclotrons have a long history in accelerator physics and are used for a wide range of medical, industrial,
and research applications [1]. The first cyclotrons were designed and built by Lawrence and Livingston
back in 1931 [2]. The cyclotron represents a resonant accelerator concept with several properties that
make it well suited for cost effective and compact accelerator installations, but also for the acceleration
of hadron beams with high average intensity. It is a powerful concept for the following reasons. The
circulation time of the beam can be kept constant by arranging the scaling of bending radius and velocity
in proportion. Thus neither frequency nor magnetic field must be varied in the process of acceleration
and the beam can be accelerated continuously. A simple shaped vertically oriented magnetic field plus
a pair of electrodes for acceleration by an RF field are sufficient to construct a classical cyclotron. The
acceleration device can be used repetetively, thus presenting a cost effective solution. The most sig-
nificant limitations of cyclotrons are the limited energy range and the relatively weak focusing, which
imposes a limit for the bunch charge. While the acceleration process can be realised in a straight forward
way in cyclotrons, clean injection and extraction into and out of this continuous accelerating scheme are
challanging.

In the series of the CERN accelerator school CAS, the topic of injection/extraction for cyclotrons
was considered already several times in depth [3], [4], [5]. This paper touches all relevant techniques,
but focuses a bit more on specific issues with high intensity beams. Most of the cited papers are available
in electronic format on the internet, and related links are given in the references section.

2 Related cyclotron basics and magnetic versus electric deflection
The revolution frequency of an ion beam in a classical cyclotron is given by:

fc =
ωc

2π
=

qBz

2πγm0

≈ 15.2 MHz ·B(T) ( for protons ). (1)

Here m0 and q are ion rest mass and charge, Bz the vertically oriented bending field. The fre-
quency is constant for low energies, a fact that made the construction of first classical cyclotrons rela-
tively easy (Fig 1). But as soon as γ deviates by a few percent from 1 the particles would run out of phase
and extended concepts had to be implemented, in the form of the isochronous cyclotron and the synchro-
cyclotron. In the isochronous cyclotron the average magnetic field is raised radially in proportion to γ,
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Fig. 1: Conceptual sketch of a classical cyclotron in plan view. Thanks to the simple concept, first cyclotrons were
constructed already in the 1930’ies.

to keep the circulation time constant. Vertical focusing is provided by azimuthal variation of the bending
field. The radial focusing frequency νr can be computed by expanding the equation of motion around
the orbit radius R and by taking into account the radial slope of the bending field [6]. The result is:

νr ≈
√

1 +
R

B

dB

dR
≈ γ (2)

The relation to γ is computed from the square root term by taking into account the isochronous
condition, i.e. R ∝ β and B ∝ γ. In comparison to alternating gradient synchrotrons the focusing in
cyclotrons is relatively weak since the beam energies are usually below 1 GeV. Also the vertical tune νz
is typically a low number. This is important for injection matching and for acceleration of high intensity
beams, since the transverse space charge forces counteract the relatively weak focusing of cyclotrons.
Average beam optics parameters as beta-function and horizontal dispersion are estimated by βr ≈ R/γ
and Dr ≈ R/γ2. In order to prevent emittance blowup the injected beam must be matched to the
appropriate optics on the first turns.

For clean extraction of high intensity beams the turn separation is the most relevant parameter.
To extract the beam by electrostatic deflection a thin electrode has to be placed inbetween the turns. To
understand the basic scaling we consider here first the non-relativistic case with γ = 1, B = const and
∆Ek a constant energy gain per turn.

BR =
p

q
=

1

q

√
2mEk (3)

dR

R
=

1

2

dEk

Ek

∆R(R) =
m

q2B2

∆Ek

R
, ∆Rextr =

1

2
Rextr

∆Ek

Ek,extr

Thus, during the acceleration process the turn separation is reduced as 1/R. For a given final
energy Ek,extr the turn separation scales with the extraction radius, i.e. with the size of the cyclotron.

