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Abstract—Breast cancer is the most common cancer type
in women and an early detection can improve the chances
of treatment as well as increase the survival of the patient.
Therefore, better imaging technologies are desired to ensure a
non-invasive diagnosis. In the last years, Grating Interferometry-
based phase contrast X-ray Computed Tomography has shown to
be a promising application for imaging. Unfortunately, creating
high-quality images comes with certain difficulties. Especially
the grating fabrication and the following reconstruction can add
high noise amplitudes to the measured data. For this reason,
a good denoising network is necessary. In medical applications
an interpretable algorithm is preferred. The presented neural
network is based on the INSIDEnet and has been modified to
yield an improved and more general performance. Regularization
strategies, like changing the loss function, or changing the layering
structure have been performed. The results have shown, that the
network has been slightly improved compared to the baseline
model. The goal is to apply the INSIDEnet as a proximal mapping
within an iterative phase contrast CT reconstruction pipeline.

I. INTRODUCTION

Only in the year 2020 2.3 million women have been diag-
nosed with breast cancer [[7]. Fortunately, early tumor detection
due to diagnostic technologies can increase the chances for a
successful treatment [3]. Different breast imaging techniques
like breast ultrasound, breast MRI, mammography, digital
tomosynthesis or absorption-based computed tomography (CT).
Absorption-based X-ray imaging methods in general suffer
from the disadvantage, that due to low absorption contrast in
soft tissue types, it leads to low contrast images [8]]. Especially
denser breast tissue can make it difficult to see a tumor due
to tissue overlap [4] and lead to high false positive rates in
diagnoses [3].

In the last years, it has become increasingly attractive to
use phase contrast-based imaging, because it could solve
those issues. Many different applications have been tested
to implement the phase contrast imaging technology. One of
them is grating interferometry (GI), which uses gratings in its
setup to exploit the differential phase contrast (DPC) signal

[8]. Combined with CT it creates a new imaging application.

For this reason, our group has designed a Grating Interfer-
ometry Breast Computed Tomography (GI-BCT) prototype ().
This technology allows to obtain three dimensional images of
the breast, while the detector and the source rotate around it
without any uncomfortable breast compression. The setup of
our GI-BCT scanner will be explained in detail in section

DPC images are more sensitive to the high frequencies and the

Fig. 1: GI-BCT prototype

reconstruction algorithm enhances low frequency noise due to
the integration step, which acts as a low-pass filter. For this
reason a powerful denoising network must suppress the noise
to create valuable images.

Deep learning creates networks, which learn how a denoised
image should look like and then apply this knowledge on
the unseen noisy images. Today this is mainly done by
convolutional neural networks (CNNs), which perform many
convolutions until the image is denoised [9]]. The downside
here is that sometimes a CNN adds or removes structures, i.e.
it hallucinates. To solve this problem van Gogh et al. proposed
a hybrid algorithm called the ’Interpretable NonexpanSIve
Data-Efficient network’ (INSIDEnet) [11] which uses the
interpretability of classical filters. It has a defined forward and
backward path which always goes back into the image space,
so that the filtering steps can be followed. [11] implemented
the network with orthogonality, which gives it more stability
but also limits its possibilities. This leads to the idea that there
is still room for improvement. In this paper the INSIDEnet has
been modified and improved in order to make it less restrictive
and non-orthogonal compared to the baseline model. The results

have been obtained on phantoms and show which approaches



worked the best. The goal is to use this network as a denoising
regularizer during iterative phase contrast reconstruction as

proposed in [10].

II. MATERIALS AND METHODS

A. Grating Interferometry Breast Computed Tomography (GI-
BCT)

When sending X-rays through matter, the electromagnetic
wave propagates through it as described in the index of

refraction n, as follows

n=1-3+ip. (1)

Here, the real part § determines the shift of the phase and the
imaginary part J the X-ray attenuation [8]. Especially in soft
tissues the X-ray phase shift is stronger than in the attenuation.
Therefore, it is reasonable to use the phase shift for imaging
techniques. The change of the X-ray’s wavefront with the

beam’s direction [ is defined by

:/5dl.

Because of the phase shift, the refraction of the beam is induced
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under the angle a with A\ as the wavelength of the X-ray. The
phase shift ® in (3) must be integrated.

