
System optimization and Software design in
Grating-Interferometry X-Ray Imaging Laboratories

Eliot Jermann
Supervisor - M. Stampanoni
Co-advisor - M. Polikarpov

June 2, 2022

1

Contents

1 Introduction 3
1.1 Grating-Interferometry X-Ray Imaging . 3
1.2 Setup description . 3

2 Motivation of the project 4
2.1 Overall goal . 4
2.2 Objectives . 4

3 Controlling system establishment 5
3.1 Huber tower . 5
3.2 SMC Controller . 5
3.3 Tower connection and calibration . 6
3.4 API : MotorClass . 7

3.4.1 Movement methods . 8
3.4.2 Query methods . 9
3.4.3 Configuration method . 9
3.4.4 Internal method and anycommand() . 9

4 Controlling system testing and improvement 10
4.1 Quality assessment of precision . 11
4.2 Quality assessment of repeatability . 12
4.3 Time optimisation . 13
4.4 Unsolved issues . 15

5 Experimental work on at the X-ray imaging system 15
5.1 Grating alignment . 16
5.2 Retrieval and alignment of the rotation axis . 18
5.3 Measure of the source stability . 19
5.4 Phase retrieval . 20
5.5 X-ray tomography with the new controller . 21

6 Conclusion 22

7 References 23

8 Appendix A; API : MotorClass 24

9 Appendix B; Jupyter notebook : FAQ_huber_tower 30

2

1 Introduction

1.1 Grating-Interferometry X-Ray Imaging

In Switzerland, cancer is the most common cause of mortality in the segment of the pop-
ulation aged of 45 to 84 years [14]. Between 2013 and 2017, breast cancer was the most
widespread cause of death due to cancer in the Swiss female population with 18 [%] just
before lung cancer with 16 [%]. [9]. All around the world, the implementation of regular
screening by mammography has reduced the mortality of breast cancer [8]. In the Nether-
lands for example, the mortality rate has decreased over 30 [%] for women aged between 55
and 79 years over the last twenty years [16]. Mammography and ultrasound are currently
the most efficient ways of screening dense and non-dense breast tissue. However, mammog-
raphy suffers from the low soft tissue contrast. Current issues of that imaging system are the
superposition of relevant anatomical structures and the low values for sensitivity and speci-
ficity in dense breast tissue. That is where phase contrast can help, because it provides an
additional contrast at the interfaces of areas with different electron density [8, 15, 17]. Phase
contrast X-ray imaging is widely used at the synchrotron because of the unique capabilities
of the radiation. The sychrotron offers a small but powerful monochromatic radiation. The
large distance between source and sample and the good quality beam make it possible to
have coherent radiation falling at the sample. Nevertheless, the access to synchrotron radia-
tion can require time and peer-reviewed proposal. For that reason it is not very suitable for
clinical application. In contrast, grating interferometry (GI) is the very promising technique
which could bring the advantages of the phase-contrast imaging in the laboratory setup. Its
concept is to install additional elements, gratings, which allow to recover absorption, phase
and dark-field contrast signals from one measurement [13]. The group of M. Stampanoni
are one of the leaders of such development. Among various setups and applications of the
laboratory, there is one high-resolution GI phase contrast X-ray imaging system, which is
able to record tomograms of small breast tissue samples with a resolution of less than 20
[µm]. That particular setup aims to support pathologists and radiologists in ex-vivo assess-
ment of breast specimens. It can perform CT scans with a spatial resolution similar to the
achieved one with histology. Compared to histology, it has the advantage of not destroy-
ing nor deforming the sample and of avoiding the loss of resolution along the axis normal
to the imaged slices. On the other hand, the contrast and the visibility are still better on a
histological section.

The project described here was aiming to facilitate development of that an GI imaging
setup towards the stand-alone clinical system.

1.2 Setup description

The project has been performed with the imaging system shown below. Figure 1 shows an
annotated picture of the whole GI X-ray imaging system. The source is a Sigray MAAST
X-ray source with structured anode [4], thus no G0 grating is needed. The Huber tower
[5] is the sample holding stage of the setup and is the component of interest in the project.
It is composed of two tilting and one rotational stage. G1 grating is a pi-shifting phase
grating produced by deep reactive ion etching of silicon. It has a period of 3 [µm] and a
height of 25.5 [µm]. G2 is an absorption grating produced by deep reactive ion etching
of silicon and gold electroplating. It has a period of 3 [µm] and a height of 35 [µm]. The
gratings are essential to restore phase contrast and dark-field signals. Both gratings are hold
by 6D towers produced by the SmarAct GmbH [1]. These towers allow all necessary linear

3

translation and rotation needed for gratings’ positioning. The detector is a X-ray sCMOS
GSENSE 16.4 MP detector made by Photonic Science [12]. It has a pixel size of 19.85 [µm]
and a field of view of 4045x4041 [pixels2] which is approximately 8x8 [cm2].

Figure 1: The figure shows the complete setup with its main components annotated.

2 Motivation of the project

2.1 Overall goal

The goal of the project was to make the Laboratory-based X-ray phase contrast systems com-
pletely independent of existing hardware controlling infrastructure at the PSI. As a matter of
fact, the setup will be moved to ETH Zurich buildings during the current year. In the future,
it also has the ultimate goal of becoming clinically compatible. These reasons fully justify
the need of making the setup independent. The sample holding tower was the last compo-
nent of the imaging system which relied on PSI infrastructure. It was controlled by standard
motor controllers provided by the PSI and embedded as part of the beamline infrastructure.
The infrastructure cannot be moved and relies on the support of the PSI engineers. That sys-
tem was working correctly and was routinely used for experimental work and tomographic
acquisitions in the laboratory. TOMCAT group has bought a specific controlling system to
control Huber tower. It has replaced PSI’s motor controllers. During the project, SMC 9300
motor controller [5] was set. Its hardware and software was integrated to the imaging setup
and to the computed tomography (CT) acquisition pipeline. The new controlling system was
also tested and his performance optimised. It has been implemented for the real experiment
and has allowed the acquisition of new CT scans.

2.2 Objectives

In practice, the project was divided in three different parts. The first part of the project is
about controlling system establishment. Huber tower was connected to the controller and
adjusted. It was made sure that it worked from the graphical user interface (GUI) displayed
on controller’s tactile screen. Then the controlling system was integrated into the python
environment which is used for setup’s utilisation. In the second part of the project, quality
assessment and performance tests were run to make sure the tower was working as ex-
pected. It was also verified that the tower was adequately integrated to the setup for real

4

experiments. That was then confirmed by running a CT acquisition of different breast sam-
ples. During the last part of the project, I helped to run tomographic experiments by doing
several experimental tasks in the laboratory such as setup alignment and image acquisition
and processing.

3 Controlling system establishment

3.1 Huber tower

Huber tower [5] is the component of the imaging system in charge of rotating the sample
during tomographic acquisition. It is composed of two tilting and one rotational stage. The
stages are moved by their respective motors. Each stage has limit switches and encoders.
Huber tower is shown and described in figure 2. The tilting stages were needed to correctly
align the sample to the setup. Indeed, the vertical axis of rotation of the sample must be
known and accurately set. The rotational stage was used to rotate the sample around its
vertical axis during a CT scan. The limit switches and the encoders were used for homing
procedures.