In order to compute the turn separation for the case of the isochronous cyclotron with higher
energies we have to include relativistic factors and the radial change of the magnetic field. As a starting
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Fig. 2: During the course of acceleration, in all examples from 100 MeV to 800 MeV, the turn separation decreases
as a function of radius. However, the final turn separation at the extraction radius is proportional to this radius, i.e.
a larger cyclotron with lower magnetic field is advantageous for clean extraction.

point we use the total differential of the expression for the magnetic rigidity (6):

dB

B
+

dR

R
=

γ dγ

γ2 − 1
. (4)

This single equation relates the three parameters kinetic energy (through γ), orbit radius R and
magnetic field B. With nt denoting the turn number, the radius increment per turn is computed as:

dR

dnt
=

∆Ek

m0c2
γR

(γ2 − 1)ν2r

=
∆Ek

m0c2
R

(γ2 − 1)γ
(5)

The first line in (5) is a more general expression, indicating the option to change the radial slope
of the magnetic field that affects νr and the turn separation. If the condition of isochronicity is applied
through (2) one obtains the second line in which the slope of the field is not a free paremeter. However,
in the vicinity of the outer radius in a cyclotron this condition can be violated over a few turns in or-
der to increase the turn separation locally for better extraction efficiency. For larger energy the strong
dependence on γ leads to quickly diminishing turn separation. A practical limit is reached for proton
cyclotrons at an energy of 0.8. . . 1 GeV. For fixed final energy the turn separation also scales with the
orbit radius at extraction, so it is generally easier to extract from a large cyclotron. The derivation of this
relation is given in more detail in [6]. For example in the PSI Ring cyclotron with protons of 590 MeV
kinetic energy and an extraction radius of 4.5 m this number is about 6 mm. The scaling with the size
is illustrated in Fig. 2 for a hypothetical cyclotron that accelerates to 800 MeV with different maximum
field strength at extraction, thus a varying overall size.

In compact cyclotrons with a factor 1000 less intensity, turn separation is not as critical and one
can even allow overlapping turns with acceptable extraction losses. In order to realise extraction and
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Ek B = 1 T E = 10 MV/m
60 keV 0.035 m 0.012 m
1 MeV 0.14 m 0.2 m
1 GeV 5.6 m 150 m

Table 1: Bending radii achieved with typical magnetic and electric fields for protons at different kinetic energies.

injection schemes the beam must be deflected onto the first turn or out of the last turn. For this deflection
static electric or magnetic fields are used. The challange is to deflect only one turn and to minimize the
effect on neighboured turns. Magnetic fields are used in septum magnets and the bending strength is
given by the well known magnetic rigidity, here given as a function of the relativistic γ factor:

Bρ =
m0c

q

√
γ2 − 1 (6)

For injection and extraction elements the application of electric fields has some advantages. More
complex field shapes can be realised, for example using a spiral inflector as described later. An electro-
static electrode can be very thin in cases where a neighboured turn passes closely. The corresponding
electrostatic rigidity is calculated as follows:

Eρ =
m0c

2

q

γ2 − 1

γ
(7)

At low energies, e.g. at ion source energies, (7) can be approximated by Eρ ≈ 2Uacc, where
Uacc is the accelerating voltage in the source. As it turns out electrical fields are more effective at lower
energy. For protons a few numerical examples for attainable bending strength are given in table 1.

3 Internal Sources
Internal ion sources are often used in compact cyclotrons. That is possible since the magnetic field covers
also the central region of the the cyclotron, and the beam can be accelerated from very low energy. As
compared to external injection of a quality beam, an internal source delivers a diffuse cloud of ions.
Typically a mixture of different charge states is created. An important aim of the central region design
in a compact cyclotron is therefore the efficient capture of the desired ion species at low energies. If
unwanted ions are accelerated to higher energies, e.g. beyond ≈ 7 MeV, these will create secondary
activation. Fig. 3 shows a sketch of a cold cathode ion source and the concept of the central region in a
250 MeV cyclotron for cancer treatment (Varian).