A 0P

But not only the real part ¢ is being used, also the imaginary
part (3 has its function. It determines the attenuation of the beam
with the Beer-Lambert law, where the attenuation coefficient
1 is needed
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Especially in soft tissues the phase shift is more significant
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than in its attenuation. One promising facility is the GI-CT.
Its setup is very robust with a large field-of-view and works
with limited monochromaticity and spatial coherence. Thus,
it makes it adaptable for a clinical environment. [12]] For the
setup, gratings are placed between the source and the detector.
Depending whether the GI-CT is placed at a Synchrotron
beamline or in a laboratory with a conventional X-ray tube,
the setup needs two or three gratings. For the latter option
generally three gratings are placed. As shown in Figure [] the
first grating GO, also called source grating, lies right behind
the source and increases the beams coherence. The second
grating G1, called phase grating, lies in front of the sample.

It creates an interference pattern called Talbot carpet, which
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Fig. 2: Schematics of the GI-BCT set up, which consists of a
X-ray source, three gratings and a detector [13]].

is necessary to detect the phase shift induced by the sample.
The last grating G2, the analyzer grating, is placed between
the sample and the detector. It is highly absorbing and allows
to resolve the fringes in the shifted interference pattern. [[1] If
the setup is at a Synchrotron, the source grating can be left
out. When one of the gratings is moved in z-direction with
respect to the other gratings, a phase stepping curve in (5) can
be obtained based on «

I, = 1zT - [1+ VoD - cos(k + @9 — ¢)]. (5)

The variables indexed with zero represent the flat field
measurements. k is the k-th phase step. 7" stands for the
transmission signal, D for the dark-field signal and ¢ for
the differential phase signal [13]]. They can be computed by

T =exp [—/,u dl} (6)

D =exp |:—/6 dl} 7
/\dg

= e /6 dl 8)

In (8), ds is the distance between the sample and G2 and g5
is the pitch of G2. From the phase stepping curve of the flat-
field data and the sample data, the DPC signals can be obtained
and therefore also its phase shift with simple Fourier analysis.
For the reconstruction the phase shift has to be integrated in
order to convert the phase contrast tomograms from signals
into images. The algorithm used for the reconstruction was

taken from [10] and will not be further explained.

B. Simulated breast phantoms

1) Clean and noisy breast phantoms for network training:
To train a neural network, a training dataset is necessary. For
this reason, the INSIDEnet requires a noisy image as well as a
clean image in order to fit the parameters. The phantoms were

simulated as described in [[11]. The only difference is that here



a photon count of 120000 instead of 200000 has been used,
where the photon number indicates the number of photons
leaving the source. Since the goal is to apply the INSIDEnet in
the reconstruction pipeline, our trained phantoms need to have
a certain level of noise to get as realistic results as possible.
In the end, the aim is to get as close as possible to the clinical
setup. Currently, the tested dose is still higher than the allowed
dose. All approaches during the development were tested with
the photon count of 120000. Later, to train the INSIDEnet
for the reconstruction, phantoms with photons of 80000 and

100000 were used. Here, 30 in-silico breast phantoms of 44 x

1536 x 1536 voxels with a voxel size of 100 um were created.

Ten phantoms are used for training, ten for validation and ten
for testing. The phantoms represent the main tissue types seen
in real data, i.e. adipose, glandular and skin tissue. In order to
create a more realistic effect, two masks were added. To this

clean phantom, which acts as a base, noise has been added.

C. INSIDEnet structure

During the signal retrieval, noise is being added due to
quantum noise in the detector, which is being amplified by
imperfect gratings. This must compensated by a powerful
denoising algorithm. A very common strategy is to use deep
learning approaches. It creates neural networks, which work
by using so-called weights. Those are updated based on the
training data [2]. In this case it receives the noisy images and
compares it with its ground truth image, for the purpose of
learning how to denoise the image correctly. Some networks

exist already, as for example the U-net, a convolutional neural

network. Like its name reveals, the network has a shape of a U.