Huber brand is known for its very precise technology, the tower is supposed to have a
precision of 1-2*10−3 [deg] [5]. In chapter 4.1 that precision was confirmed. Encoders have
a precision of 10−5 [deg], [5].

Figure 2: Huber tower with named motors. It is the rotational stage which is used for tomo-
graphic acquisition in the setup.

3.2 SMC Controller

SMC 9300 controller was bought to replace PSI controlling system. The new controlling
system can handle up to four motors and theirs encoders. It is a piece of hardware run-
ning under windows seven operating system. The SMC software [5] installed on it offers a
graphical users interface which one can use with the tactile screen. The GUI is user friendly
and makes it possible to use the tower without an external input, it is shown in figure 3 (b).
The motor’s features which are not displayed on the GUI can be send by typing them in a
command bar or by inserting a text file into the software. The functioning of the controller
is described in details in the users manual [7] (credentials : user, smc). That manual does
also describe the language and the function which one can use to operate the motors. For
the seek of tomographic acquisition, the tower must be operated from a python code on an

5

external computer. It is possible since a TCP server [11] is installed by default on the SMC
hardware. That server allows the remote control of the tower via a TCP client generated
inside a python code.

(a) SMC controller (b) SMC interface

Figure 3: The figure displays (a) the controller on which you can see the GUI on the tactile
screen and (b) a screen shot of the GUI.

3.3 Tower connection and calibration

Firstly, the tower and the controller were connected together. The cables were named after
the motor they were connected to, for example SAM_ROTY stands for the rotational stage,
and wound up in a way to save space inside the setup. The controller has been connected to
the device network at TOMCAT such that it could be recognized by other network devices
and got an access to the internet. To add a new computer to the server it had to be registered
as belonging to the laboratory.

Once the system was connected, it had to be calibrated. Different types of calibration
were done. First, the tilting motors were doing a step of half a degree physically for one
degree on the controller. Using the configuration variables gear num and gear denum the step
size has been set to be equivalent in reality and inside the controller. The rotational axis did
not have that issue.

The encoder resolution was calibrated for the rotational stage. It is a value near one
which calibrates the step size to the encoder. The equation below describes the relation
between new and old encoders resolution :

new_eres =
old_eres ∗ should_be_position

encoder_position
(1)

Eres stands for encoder resolution, should_be_position is the position in degree at which you
commanded the stage to be and encoder_position is the value displayed by the encoder. Ap-
plying that equation in an iterative manner will calibrate the step size to the encoder.

Another part of calibration was done on homing procedures. The homing commands
were not sending the motors to the desired home position which was zero and were even
not working for the tilting stage along the x-axis. As you can see on figure 4 a stage has
two limit switches. The tilting motors were configured to run in inverted sense. It lead to
an issue. The trigger was not activating the first limit switch but the second. It resulted
in the stage being locked in between the two switches. The problem has been solved by
changing the rotation sense to normal. Another issue faced with the limit switch was that

6

one of the metal pieces meant to trigger the switches was not thick enough to release the
safety mechanism. That triggering piece is highlighted on figure 4. The problem was fixed
by increasing physically the size of the trigger. Once these issues solved the home position
had to be calibrated. It was done with the command erofs. That command saves the offset of
the stage to the desired homing position and corrects it on the encoders. They are different
ways of homing, for that tower two of them were used. The tilting stage are homed with
a procedure using the limit switches and the rotational stage does use an in-memory home
position. The limit switches do exist on the rotational stage but as for tomographic acqui-
sition the stage must rotate over 360 degrees, triggers were not installed. Even if they are
explained in details in the controller’s user manual [7], these homing procedures require a
minimum of knowledge about the tower, for that reason they were implemented in the API
presented in a next chapter.

Figure 4: The figure show a situation when Huber tower went out of its range of function.
It happened because of a defect limit switch.

3.4 API : MotorClass

The main part of the project was the creation of the API MotorClass. Even so the GUI of the
controllers presents all requested features, the API was needed for an user friendly control of
Huber tower from a jupyter notebook running in python. That API had also to be compatible
with all existing tomographic pipelines. The initial idea was to copy the logic and the code
from PSI controller’s API. PSI controller was operated using epics.PV library [2]. Epics is a
very general library meant to work with a multitude of motors. The implementation of the
library was not very straight forward for the very specific task of integration of the Huber
tower to the tomographic pipeline. It turned out to be faster to create a new, smaller library,
tailored for the operation with the Huber tower.

MotorClass is an API with different types of methods necessary for setup’s operation,
see Appendix A. An object of that class commands a single motor with its stages, it does not
control all stages at once. That choice was made because during tomographic acquisition
there is only the need of controlling the rotational stage, the tilting stages are requested for
sample alignment. Once the sample aligned to the setup, the tilting motors must to stay
static. Thus, there was no need of controlling them during tomographic acquisition. The
class offers different types of external methods which are classified in three main categories

7

: movement, query and configuration methods. The table below summarised the function
implemented in the class 1. Each kind of method is described in the next chapters. "Wait"
is an internal function playing a crucial role for tomographic scans, for that reason it was
described in detail in chapter 3.4.4.

Methods Description Category
put() Puts to absolute position Movement
putr() Puts to relative position Movement
stop() Stops any running process Movement

home() Runs homing procedure Movement
get() Returns and prints encoder position Query

get_status() Prints the whole status Query
change_acc_speed() Modifies the acceleration speed Configuration

change_slew_speed() Modifies the slew speed Configuration
calibrate_eres() Fine tuning of encoder resolution Configuration

wait() Keeps the python cell running Internal
anycommand() Send any command to the controller -

Table 1: The table display a list of relevant methods implemented in the MotorClass with a
small description and its category.

The commands are sent to the controller via the network using the existing TCP server
and the socket library to generate a client [10]. The creation of a client requires the knowl-
edge of controller’s IP address. Since it is connected to TOMCAT server, it can be found by
knowing its mac address and using fing software [3].

A jupyter notebook showing implementation examples was created, see appendix B. It
is meant to help any new user to utilize the newly installed controlling system with Motor-
Class. It has also a section about recurrent errors and examples of low level communication
with SMC controller. Besides from FAQ_MotorClass describing the functioning of the class,
every method was commented with its basic function, variables and specific features.

3.4.1 Movement methods

The movement methods are the category of function which are sending commands to Huber
tower which will make it move. Two basic methods put/move() and putr() were implemented
in the class. These are respectively for absolute and relative angular positioning of the stage.
Figure 5 shows the method put/move(). The method is briefly described and offers the option
wait. It is an internal function which will be described in a further chapter. Another method
considered as leading to a movement is home(). As already explained above, the homing
procedure is not straight forward and for that reason was implemented. The last method
of the list is stop(). That function stops any running task on the Huber tower. It can be
very relevant in case of home office, when one could not physically access the controller and
would require to stop the running command.

8

Figure 5: The figure shows an example of method implementation in the class MotorClass.
It is the put method for absolute angular positioning. All method are described the same
way.