In the "chimney" electrons emitted from cathods ionize injected hydrogen gas. The vertical mag-
netic field in the compact cyclotron is essential for this process. The electrons follow a spiral path in the
field which greatly enhances the ionization rate. The principle is similar to the function of an ion getter
pump, or Penning ionization. The generated ions leave the chimney though a narrow slot. The first step
of acceleration is achieved by a so called puller electrode which is part of one of the four Dee’s in this
cyclotron. Repetitive acceleration of the beam is performed by applying a high voltage RF potential to
the Dee’s. The paths of the other charge states H+

2 and H− are also indicated in the figure. Unwanted
ions are collimated at an early stage. For certain applications like fast pencil beam scanning of cancer
tumors, the stability of the beam current on a fast time scale is important. Several parameters must be
optimized for high stability and a high current for the Penning discharge seems to be particularly ben-
eficial. Due to the injected gas the internal ion source is a limiting factor for the vacuum quality in a
cyclotron. Another limitation of internal sources is the fact that heavier ions and specific charge states
like H− cannot be injected in this way. In summary internal sources present an elegant and cost effective
solution for compact cyclotrons, however several limitations exist.
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Fig. 3: Hydrogen atoms are ionized by electrons and emerge from the slit in the center of the tube (left). The inner
region concept of the compact superconducting 250 MeV Varian cyclotron (right, courtesy of VARIAN MS and
M. Schippers, PSI). Collimation of unwanted charge states and deviating protons must be done at low energy.

4 Injection
In many situations an external ion source or even a pre-accelerator must be employed. The reasons can be
high intensity requiring a complex source, better beam quality, the need for specific ions or charge states.
Separated sector cyclotrons require a minimum beam energy, excluding the use of internal sources. Axial
injection (compare Fig. 4) is often used for small cyclotrons with magnetic field in the center. The beam
enters vertically and is bend by 90ḋeg into the plane of the circulating orbis. The bending is realised
by an electrostatic or magnetostatic inflector. The vertical magnetic field supports radial bending at
the same time, turning the beam towards the direction of the first turn in the cyclotron. For horizontal
injection the beam enters the cyclotron radially in the plane of the circulating orbits. It passes the center
region and is bend by magnetic elements towards the first turn orbit. The last step is often realised by
an electrostatic deflector with the challange not to affect the second and other circulating turns. Another
option is stripping injection, where the beam passes a foil to remove electrons from the ion. The change
in charge state brings the ion on the orbit of the first turn.

The design of a cyclotron injection requires consideration of many aspects, some of which affect
the design of the entire cyclotron:

– longitudinal bunching and optimization of capture efficiency
– optics matching including space charge for high intensity beams
– choice and design of the inflector element
– central region design, radial and vertical centering

An ion source delivers a DC beam, but for acceleration in a cyclotron the beam must be bunched.
In the simplest case, similarly to the function of an internal source, the bunches are formed in the cy-
clotron itself since only ions arriving within a certain RF phase window will be accelerated. However,
this scheme has low capture efficiency and one risks unwanted beam losses throughout the acceleration
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Fig. 4: Beam orbit paths for axial (left) and horizontal injection (right).

process.

The beam can be bunched by utilizing a buncher cavity outside of the cyclotron. The buncher
cavity introduces a velocity modulation resulting in the formation of bunches. Due to the acceleration
in the cyclotron and the decrease of the relative velocity spread, the bunches sustain their shape. In
the PSI high intensity accelerator the beam is provided by a Cockcroft Walton pre-accelerator at an
energy of 870 keV with low energy spread. In order to maximize the capture efficiency in the Injector
II cyclotron one uses a 3rd harmonic buncher cavity at 150 MHz in addition to a fundamental mode
50 MHz buncher. The harmonic cavity increases the linear region of the voltage modulation seen by
the beam particles. The central region of the cyclotron has several adjustable collimators to remove
protons with deviating phases from the beam at low energy. Alternatively to a Cockcroft Walton an RFQ
pre-accelerator, providing already bunched beam, could be used.