This means, the image is first downsampled in the contracting
path and later upsampled in the expansive path. This is being
performed, while applying convolutions and rectified linear
unit (ReLU) as well as max pooling operations in the layers
[6]. The nonlinear mapping structure makes it possible to try
out many different possibilities of combinations but it has a
higher expressive power than linear mapping. This could be
the reason for the strong denoising effect it has, but it has
also has no interpretability and might lead to hallucinations
on the images. This could lead to serious consequences, when
implemented in medical imaging applications. To avoid such
implications, van Gogh et al. created the INSIDEnet [11]. It
has a structure, which also includes a up- and downsampling
path, but for the filtering step, it contains orthogonal filters. For
the forward path the filters are multiplied with the input images

and a thresholding is applied. In order to return to the image

space, the inverse, which is also the transpose, is multiplied.
The exact terminology and further informations regarding the
initial INSIDEnet can be found in [11]]. With the presented
various regularization strategies, we attempted to improve this

network’s performance.

D. Nonorthogonality

In this paper the same terminology as in [11] will be used. Its
baseline model uses orthogonal filters to perform the filtering
path. The orthogonality provides stability but also restricts
the network. Therefore, our approach was to remove the
orthogonality entirely hoping to increase performance. When
removing the orthogonality, it is possible for the filters to
arrange themselves in any direction. More precisely, we have
removed the matrix () from the forward path as well as from
the backward path and replaced it with the trainable matrix
B. The backward path, which enables the interpretability of
the network, was previously performed by using the transpose
of ). Due to nonorthogonality, this is no option anymore
and therefore we now use the inverse for the backward path.
Important to mention here is, that at some point we tried to
increase the parameter number by using rectangular filters with
the shape of m x n with m > n for B instead of n x n filters.
This means, that the inverse could not be used anymore and
therefore the pseudoinverse was implemented.

E. Loss function and regularizers

By building a better loss function and adding soft constraints,
we believe, that the performance can be improved. Especially
since the previous hard constraint (the orthogonality) has been
removed. Various initializers, constraints and regularizers have
been tested, among them, these were the most promising ones.
In the end, only (10) and (11) have been definitely implemented
into the network.

1) Determinant regularizer: Based on the idea of [5], a
determinant regularizer has been added because of the missing
orthogonality, to avoid collinearity. This was achieved by
computing the the logarithm of the determinant of the weights.
If the filters are too similar, the loss function will be penalized,
because the determinant of a singular matrix is zero and

therefore the logarithm of zero is infinitely big.
— Alogdet B )]

Unfortunately, this regularizer did not work well enough. It
could have been because the filters were still too orthogonal and
therefore the determinant regularizer was zero or the learning

dynamics were not optimal.



2) Dissimilarity loss: To replace the determinant regularizer,
which did not have a big influence, the dissimilarity loss is

proposed.

n
+A> a(B")? (10)
i=1
Here, o calculates the angle between the rows (the vectors)
of the non-orthogonal filter matrices, which should not be
collinear or too similar in this context. It should penalize the
filters for the same reason as for the determinant regularizer.
The dissimilarity loss should also not be perpendicular, because
then the matrices are orthogonal again. The matrices should
be as dissimilar as possible to increase their learning ability.
When utilized in the network, A has been fine-tuned to have
an constant dissimilarity value.

3) Variance loss: Additionally, a second regularizer has been
used to keep the threshold variance small. This avoids that
filtering strength distribution fluctuates too much and that there
are some filters, which learned too little while some learned
too much. With the parameter tuning of ~ the weighting of
the variance loss can be tuned.

+ yvar(Threshold) (11)

For both regularizers, hyperparameter tuning of A and  has
been performed.

4) Loss function: the loss function calculates the distance
between the current output and the expected output during a
training. Therefore, a small loss value is welcome and should
be decreasing. Before the loss function was only defined by the
mean squared error (MSE), whereas now it is a combination

of the MSE and the two regularizers

L=MSE+\ Z o(B™)? + yvar(Threshold).  (12)

i=1

F. Nonlinear Filter Structure

A new filter structure has been implemented into the
INSIDEnet, where the filter sizes differ in each forward path
and the filtering order is not linear, because it performs all
forward steps one after another and likewise for the backward
path. This had the aim to increase the parameter number and
its expressiveness. The filter sizes start by 64 x 16 increasing
to 256 x 256 like shown in [3| until performing five filter
multiplications and then taking the same backward path but
with the inverse. This was the maximal filter size without any

memory issues.
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Fig. 3: Nonlinear filter size illustration of the forward.