3.4.2 Query methods

The query methods return information about Huber tower. The methods get/get_position()
and getstatus() were implemented in order to access the angular position of the stage and
its complete status. Both function are printing the information, and for the seek of saving
the angular position get() is also returning the numerical value. A status information has
that form : "0::-90:-90.0006820016057:0:0:0:1:0:0:0:0:0:0:0:0". The legend is displayed in the
description of the method. For example the eighth value is motor’s readiness. It means that
the motor is ready to receive a command. No other query method was implemented as they
would not be used frequently.

3.4.3 Configuration method

The configuration methods were written to modify the axis configuration of the motor.
SMC’s GUI is very user friendly and changing axis configuration on it is convenient. The
reason these three methods were implemented was to save time as they were used multi-
ple time during the project and modifying them on the GUI is more time consuming. The
methods change_acc_speed() and change_slew_speed() modify the acceleration and slew speed
of the stage. The acceleration stands for the speed at which the motor increases its speed
until going to cruise speed. The slew speed sets the maximal cruise speed allowed. These
both methods were used during the time optimisation of Huber tower’s movements, see
chapter 4.3. The other configuration method is calibrate_eres(). It is for calibration of encoder
resolution, the procedure is described in details in chapter 3.3.

3.4.4 Internal method and anycommand()

The internal methods are wait() and find_nth(). The second method was implemented for
the seek of string management inside get() method. wait() was written in order to keep the
cell running as long as the tower’s task is not done. That function is crucial for making CT
acquisition on that setup. The image acquisition is done step by step and the sample has to
stand still during exposure. The waiting method is based on motor’s readiness, the function
checks constantly the status to know if the tower is ready for its next task.

Writing that function revealed a challenge, in fact when first trying it, it lead to an error.
The problem is described with the help of figure 6. The delay between two code line in

9

python inside the notebook appeared to be smaller than the one between the controller and
the Huber tower. When the status is asked, it prints the command inside the controller’s
TCP server and after a some dead time the tower’s status is as well printed in the server.
It is that second line that the python cell needs to read. Due to its smaller dead time, the
cell inside the notebook would try to read the status on the server before it is even printed.
That process lead to errors because the requested information is not yet available. Firstly,
the issue was solved by introducing sleep times in between the lines inside a python cell.
To completely avoid the occurrence of that error, the sleep time was put to 0.5 [sec]. Sub-
sequently, the problem was overcame by implementing an error management because the
produced error was exactly known. The principle was to re-run the code line trying to read
on the TPC server until the error disappeared. To avoid an infinite loop in case of a con-
trollers crash, a limit time was implemented. If the limit time is reached, an error message
is printed telling the origin of that error. It could come from a connection issue between
controller and computer or it could be that the tower’s movement has taken longer than
the allowed run time. The second error should not appear in normal conditions, the time
margins are relatively long, about twice the amount needed for a 360 degrees rotation. The
current method is robust and has worked properly during tomographic acquisition.

There is another idea of implementation avoiding the use of error management one could
try in the future. That would be to find a way to get information about TCP client’s readi-
ness, and once knowing that the server is ready, executing the reading line inside the python
code.

Figure 6: The figure shows a diagram explaining the time delay issue. In summary, the
speed at which the python cell requests to read the controller’s answer is faster than the
process between controller and tower. Asking for currently non existing data does lead to
errors.

The command anycommand() has been implemented in case a future user has the need
of sending a SMC command from the python code to the controller for which no method
exists.

4 Controlling system testing and improvement

To assess the precision and the repeatability of the newly established controlling system, test
tomographic acquisition were ran. The principle of these scans were to move only the rota-
tional stage of the Huber tower to positions which could be used during real tomography,
to save encoder’s position at each step and to measure the total running time. A typical test

10

scan was sending the stage to two positions per degree over 360 degrees, it represented 740
angular positions. According to the manufacturer the rotational stage should be precise to
(1-2)*10−3 [deg] [5]. The precision and repeatability tests were also performed with PSI con-
trolling system because it was not previously done. As the new system must work at least
as good the previous one, it was important to know how PSI motor controller performed.

Subsequently, the tower’s speed was optimised. The motivation for it was the signif-
icantly high overhead time during real tomographic acquisition. The overhead time was
of approximately 3.5 to 6 seconds and is due to only three components, the detector, G2
translation stage and the Huber tower. As part of the quality assessment, the speed of the
rotational stage has been optimised. The time for a movement of 0.5 degree has decreased
form circa 1.1 to 0.4 seconds.

4.1 Quality assessment of precision

To test the precision of the rotational stage test scans with two projection per degree over
360 degrees were run about forty times per configuration. The encoder position was then
compared to the true position. The true position is the position at which the tower was
meant to be.

After acquisition, two types of systematic positioning errors were uncovered. A high
and a low frequency error which you can see on figure 7. The high frequency error has a
sinusoidal shape with a period of exactly two degrees, it was the same over all scans. The
reason for that error is due to the intrinsic functioning of stepping motors and regarding its
standard deviation of 9.78 ∗ 10−4 [deg] it was in the range of the tolerance which is (1 − 2) ∗
10−3 [deg] [5] set by the manufacturer.

(a) Low frequency systematic error (b) High frequency systematic error

Figure 7: The low and high frequency error are measured by comparing the true position
with the encoder’s position at which the tower is. The high frequency error plot is a zoom
in of the low frequency one.

The other error had a low frequency and was higher than tolerated. It appeared to be due
to disabled closed loop. Closed loop is a feature which allows the motor to check its position
after the first guess and to correct its position if the error is bigger than the limit internally
set. When it is disabled it would stop in the position it was first sent. After activation of
closed loop, the low frequency systematic error disappeared. Figure 8 shows the error over
the whole scan with both controllers. It is basically the high frequency error which translated
over the complete scan. The standard deviation has improved over a factor three from the

11

previous to the new controlling system. There is still an unexplained point, the pattern seen
on the SMC controller in figure 8 (a) is systematic. It is not an issue as the error is in the
tolerances but seems like it could be improved.

(a) SMC controller (b) PSI controller

Figure 8: Theses plots are the difference between true and encoder’s position over 360 de-
grees.

In conclusion, the errors were in the tolerated range and thus assessed that the precision
of the tower is suitable for the tomographic measurement.

4.2 Quality assessment of repeatability

For repeatability the same data as acquired in the for precision assessment chapter has been
used. In order to evaluate their change over time the scans were compared one to each other.
In figure 9 (a), the encoder positions of the first scan were subtracted from the encoder po-
sitions of the 2nd, 3rd, and etc scans respectively. Then the mean and the standard deviation
of these values were plot per scan. A little shift of the mean was observed over time, as a
consequence the standard deviation is increasing. Regarding the size of the shift which is in
the order of 10−4 degrees one can tell that it is completely insignificant for tomography, the
standard deviation between scan is smaller than the error on positioning for a single scan. It
could be that the tower’s precision is in reality smaller than what was found chapter 4.1.

In figure 9 (b), each scan was compared to its previous one in the same way each scan
was compared to the first one in figure 9 (a). On the second plot, no shift in mean neither
change in standard deviation is visible. Again, the error is in the order of 10−4 degrees and
thus insignificant for tomographic acquisition.