Also in the transverse planes the injected beam must be matched to the envelope functions of the
circulating beam. If the beam is not properly matched the buches will rotate in phase space, resulting in
tails and potential difficulties at extraction. Complete filamentation of mismatched bunches is normally
not an issue in a cyclotron, due to the short acceleration time. In comparison the focusing strength in a
cyclotron is much weaker than in alternating gradient synchrotrons. Beam envelope functions are thus
just mildly modulated around the circumference. An example calculation is given in Fig. 5. In case of
high intensity beams, space charge forces must be taken into account. Transverse space charge forces act
against the focusing of the magnetic lattice and alter focusing frequency and envelope functions. Strong
space charge effects set an intensity limit for cyclotron, e.g. [9].

An electrostatic inflector for axial injection can be realised in different ways [3], [4]. The mirror
inflector is the most simple design, consisting of a pair of charged plates. Geometry and voltage are
adjusted such as to achieve the desired bending angle, normally 90 deg. As soon as the beam deviates
from the vertical direction, the magnetic bending field of the cyclotron starts to deflect the beam as well,
which forces the beam onto a spiral path. The magnetic force can be utilized to gradually bend the beam
into the direction of the first turns orbit. The electrostatic force is applied in an optimal way if it acts
perpendicular to the velocity vector of the particles at each point of the orbit. Only in this way a change
of the kinetic beam energy is avoided. Such scheme is realised in the spiral inflector, in which the two
electrode plates are gradually bend with the changing direction of the beam. A detailed treatment of the
beam dynamics in a spiral inflector is given in [7].

For horizontal injection in a separated sector cyclotron the free space in the center region can be
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Fig. 5: Matched beam size in the PSI Injector II cyclotron as a function of azimuth at 0.84 MeV. The simulation
includes space charge forces [8].

Fig. 6: Spiral inflector as used in a 30 MeV cyclotron produced by IBA. The pair of curved electrodes is visible in
the center of the image.

used to install magnets for bending and focusing of the beam to be injected. In order to finally deflect the
beam onto the first turn orbit, often an electrostatic deflector with a thin electrode placed between first
and second turn is used. The design of this injection element can be similar as the electrostatic extraction
channel in Fig. 7.

5 Extraction
For some applications, for example isotope production with low beam intensity, it is even unnececessary
to extract the beam. The target can be inserted into the cyclotrons vacuum chamber for irradiation by a
proton or ion beam. For compact, low cost cyclotrons internal targets are the most effective solution. In
this case the main effort has to be spent on a reliable mechanism to exchange the targets.

For higher intensities extraction of the beam to an external beamline is required, and the methods of
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choice are then electrostatic deflection of the last turn, self extraction in the fringe field of the cyclotron or
charge exchange extraction, "stripping". The latter of course requires acceleration of a not fully stripped
ion, introducing specific issues.

Self extraction of a beam can be achieved in the fringe field of the magnet at a radius where the
normally positive slope of the magnetic field has decreased to a negative value at which the radial focus-
ing stability is lost (νr = 0, compare eq.(2)). For this method it must be avoided to lose isochronicity
too early. An extraction channel is machined in the magnet iron to provide a septum field and transverse
focusing for the extracted beam. More details on this method are given in [3].

Fig. 7: The electrostatic extraction channel (EEC) of the PSI Ring cyclotron allows extraction of 2.4 mA CW
current with relative losses below 2× 10−4.

For extraction with an electrostatic element (e.g. Fig. 7) the turns should ideally be separated
to place the septum electrode in-between the turns, minimizing the rate of ions hitting the electrode
and the resulting activation. The scaling of the average turn separation in cyclotrons was discussed
in section 2. Typical turn separation is in the range of a few millimeters. In summary it diminishes
quickly for high energy with γ−3 and it scales with the size of the cyclotron. Especially for compact
superconducting cyclotrons with high fields the turn separation can be smaller than the beam size. But
also for normalconducting cyclotrons this is a long standing problem and several methods have been
developed to increase turn separation beyond the value generated by acceleration only. In several ways
the concept of resonant extraction can be utilized. Coherent radial beam oscillations are excited by an
harmonic bump. This is particularly effective in the vicinity of the integer resonance νr ≈ 1. As shown
in equation (2) the radial tune is normally larger than 1 to keep the beam isochronous. However, close
to extraction a phase slip can be tolerated for a few turns and the focusing is naturally weaker at the
edge of the magnetic field. Close to the betatron resonance the amplitude of coherent oscillations is
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Fig. 8: Turn separation at extraction is enhanced by introducing coherent radial beam oscillations. The concept
graph shows the clockwise rotating phase vector of the beam center in the lower part. The multi-turn beam profile
as a result of superimposing the shiftet Gaussian beam distributions of individual turns is shown in the upper part.
The right picture shows the measured beam density at extraction in the PSI Ring cyclotron on a logarithmic scale.
Turn numbers and location of the electrode of the electrostatic deflector are indicated.