G. Convolutions

In the baseline model the noisy input image is divided
into patches which are being averaged in the filtering step.
This means that by using small patches the blurring should
not be as strong as in bigger patches. Unfortunately, the
blurring was still too high even by using smaller patches,
which led us to the approach to use convolutions. In [[11]] the
multiplications are performed by the Einstein sum, we replaced
it with convolutions. Instead of inverses, now deconvolutions
are performed. We also tried to create a linear (same staying
filter size) and nonlinear (increasing filter size) but due to
memory issues the convolutional nonlinear worked but only

with two filters. This did not lead to sufficient results.

H. Application in reconstruction pipeline

The reconstruction pipeline uses the iterative phase contrast
reconstruction which is described here [10]. Because the
backprojection adds a lot of noise to the images, it needs
a good denoising algorithm. Here, van Gogh et al. used a
non-expansive and biasless variant of the U-net, which is being
used iteratively after every ten data update steps to denoise the
image. The goal was to replace the U-net by the INSIDEnet, but
due to time reasons it was not possible to fulfill this approach
and implement it correctly.

1) New phantom generation: To improve the performance
of the INSIDEnet in the reconstruction, the idea was to add an
additional parameter in the filter matrices. This new component
would teach to the network also the reconstruction steps. To put
this into practice, we generated new datasets of phantoms with
a different noise patterns by using the L-BFGS algorithm from
[10]. The data generation includes three steps like represented
in algorithms [T} [2] and [3] The first part inputs an empty image
0 with only zero entries and the sinograms ¢ jeq, Of the clean
phantoms in the L-BFGS optimization algorithm and iterates
200 times where only every 10th reconstruction is saved as
Oclean,i- This forms our clean base for the new phantoms. The
second part produces the noise by generating one noisy image

of a clean phantom reconstruction §* and a noisy sinograms



Pnoisy after the 10th L-BFGS optimization. Then we subtract
the noisy image dy04sy by the initial clean phantom J., which
leaves us only with the noise pattern. In the third step we
combine the new clean images d¢jcqn,i Of step one with the
notise of second step. With the new data, the networks also
learns the noise on every iteration and different noise levels.
Unfortunately, this step has not been implemented, but it is
planned to implement this approach with the non-expansive
U-net in the next months. Especially, since it has not been

presented in any literature yet.

Algorithm 1: New phantom generation; Clean data

inpllt 10 =0; Nmax = 20; 6= 0; ¥ = Pcleans k= 0;
kmax = 10

while 7 < Nmax do

while k£ < kmax do

| 6, =LBFGS(S, ¢, k); k=k+1;

end

0; = Op; save 0; as Oclean,is t = 1 + 15
end |
output: 5clean,i

Algorithm 2: New phantom generation; Noise

input :7=0; nmax = 10; § = 0% © = Vnoisy
while ¢ < ng,. do
| 6; =LBFGS(d,¢,4); i =1+ 1;
end
save 0; as Onoisys NOLSE = Oneisy — 0% output:noise

Algorithm 3: New phantom generation; Noisy data

inpllt 1= 0; Nmax = 20, 6(:lea’n,,i; noise
while ¢ < N, do

‘ 57Loisy,i = (Sclean,i + noise; 1 =1+ 1;
end
output: d,,0isy.i

III. RESULTS

For the purpose of determining the performance of the
modified INSIDEnets, we compared it to the previous IN-
SIDEnet of [11]. All trainings and predictions were obtained
on images with 120000 photons. For the parameter number,
the baseline model uses 166403 parameters while the linear
nonorthogonal INSIDEnet uses only 43523 parameters. The
linear convolutional INSIDEnet counts 348033. The nonlinear
nonorthogonal INSIDEnet, which had the highest parameter
count of 696067, performed the worst in the quantification.
But here we used the nonlinearity of the filters to increase the

parameter number, which worked with our proposed method.

The linear nonorthogonal INSIDEnet has been trained with
many different filter sizes, where 64 x 16 filters turned out to
be the best option, which is now also used for the comparison.
Important to mention is, that we used a very small training
set because real-world clinical data sets are also rather small
and to get as close to this scenario. The training has then be
interrupted, when the loss was remaining the same and not
improving anymore.