12

(a) Comparison of scan N to the scan 1 (b) Comparison to of the scan n to the scan n-1

Figure 9: In the plots, in order to evaluate their change over time the scans were compared
one to each other. The encoder positions of a scan were subtracted from the encoder posi-
tions of the other scan. The scan’s choice depended on the desired comparison.

In conclusion, the repeatability between scans is very accurate. In fact the standard de-
viation between scans is smaller than the standard deviation observed on a single scan, in
that respect the repeatability is assessed.

4.3 Time optimisation

The motivation for time optimisation has been mentioned in the introduction of chapter 4.
To enter a bit more into details the mean overhead time for one image during a real tomogra-
phy with initial SMC configuration is shown in figure 10. The three sources of delay are the
detectors delay, the G2 translation stage movement and delay and the movement and delay
of Huber tower’s rotational stage. The detectors delay has neither been tested nor optimised
but was in the range of 2 to 3 seconds for a 15 second exposure time image. The fact, that
overhead time increased with exposure time, was certainly due to the increasing amount of
data transferred by the detector. There was still a significant amount of overhead time due
to the towers’ movement. To optimize Huber tower’s rotational stage movement time, test
tomographic scans have been run. These scans were made up of two steps per angle over
185 degrees. The total test scan time with initial axis’ configuration was of about 5 minutes,
these values were used to estimate the relative time gain. As a measure of precision, the
standard deviation between true position and encoder position has been used. For statisti-
cal power theses measurements were taken three times and their mean was used, therefore
one can see error bars in figure 11

13

Figure 10: Plot of the overhead time with first SMC configuration.

Firstly, the sleeping times implemented inside MotorClass were optimised. For conser-
vative reasons sleep times of 0.5 seconds were initially set at several spots to avoid time
delay issues. When reducing these sleep time to 0.1 seconds a relative time gain of over 30
[%] was observed. Under 0.1 seconds no significant relative time gain was noticed.

Two other parameters were modified to reduce overhead time and these were slew and
acceleration speed of the motors. The idea was to compare the actual speed configuration to
the PSI’s configuration but the values describing that feature were completely different and
no relation has been found. The method used to assess the best speed values was to fix one
of the speeds and increase the other until a plateau in time gain is reached or a significant
loss in precision is observed.

Slew speed increase described in figure 11 (a) did not have a significant impact on relative
time gain, only about 2 [%]. According to the order of magnitude of the standard deviation
between true position and encoder position, the precision was not affected by slew speed
increase. The value of 35000 has been hold back, one of the reasons was quite subjective,
over that 35000 number, the motors seemed to have very high revolution for an insignificant
time gain.

Acceleration speed, figure 11 (b), did have a significant impact on relative time gain
and on precision as well. One can clearly see that the standard deviation between true
and encoder position has exceeded the one assessed in chapter 4.1. Regarding the curves
displayed on the graph the optimal acceleration speed selected was 6000. Indeed, it has
already reached the plateau and loss of precision was not yet to observe.

14

(a) Slew speed (b) Acceleration speed

Figure 11: The figure shows two plots in which one sees the standard deviation of scans
position to true position in blue. The yellow curve is the relative time gain, there is an error
bar because an average over tree measure was taken. The x-axis display the speed values
which has been modified.

In summary, a significant amount of time was saved by performing that time optimisa-
tion. One can observe a total relative time gain of over 70 [%]. It was one of the reasons
of tomographic overhead time and it has allowed to save over 0.5 seconds per image. It
resulted in approximately 360 seconds saved time per tomographic scans as they typically
consist of 740 images.

4.4 Unsolved issues

An issue which has not been solved is the warmth of the motors. When touching the motors
one could tell that they are much warmer than with the new controlling system than they
were with PSI’s one. The fact motors are warm is normal as current passes through. It is
needed to prevent the motors to move. But there is no reason for it to be higher with the
new system. A way of reducing the current does exist. It require to modify parameters not
available from SMC software and was not explored by now. According to the seller, the
controller is correctly configured for the Huber tower motors.

Another remaining room for optimisation is the way of dealing with the time delay issue.
One could take the time to understand the working of communication between hardware
units and define a hierarchy avoiding the emergence of such type of issue.

5 Experimental work on at the X-ray imaging system

The setup with the recently replaced controlling system had to be tested under real condi-
tions. There was one experiment with breast sample during my stay. Because the system
was not used for some time, it had to be assembled and aligned. The source needed to be
started and its proper functioning ensured. Gratings with the proper period and highest
visibility needed to be picked up from the PSI collection. Then, the whole geometry of the
setup had to be set. It meant the distance between the towers, the alignment of the gratings,
the cone beam axis and to mount and set the sample at the centre of rotation. Moreover, the
image quality during image reconstruction had to be optimized.

15

I participated in all aforementioned parts of the experiment and would like to highlight
a few parts where my input was the most.

5.1 Grating alignment

The alignment was done in two steps. Firstly, the macro-alignment was done by approxi-
mately fixing the towers and the detector at the desired distances with the help of a ruler.
Then the gratings were approximately aligned in all required directions by eye. Subse-
quently, the micro-alignment was done with the help of images taken by the detector. The
gratings were placed on the 6D towers which allowed all necessary linear translation and
rotation requested for the alignment.

The macro-alignment in terms of distances along the source-detector axis was set accord-
ing to previous calculation. These distances were computed in order to have the desired
Talbot-Lau effect. The gratings were first placed parallel to each other by eye. Then for the
angular alignment a first rough calibration was made with visible light. A laser and a piece
of paper with horizontal line drawn on were used. The laser does diffract and reflect on the
grating. It showed an interference pattern which was aligned to the horizontal lines drawn
on the paper on which light was projected. That last macro-steps was redone each time the
angular alignment was completely lost. As long as the gratings are not correctly displaced
along the source-detector axis, the Moire pattern can be seen on detector’s images. That
effect due distances’ misalignment was convenient for aligning the grating along all their
direction. And it was also the reason why distance micro-alignment was the last step of the
process.

The micro-alignment was used the fine tune the position of the gratings. The grating
needed to be aligned one to the other, thus only G2 was moved during that process. The
grating was tilted along all three axis until the Moire effect seen on the image was perfectly
vertical with no unexpected shape. The strips were expected to have a rectangular shape,
and a tilt along the either the x or the y axis would deform them to a rather triangular
shape. The rotation along the y axis was responsible for rotating the strips. Once the gratings
aligned along theirs three axis, the setup had to aligned in terms of distance between towers.
For that the translation stage along the source-detector was used. The grating was moved
until the strips disappeared. Once the gratings aligned, none should be able to tell that
gratings are present in the system with a detector’s image.

A concrete example of these optical effects can be seen in figure 12. In the left picture
an almost perfectly aligned setup’s image is shown, it looks as if nothing was in the field of
view. In right one, an image with clearly visible Moire pattern is shown. That pattern was
seen during alignment process, one would need to tilt the G2 grating in the counterclockwise
sense to make the strips vertical.