increasing quickly, thereby providing larger turn separation. In a modified version of this method, called
precessional extraction, the tune drops quickly below 1 after exciting the resonance. This leads to an
azimuthal shift of the maximum of the orbit oscillation from turn to turn, providing larger turn separation
at the fixed azimuth of the septum. If the tune is close to a half integer resonance it is also possible to
excite beam oscillations by intruducing a gradient bump. Extraction efficiencies of 80 % can be achieved
even in compact superconducting cyclotrons using these methods of resonant extraction.

In the following we discuss the extraction process in the PSI Ring cyclotron in more detail. Co-
herent beam oscillations and a local shift of the radial betatron fequency are used to enhance the turn
separation from the normal 6 mm gain by acceleration to a tripled value of 18 mm. Using an electrostatic
septum it is possible to extract a beam of 1.4 MW average power with an efficiency of 99.98 %. The lost
beam power of ≈ 200 W leads to a peak activation of ≈ 10 mSv/h in magnets of the extraction beam
line, which is a tolerable level for service. The design of the electrostatic septum has been optimized
in several iterations to improve performance and reliability, Fig. 7. The electrode is realised as a series
of 3 mm wide and 50µm thin tungsten stripes. Tungsten has a high melting point and tolerates best
accidental beam impact. If a stripe breakes it is pulled out of the beam plane by a spring. The effective
electric length is 920 mm and the deflection angle 8.2 mrad. To reduce the number of high voltage trips,
the element is covered by a metallic cage inside the cyclotrons vacuum chamber, to avoid accumulation
of surface charges on the ceramic insulators. In the PSI Ring cyclotron the beam is already injected
off-center at 72 MeV. The coherent radial oscillation persists throughout the acceleration process. This
approach has no significant drawbacks since the machine behaves sufficiently linear. At the coupling
resonance νr ≈ 2νz the large radial oscillation could potentially be coupled to the vertical plane. In
practice the resonance can be crossed quickly, avoiding vertical oscillations (Fig. 9). When the beam
approaches the extraction radius the tune equals roughly νr ≈ 1.75. The phase space vector rotates by
3/4 of a circle per turn as shown in Fig. 8. At the azimuth of the septum the beam oscillation results in
a certain pattern, with some turns overlapping. The three turns before the last turn, 185-187, are fully
overlapping and turn 187 is shiftet inwards by the maximum oscillation amplitude. At this radius the
tune is quickly reduced towards 1.5 so that the phase vector of the last turn is pointing outwards instead
of downwards. As a result the normal turn separation is tripled in this scheme. In the right part of Fig. 8
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a measured profile of the turns 180 to to the extracted beam 188 is shown. At the location of the septum
the particle density is 3 orders of magnitude lower than in the beam center.

Besides the large turn separation, another ingredient of clean extraction are low beam tails. One
important mechanism for tail production is longitudinal space charge, introducing energy spread, which
is then converted into transverse tails. Fast acceleration is the best method to reduce these tails. Joho
has shown in [10] that the attainable intensity in the PSI Ring cyclotron scales as the inverse of the
cubed number of turns. Indeed, over the history of the accelerator significant improvements in intensity
were achieved by raising the accelerating voltage, and the achieved intensity is in agreement with Joho’s
scaling law.