Noisy phantom Noisy phantom

Denoised (Baseline)

Denoised (1

Clean phantom

Fig. 4: Denoising results of the baseline model on simulated
phantoms with 120000 photons. First row: Noisy phantom.
Middle row: Denoised phantom by the baseline model. Third
row: Ground truth phantom. On the left a full slice is presented
and on the right the zoomed-in section.

A. Quantification

For comparing the different networks quantitaively, the
structural similarity index measure (SSIM), mean squared error
(MSE), signal-to-noise ratio (SNR) and contrast-to-noise ratio
(CNR) were calculated in table m To compute the SNR and
the CNR in regions of interest, where the grey level values are

approximately constant in the ground truth.



Network SSIM MSE SNR CNR

Baseline 0.8915 0.0093 79.2496 9.0093
NonOrthogonal (lin.) 0.9459 0.0059 85.3241 9.6135
NonOrth. (nonlin.) 0.6430 2.5192 44.4358 0.5182
Convolutional (lin.) 0.9257 0.0081 60.6345 6.7618

TABLE I: Quantitative results of the compared networks

B. Simulated Data

The denoising results are shown below with a zoomed-in
image for better visualization. The first two rows represent
the noisy and the clean phantoms, followed by the baseline
model, the linear nonorthogonal INSIDEnet and the linear
convolutional INSIDEnet. By studying the results in table [l we
would think that the linear nonorthogoanal model outperforms

both the baseline as well as the linear convolutional model.

Noisy phantam Noisy phantom

Denoisad (Nanorthoganal 1)

Denaised {Nonorthagonal lin.)

Clgan phantom Clgan phantom

Fig. 5: Denoising results of the linear nonorthogonal INSID-
Enet on simulated phantoms with 120000 photons. First row:
Noisy phantom. Middle row: Denoised phantom by the baseline
model. Third row: Ground truth phantom. On the left a full
slice is presented and on the right the zoomed-in section.

Surprisingly, we asserted, that the baseline model in fig.
M and the linear nonorthogonal model in fig. 5] look very
much alike. Both seem to have a blurring. When deciding by

6

eye, which image is more beneficial, we would claim, that
the convolutional INSIDEnet performs better (6). A possible
explanation is, that the structure is much more comparable with
the ground truth. A reason for this could be because the both
the baseline and the nonorthogonal model use manual generated
patches. Exactly this was the goal in the convolutional network
to intentionally remove the blurring by removing the patches,
which did work. We can see that both networks perform
either better or on the same level as the initial INSIDEnet.
Unfortunately, the non linear structure did not perform well
enough to present reasonable images. We do not know whether
the implementation failed or for any other reason. We believed,
that by increasing the parameter number the performance will

increase. Therefore, we decided to not present its predictions.

Noisy phantom Noisy phantom

Denoised {(Convolutional lin.) Denaised {(Canvalutional lin.)

Clean phantam Clean phantom

Fig. 6: Denoising results of the linear convolutional INSIDEnet
on simulated phantoms with 120000 photons. First row: Noisy
phantom. Middle row: Denoised phantom by the baseline model.
Third row: Ground truth phantom. On the left a full slice is
presented and on the right the zoomed-in section.

IV. CONCLUSION

The improved INSIDEnet was initially supposed to perform

much better, with the goal to use it later in the reconstruction for



the GI-BCT in a clinical setup. There is this trade-off between
interpretability and performance. But after trying many different
approaches, especially by approximating the structure of the
U-net as close as possible, we could not achieve the U-net
performance with the interpretability. The results show, that for
now this denoiser can not be used in the reconstruction.It
remains an open question whether it was due to intrinsic
limitations in the network’s architecture or if there is some
type of trade-off. Denoising can be defined as a solved problem
if the network is big enough and the interpretability is not
important. If the aim is to know exactly what is happening in the
denoising steps and the interpretability plays an important role,
the INSIDEnet can be used, but not with the same performance
on high noise images as the U-net. In the future there might
be a chance to improve the denoising algorithm, by enlarging
the INSIDEnet or to use nonlinear mapping, which are both
ideas to approach the same structure as the U-net. It is also
possible that manufacturing problems like imperfect gratings
will be solved, so the denoiser could perform better on higher

quality images.
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