16

(a) Aligned setup (b) Non aligned setup

Figure 12: The figure displays detector’s images taken during grating alignment.

Grating alignment was done with four different G2 gratings and one G1. For G2 grat-
ings selection, visibility measurements on the phase contrast image were taken. In order to
retrieve phase contrast images and to assess the visibility, stepping scans were performed.
The visibility values displayed in table 2 were used as relative measures in order to select the
best G2 grating. Regarding at the visibility measurements, only one grating was excluded.
The choice between the three other was done with other criteria. Au2503_AuBi454 had a too
small field of view for the sample’s size. Finally, TOMCAT_180711_p3000_5 was selected
over the last one because the image looked more uniform.

Grating Visibility [%] Remarks
191204_p30003_Si_p3um_h45um_AuBi465 13 -

TOMCAT_180711_p3000_5 12 -
Au2503_AuBi454 11 Small can work as G0
180105_p3000 3 7 Visible strip defects

Table 2: The table display a relative visibility measurement with different G2 gratings tested
during setup alignment. The nomenclature was inspired by what was written on the grating.

At some point during grating selection, the visibility dropped. Therefore, the electron
beam of the source had to be scanned around its target to find the best area with highest
visibility. After the source adjustment, the visibility has raised to the expected value. The
histogram of that visibility is shown in figure 13.

17

Figure 13: For the histogram, the region of interest corresponds to the position of the sample
was used. The mean visibility of 16[%] and peak visibility of 25[%] were observed at the
uniform visibility distribution.

In conclusion, all gratings have been aligned and compared. The visibility measures and
other criteria allowed the selection of the grating which worked best in the GI setup.

5.2 Retrieval and alignment of the rotation axis

During tomography two rotation axis were used. The vertical rotation axis was the axis
around which the sample was moving. The other rotation axis was the geometrical centre
of the coordinates used during cone beam images reconstruction. For the cone beam image
reconstruction, the pixel coordinate of the central ray was needed as well.

The cone beam rotation axis was aligned with the help of a pin. The idea was to have
the horizontal plan of the sample being at all time of the tomography represented in the
same row of pixels in the detectors image. That condition must be fulfilled to enable image
reconstruction. The procedure was to set a pin on the Huber tower, to take an image at -90
degree, at +90 degrees and to tilt the stage until the tip of the pin stayed in the exact same
pixel row in both position. Once that side was aligned, the same process was done to align it
in the perpendicular direction. Figure 14 shows and example of pin being aligned along the
source-detector axis. In practice imagej [6] was used and not a plot from a jupyter notebook.

18

Figure 14: The figure show a picture taken during the process of aligning the pin. In the end
the top of the pin should stay in the exact same pixel row.

In reality, for that setup the pin was aligned with a precision of 2-3 pixels. For the seek of
comparing reconstruction, it is important to keep the sample cone beam rotation axis during
different acquisition. For example in that experiment the tomographic scan with different
exposure times were compared.

In order to retrieve the vertical axis, it was necessary to run tomographic acquisition. As
a matter of fact, that axis retrieval was only done once arrived to the image reconstruction.
Indeed, the vertical rotation axis was determined during tomographic reconstruction. The
axis value providing the sharpest reconstruction image with no visible artefact was selected
manually by using imagej [6]. On that software, the reconstruction images were opened and
stacked. That method was convenient for the eyes to compare the sharpness between to
very similar images.

5.3 Measure of the source stability

The motivation of characterising source’s instability was its known intensity variation over
time. The metric used to measure source’s intensity fluctuation was the relative standard de-
viation of the intensity in different regions of an image. The process was done with the same
exposure times as during real tomographic acquisitions. One of the images used during the
measurements is shown in figure 15 (a). The sample was not moved during the complete
experiment. In reality, there was no need of having a real sample on the image, the idea
was to have different intensity regions. For each exposure time 100 images where taken in
a row, then different region of interests were selected. Three regions were chosen; one of
high intensity on the left of the picture, one inside the sample and one of low intensity on
the right of the picture. Mean and standard deviation were calculated over all samples in
the regions of interest. These measurements were then used for the calculation of relative
standard deviation which was then plot according to exposure time in figure 15 (b).

19

(a) Image used for calculation (b) Relative standard deviation plot

Figure 15: The figure shows the relative intensity error for three different regions of the im-
age. The regions are meant to be of different intensity. The standard deviation divided by
the mean intensity if the value of comparison between image exposure time. The measure-
ments were done with a hundred images looking like the one in (a).

Even though the deviation of the intensity at one single projection can be high, it gets
compensated by randomness of such error and the relatively large amount of projection
used during the tomographic reconstruction. About 740 projections were typically taken
during a tomographic acquisition. These two facts about tomographic scans helped to ob-
tain reasonable contrast in the reconstructed images. The source instability still leaded to
additional artifacts in the reconstruction domain, nevertheless they were compensated by
strip removal algorithms. In all cases, that issue will be solved with the procurement of the
new model of the source in 2022.

5.4 Phase retrieval

Phase retrieval is a necessary step for phase contrast imaging. At TOMCAT’s laboratory two
different phase retrieval algorithms are used. The difference between the two algorithms is
the way they approximate the period of the grating. One of them uses a Fourier transform
method and the other a least square method. The phase contrast image was successfully
retrieved with both algorithms. An artifact was visible in both images, see figure 16, and the
contrast of that artifact was the same in both cases. According to that measure, it was not
possible to distinguish which algorithm worked better.

20

(a) Least square algorithm (b) Fourier algorithm

Figure 16: The figure shows the retrieved phase image with two different algorithms.

In conclusion, the choice of the algorithm in phase retrieval did not make a significant
improvement on the visible artifact.

5.5 X-ray tomography with the new controller

The new controlling system, which is faster and preciser than the previous one, allowed
the acquisition of a real tomographic experiment. Figure 17 shows the tomographic recon-
struction of a cancerous breast sample which has been taken with the setup. That ultimate
assessment of the proper functioning of Huber tower will lead to publication.

Figure 17: The figure shows a plane of a tomographic acquisition of a cancerous breast
sample. The tomographic scan was performed with the tower’s new controlling system.

21

6 Conclusion

The main objective of that project was successfully reached. The imaging system was made
completely independent from PSI facility. The integration of the new API 3.4 to the ex-
isting pipeline, and the integration of the new controller-motor system to the setup made
tomographic acquisition faster than previously. The ultimate proof of its working was the
successful reconstruction of the cancerous breast sample displayed in figure 17.

In the second part of the project, the quality of tower’s precision and its repeatability
has been assessed. The running time of a tower’s movement was optimised by more than
a factor two. As a matter of fact, a tomographic acquisition which the new controller was 5
minutes faster than with the previous one. As part of a future optimization, one could try
to implement the idea exposed in chapter 4.4 about time delay management. It may further
improve relative time gain over a tomographic acquisition.

During the experimental work performed on the X-ray imaging system. I helped with
aligning imaging setup, adjusting source parameters, selecting the best G2 grating and run-
ning a tomographic experiment. Subsequently, I helped with image analysis development,
which was about assessing the position of the rotation axis and about the comparison be-
tween phase retrieval algorithms. That part of the project was successful as well. As a matter
of fact, the aligned setup allowed to reach a visibility of 16 [%]. Meanwhile, the algorithms
were both performing successful phase retrieval and none was better than the other accord-
ing to contrast.