Stripping or charge exchange extraction is another elegant scheme to extract a beam from a cy-
clotron. In this case ions are accelerated that are not fully ionized. The electrons are removed from
the ions by passing them through a thin foil. The sudden change of the charge to mass ratio causes a
change of the curvature of the ion path in a magnetic field. In this way the stripped ions are separated
from the circulating beam and they are easily extracted. A prominent example for this technology is the
acceleration of H−, a proton with two bound electrons. After removing the two electrons the orbit cur-
vature is inverted. By introducing the stripping foil at varying radius it is even possible to extract beam
at different energies. While the advantages of the method are obvious, a number of difficulties must be
mentioned. The second electron of H− is bound rather weakly to the proton. In a magnetic field or by
interaction with residual gas atoms, the ion is dissociated with relatively high probability. For example
in the TRIUMF cyclotron the maximum magnetic field is limited to about 0.6 T for this reason. Another
issue is the lifetime of the stripping foil, which is heated by direct interaction with the ion beam, but also
by the stripped electrons. These electrons are spiralling in the magntic field at a radius lower than the
ion bending radius by the ratio of the rest masses, which is typically just millimeters. The electron could
pass the stripping foil many times until its kinetic energy is fully deposited in the foil. Thus design and
positioning of the foil must be carefully optimized to obtain a good lifetime and serviceability.

Consequently H− acceleration is only possible with low bending fields, but on the other hand
superconducting magnet technology with high magnetic fields, is one of the major advancements in
accelerator technology. As it was shown septum extraction is also difficult in compact cyclotrons. As a
possible way out the use of stripping extraction with accelerated H+

2 ions is discussed. These ions have a
higher binding energy (2.7 eV) for the electron than H− (0.7 eV) and resulting dissociation probabilities
even in high magnetic fields are low, allowing the acceleration of Megawatt beams in relatively compact
cyclotrons. On the downside H+

2 has a charge to mass ratio of 1/2, requiring higher bending fields than for
protons. As another complication stripping of the electron does not invert the curvature but reduces the

10



Fig. 10: Acceleration of H− ions in the TRIUMF cyclotron and stripping extraction allows to provide multiple
beams in parallel at variable energy (courtesy TRIUMF).

bending radius by a factor 2. This is sufficient to separate the stripped ions from the circulating beam, but
it leads to a complicated extraction path across the cyclotron [11]. While the statement on higher binder
energy is correct for the ground state of the ion, the situation is more complicated, in particular since this
ion exhibits vibrational states with relatively long lifetime. Already in the source a certain fraction of the
ions is produced in an excited state, from which dissociation is possible in strong fields. Thus the details
of loss mechanisms for these ions are still under discussion.

6 Summary
Due to the simplicity of the repetive acceleration scheme with constant frequency the cyclotron presents
an effective concept for ion beam acceleration. Often the challanging aspects of a design are efficient
injection and clean extraction. In the simplest case an internal ion source can be used in compact cy-
clotrons. For higher intensity, better beam quality or certain ion beams the beam must be generated
outside the cycloton and injected. Axial injection is used for smaller cyclotrons while horizontal injec-
tion is typically used for separated sector cyclotrons with field free regions in the center. Electrostatic
inflectors provide sufficient bending angles at low energy and allow realisation of complex injection
paths like in the case of the spiral inflector. Charge exchange or stripping processes can also be used to
inject beams.

Extraction of a beam is a challenging process as well. Excessive uncontrolled beam losses lead
to secondary activation of components, which should be avoided as best as possible. The most common
extraction concept involves usage of an electrostatic septum, deflecting only the last turn. Turn separation
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is the most critical parameter and several schemes are used to increase the gap between last and second
last turn beyond the value that is given by the energy gain of the beam. Self extraction of a beam without
a septum is also possible, but requires specific shaping of the magnetic field at the radius of extraction.
Another elegant method is acceleration of not fully ionized ions and stripping of the electrons by a foil
at the desired extraction radius. While this method provides more flexibility to vary the energy of the
extracted beam, it has also disadvantages like non-negligible probabilities of Lorentz dissociation before
extraction. For high beam intensities the use of stronger bound H+

2 ions is investigated.
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