One can conclude that the project was successful because the new controlling system for
Huber tower operated correctly and allowed the acquisition of real tomographic scans. In
addition, the project allowed to strengthen my skills in the planning, execution and analysis
of the tomographic experiments. It allowed me as well to learn about the implementation of
GI and phase contrast.

22

7 References

References

[1] Contact - SmarAct, <https://www.smaract.com/contact>.

[2] Epics, motors records, <https://epics.anl.gov/bcda/synapps/motor/index.html>.

[3] Fing, <https://www.fing.com>.

[4] High-resolution multicontrast tomography with an x-ray microarray anodeâstructured
target source, <https://www.pnas.org/doi/10.1073/pnas.2103126118>.

[5] Huber diffraction and positioning equipment, <https://www.xhuber.com/en/>.

[6] Imagej, <https://imagej.nih.gov/ij/download.html>.

[7] Pp-electronics smc software and controller’s online documentation, <http://smc.pp-
electronic.de/>.

[8] Recent advances in X-ray imaging of breast tissue: From two- to three-dimensional
imaging | Elsevier Enhanced Reader.

[9] Rise in number of cancer patients coincides with decline in mortality - Swiss Cancer
Report 2021 | Press release, <https://www.bfs.admin.ch/asset/en/19204988>.

[10] Socket, low level networking interface â python 3.10.4 documentation,
<https://docs.python.org/3/library/socket.html>.

[11] Tcp client class, <https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.tc
pclient>.

[12] X-ray sCMOS 16MP Detector.

[13] M. E. Kagias. Direct self-imaging methods for x-ray differential phase and scattering
imaging. 1:258–261, Apr. 2017.

[14] F. S. Office. Cancer, <https://www.bfs.admin.ch/bfs/en/home/statistiken/gesundhei
t/gesundheitszustand/krankheiten/krebs.html>.

[15] F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David. Phase retrieval and differential phase-
contrast imaging with low-brilliance X-ray sources. Nature Physics, 2(4):258–261, Apr.
2006.

[16] V. D. Sankatsing, N. T. van Ravesteyn, E. A. Heijnsdijk, C. W. Looman, P. A. van Luijt,
J. Fracheboud, G. J. den Heeten, M. J. Broeders, and H. J. de Koning. The effect of
population-based mammography screening in Dutch municipalities on breast cancer
mortality: 20 years of follow-up: The effect of population-based mammography screen-
ing on breast cancer mortality. International Journal of Cancer, 141(4):671–677, Aug. 2017.

[17] U. Veronesi, P. Boyle, A. Goldhirsch, R. Orecchia, and G. Viale. Breast cancer. The Lancet,
365(9472):1727–1741, May 2005.

23

8 Appendix A; API : MotorClass

The code displayed below is the script of MotorClass.
1 import socket
2 import sys
3 import time
4

5 class MotorClass:
6 """
7 The class MotorClass defines methods which can be used with the uber

tower and SMC control system. It is designed to initialize one motor per
object.

8

9 Functions redudancy :
10 - get_position = get
11 - move = put
12 """
13

14 def __init__(self , axis = 3, homing = False):
15 """
16 Variables :
17 - self.axis (int) : Put 1 for SAM_ROTX (tilt), 2 for SAM_ROTZ (

tilt) and 3 for SAM_ROTY (rotation)
18 - self.homing (bool) : True = homing procedure at initialisation

(waiting is on)
19 - self.HOST/PORT = server ’s hostname/IP address and port (may

change)
20 """
21 self.axis = axis #1,2,3
22 self.homing = homing
23 self.HOST = "129.129.99.103" # Mac Address : 00:40: f2 :39:07:5a/b
24 self.PORT = 1234
25 if self.homing : self.home()
26

27 def waiting(self):
28 """
29 waiting () : Keeps the cell running as long as the motor is

active.
30

31 - Time out of 60 seconds
32 - Returns and prints the error type (too long movement / no

response from the controller)
33 """
34 command = "?status"
35 command = command + str(self.axis) + " \r"
36 start_time = time.time()
37 stop = 0
38 timeout = 60
39 key = ’a’
40 while (stop != int(1)) and ((time.time()-start_time) < timeout) and

(stop != int (2)) :
41 with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s:
42 s.connect ((self.HOST , self.PORT))
43 s.sendall(command.encode ())
44 time.sleep (0.1)
45 while (time.time()-start_time) < (timeout +2):
46 try :
47 data = s.recv (1024)
48 msg_test = data.decode ()

24

49 pos_ = self.find_nth(msg_test ,’:’, 8)
50 stop = int(msg_test[pos_ +1])
51 break
52 except ValueError :
53 time.sleep (0.1)
54 if (time.time()-start_time) < (timeout) :
55 key = ’b’
56 if ((time.time()-start_time) > timeout) :
57 choices = {’a’: "Waiting time limit for tower rotation has

been reached.",
58 ’b’: "Waiting time limit for controller ’s

response has been reached."}
59 errorType = choices.get(key , ’default ’)
60 print(errorType)
61 return errorType
62 return False
63

64 def get(self):
65 """
66 get() : Returns and prints the encoder position of the motor.
67 """
68 command = "?e"
69 command = command + str(self.axis) + " \r"
70 with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s:
71 s.connect ((self.HOST , self.PORT))
72 s.sendall(command.encode ())
73 time.sleep (0.05)
74 data = s.recv (1024)
75 msg = data.decode ()
76

77 pos_start = self.find_nth(msg ,’:’ ,1)
78 pos_end = self.find_nth(msg ,’;’ ,1)
79 msg[pos_start +1: pos_end]
80 print("Position = " + msg[pos_start +1: pos_end])
81 return msg[pos_start +1: pos_end]
82

83 def change_acc_speed(self , number =6000):
84 """
85 change_acc_speed(number) : Modifies the start/stop speed of the

motors.
86

87 Variables :
88 - number (int) : acceleration value optimized for the

rotating axis (3)
89 """
90 command = "frun" + str(self.axis) + ":" + str(number) + " \r"
91

92 with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s:
93 s.connect ((self.HOST , self.PORT))
94 s.sendall(command.encode ())
95 data = s.recv (1024)
96

97 def change_slew_speed(self , number =35000):
98 """
99 change_dlew_speed(number) : Modifies the slew speed of the

motors.
100

101 Variables :

25

102 - number (int) : acceleration value optimized for the
rotating axis (3)

103 """
104

105 command = "ffast" + str(self.axis) + ":" + str(number) + " \r"
106

107 with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s:
108 s.connect ((self.HOST , self.PORT))
109 s.sendall(command.encode ())
110 data = s.recv (1024)
111

112 def getstatus(self):
113 """
114 getstatus () : Returns and prints the complete motor ’s status.
115

116 The index is for the nth number (ex: 1:2:3:4:[...]:16:17)
117

118 - Legend :
119 1 axis number Axis
120 2 error number ErrN
121 3 error message ErrM
122 4 position Pos
123 5 encoder position EPos
124 6 limit switch status LIMIT
125 7 home position status HOME
126 8 encoder home/reference position status EREF
127 9 axis ready Rdy
128 10 oscillation in progress [0|1]
129 11 oscillation error [0|1]
130 12 continuous motion in progress [0|1]
131 13 program is running [0|1]
132 14 current configuration [0|1]
133 15 soft -limit status SOFT LIMIT
134 16 controller is blocked [0|1]
135 17 ext. stop through IN -port enabled [0|1]
136 """
137 command = "?status"
138 command = command + str(self.axis) + " \r"
139 with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s:
140 s.connect ((self.HOST , self.PORT))
141 s.sendall(command.encode ())
142 time.sleep (0.05)
143 data = s.recv (1024)
144 msg = data.decode ()
145

146 pos_start = self.find_nth(msg ,’:’ ,1)
147 pos_end = self.find_nth(msg ,’;’ ,1)
148 msg[pos_start +1: pos_end]
149 print("Status = " + msg[pos_start +1: pos_end])
150 return msg[pos_start +1: pos_end]
151

152 def put(self , degree = 0.0, wait = False):
153 """
154 put(degree , wait) : Puts the absolute position and has the

option of letting the cell run until the process is done.
155

156 Variables :
157 - degree (double) : position value in degrees of a tilt or a

rotation.

26

158 - wait (bool) : choose wether or not the wait (True = wait).
159

160 If wait = True , the function get() is called.
161 """
162 command = "goto" + str(self.axis) + ":" + str(degree) + " \r"
163 with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s:
164 s.connect ((self.HOST , self.PORT))
165 s.sendall(command.encode ())
166 time.sleep (0.1)
167 data = s.recv (1024)
168 if wait :
169 time.sleep (0.1)
170 self.waiting ()
171 self.get()
172

173

174 def putr(self , degree , wait = False):
175 """
176 putr(degree , wait) : Puts the relative position and has the

option of letting the cell run until the process is done.
177

178 Variables :
179 - degree (double) : position value in degrees of a tilt or a

rotation.
180 - wait (bool) : choose wether or not the wait (True = wait).
181

182 If wait = True , the function get() is called.
183 """
184 command = "move" + str(self.axis) + ":" + str(degree) + " \r"
185 with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s:
186 s.connect ((self.HOST , self.PORT))
187 s.sendall(command.encode ())
188 time.sleep (0.1)
189 data = s.recv (1024)
190 if wait :
191 time.sleep (0.1)
192 self.waiting ()
193 self.get()
194

195 def home(self , wait = True):
196 """
197 home(wait) : The function enables motor ’s homing and has the

option of letting the cell run until the process is done. It will print
the encoder ’s position.

198

199 Variables :
200 - wait (bool) : choose wether or not the wait (True = wait).
201 """
202 if int(self.axis) == 3:
203 with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s:
204 s.connect ((self.HOST , self.PORT))
205 s.sendall("clr \r eref3:- \r nl \r end \r start\r".encode ())
206 data = s.recv (1024)
207 if wait :
208 time.sleep (0.5)
209 self.waiting ()
210 self.putr (0.717 , wait=True)
211 else :

27

212 #requires LIMIT+ and encoder ECZ signal will not work for axis 3
...

213 command = "clr \r home" + str(self.axis) + ":he;jg15000 \r nl \r
end \r start \r"

214 with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s:
215 s.connect ((self.HOST , self.PORT))
216 s.sendall(command.encode ())
217 data = s.recv (1024)
218 if wait :
219 time.sleep (0.5)
220 self.waiting ()
221 self.get()
222

223

224 def find_nth(self , haystack , needle , n):
225 """
226 find_nth(haystack , needle , n) : Returns the occurence # ’n’ of

the caracter ’needle ’ in the string ’haysack ’.
227

228 Variables :
229 - haystack (string) : variable in which it looks for the nth

occurence of needle.
230 - needle (cacarter) : reaserched caracter.
231 - n (int) : the occurence in which it is interested.
232 """
233 start = haystack.find(needle)
234 while start >= 0 and n > 1:
235 start = haystack.find(needle , start+len(needle))
236 n -= 1
237 return start
238

239 def anycommand(self , command = "?e1"):
240 """
241 anycommand(command) : allows to send any command from a python

code and print the full message which is or not returned by the
controller.

242

243 Variables :
244 - command (string) : takes the command , by default it asks

for encoder position.
245 """
246 command = command + " \r"
247 with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s:
248 s.connect ((self.HOST , self.PORT))
249 s.sendall(command.encode ())
250 time.sleep (0.2)
251 data = s.recv (1024)
252 msg = data.decode ()
253 print(msg)
254

255 def stop(self):
256 """
257 stop() : stops whatever the tower is doing.
258 """
259 command = "stop \r"
260 with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s:
261 s.connect ((self.HOST , self.PORT))
262 s.sendall(command.encode ())
263 time.sleep (0.1)

28

264 data = s.recv (1024)
265

266 def calibrate_eres(self , old_eres , should_be_position , encoder_position)
:

267 """
268 calibrate_eres () : changes and prints the new value of eres.

When step size needs to be calibrated , one would modify the value of eres
. Over 360 degrees you expect an error of approx. 0.001 degrees. It works
best when using positions which are quite far away. For that the

old_eres is needed , the encoder position and the true position.
269

270 Variables :
271 - old_eres = actual encoder resolution which you can in the

axis configuration.
272 - should_be_position = the true position which you want the

tower to be.
273 - encoder_position = the value which is displayed by the

encoder (you can use get())
274 """
275 New_eres = old_eres * should_be_position / encoder_position
276 command = "eres" + str(self.axis) + ":" + str(New_eres)
277 command = command + " \r"
278 with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s:
279 s.connect ((self.HOST , self.PORT))
280 s.sendall(command.encode ())
281 time.sleep (0.1)
282 data = s.recv (1024)
283 print(New_eres)
284

285 move = put
286

287 get_position = get

29

01.05.2022	FAQ	huber	tower	:

Useful	scripts	and	notebook

/sls/X02DA/Data20/e15889/Maxim_LCT/scripts/experiments

/sls/X02DA/Data20/Maxim_LCT/anaconda3/lib/python3.6/site-packages/epics

motor.py	and	pv.py

Rotation	motor

https://catalog.orientalmotor.com/item/all-categories-components/all-categories-components-pk-series-no-cables/pkp223u09b#

± 3	arc	minutes	(± 0.050)	for	the	motor,	don't	know	how	it	translated	to	the	tower

https://www.xhuber.com/en/products/1-components/12-rotation/1-circle-goniometers/408/

**	step	motor,	1000	steps/revolution,	0.002-0.001	[o]

Online	documentation

http://smc.pp-electronic.de/

Credentials	:	user,	smc

Useful	information	:

Step	size	calibration	is	done	with	eres

You	modify	it	from	the	user	interface	on	the	SMC	controller	under	'axis	configuration'	or	with	method	calibrate_eres().

Need	to	use	that	formula	:

New_eres	=	old_eres	*	should_be_position	/	displayed_position

Tip	:	use	a	big	step

Homing	and	its	calibration

Command	for	tilt	axis	:	home[axis]:he;jg15000

Command	for	rotation	axis	:	eref3:-	(because	no	limit	switch)

Commands	for	configuration	of	a	home	position	offset	:	erofs[axis]:[value]

If	SMC	crashes

It	may	happen	for	unknown	reason

If	it	becomes	recurent,	chek	sleep	times,	wait	and	home	function	in	huber.py,	these	are	the	main	sources	of	errors

a)	Turn	off	and	on	the	controller

b)	Run	a	homing	procedure	or	set	the	zero	by	hand	on	the	user	interface

MAC	address

As	you	change	the	location,	you	may	have	to	change	Host	and	Port	values	(MAC	ADDRESS	:	00:40:f2:39:07:5a/b)

Source	of	errors

There	are	several	smc	commands	which	do	not	work	on	Huber	tower,	be	not	surprised	if	it	crasher	while	trying	out.

Help	on	class	MotorClass	in	module	huber:

import	numpy	as	np
import	os
import	matplotlib.pyplot	as	plt
import	socket
import	sys
import	time

#	if	you	use	a	beamline	console
sys.path.insert(1,	'/sls/X02DA/Data20/e15889/Maxim_LCT/Eliot_Semester_2022/')

#	if	you	use	some	local	machine
sys.path.insert(1,	'/mnt/Data20/Data20/Maxim_LCT/Eliot_Semester_2022/')

#from	data_processing	import	*
import	huber

help	(huber.MotorClass)

30

Jermann Eliot
9 Appendix B; Jupyter notebook : FAQ_huber_tower

class	MotorClass(builtins.object)
	|		MotorClass(axis=3,	homing=False)
	|		
	|		The	class	MotorClass	defines	methods	which	can	be	used	with	the	uber	tower	and	SMC	control	system.	It	is	desi
gned	to	initialize	one	motor	per	object.
	|		
	|		Functions	redudancy	:
	|						-	get_position	=	get
	|						-	move	=	put
	|		
	|		Methods	defined	here:
	|		
	|		__init__(self,	axis=3,	homing=False)
	|						Variables	:
	|										-	self.axis	(int)	:	Put	1	for	SAM_ROTX	(tilt),	2	for	SAM_ROTZ	(tilt)	and	3	for	SAM_ROTY	(rotation)
	|										-	self.homing	(bool)	:	True	=	homing	procedure	at	initialisation	(waiting	is	on)
	|										-	self.HOST/PORT	=	server's	hostname/IP	address	and	port	(may	change)
	|		
	|		change_acc_speed(self,	number=6000)
	|						change_acc_speed(number)	:	Modifies	the	start/stop	speed	of	the	motors.
	|						
	|						Variables	:
	|										-	number	(int)	:	acceleration	value	optimized	for	the	rotating	axis	(3)
	|		
	|		change_slew_speed(self,	number=35000)
	|						change_dlew_speed(number)	:	Modifies	the	slew	speed	of	the	motors.
	|						
	|						Variables	:
	|										-	number	(int)	:	acceleration	value	optimized	for	the	rotating	axis	(3)
	|		
	|		find_nth(self,	haystack,	needle,	n)
	|						find_nth(haystack,	needle,	n)	:	Returns	the	occurence	#	'n'	of	the	caracter	'needle'	in	the	string	'haysa
ck'.
	|						
	|						Variables	:
	|										-	haystack	(string)	:	variable	in	which	it	looks	for	the	nth	occurence	of	needle.
	|										-	needle	(cacarter)	:	reaserched	caracter.
	|										-	n	(int)	:	the	occurence	in	which	it	is	interested.
	|		
	|		get(self)
	|						get()	:	Returns	and	prints	the	encoder	position	of	the	motor.
	|		
	|		get_position	=	get(self)
	|		
	|		getstatus(self)
	|						getstatus()	:	Returns	and	prints	the	complete	motor's	status.
	|						
	|						-	Legend	:
	|										1							axis	number																													Axis		
	|										2							error	number																												ErrN		
	|										3							error	message																											ErrM		
	|										4							position																																Pos		
	|										5							encoder	position																								EPos		
	|										6							limit	switch	status																					LIMIT		
	|										7							home	position	status																				HOME		
	|										8							encoder	home/reference	position	status		EREF		
	|										9							axis	ready																														Rdy		
	|										10						oscillation	in	progress																	[0|1]		
	|										11						oscillation	error																							[0|1]		
	|										12						continuous	motion	in	progress											[0|1]		
	|										13						program	is	running																						[0|1]		
	|										14						current	configuration																			[0|1]		
	|										15						soft-limit	status																							SOFT	LIMIT		
	|										16						controller	is	blocked																			[0|1]		
	|										17						ext.	stop	through	IN-port	enabled							[0|1]
	|		
	|		home(self,	wait=True)
	|						home(wait)	:	The	function	enables	motor's	homing	and	has	the	option	of	letting	the	cell	run	until	the	pro
cess	is	done.	It	will	print	the	encoder's	position.
	|						
	|						Variables	:
	|										-	wait	(bool)	:	choose	wether	or	not	the	wait	(True	=	wait).
	|		
	|		move	=	put(self,	degree=0.0,	wait=False)
	|		
	|		put(self,	degree=0.0,	wait=False)
	|						put(degree,	wait)	:	Puts	the	absolute	position	and	has	the	option	of	letting	the	cell	run	until	the	proce
ss	is	done.
	|						
	|						Variables	:
	|										-	degree	(double)	:	position	value	in	degrees	of	a	tilt	or	a	rotation.
	|										-	wait	(bool)	:	choose	wether	or	not	the	wait	(True	=	wait).
	|										
	|						If	wait	=	True,	the	function	get()	is	called.
	|		
	|		putr(self,	degree,	wait=False)
	|						putr(degree,	wait)	:	Puts	the	relative	position	and	has	the	option	of	letting	the	cell	run	until	the	proc
ess	is	done.

31

	|						
	|						Variables	:
	|										-	degree	(double)	:	position	value	in	degrees	of	a	tilt	or	a	rotation.
	|										-	wait	(bool)	:	choose	wether	or	not	the	wait	(True	=	wait).
	|										
	|						If	wait	=	True,	the	function	get()	is	called.
	|		
	|		waiting(self)
	|						waiting()	:	Keeps	the	cell	running	as	long	as	the	motor	is	active.
	|																		
	|						-	Time	out	of	60	seconds
	|						-	Returns	and	prints	the	error	type	(too	long	movement	/	no	response	from	the	controller)
	|		
	|		--
	|		Data	descriptors	defined	here:
	|		
	|		__dict__
	|						dictionary	for	instance	variables	(if	defined)
	|		
	|		__weakref__
	|						list	of	weak	references	to	the	object	(if	defined)

HowTo	MotorClass	(SMC	controller)	:

Waiting	function

Allow	to	let	the	cell	run	until	tower's	task	is	done	unless	reaching	time	limit	error.

There	are	two	different	time	limit	errors	:

Movement	took	to	long.

Computer	was	not	able	to	recieve	controllers	answer	in	time.

Initialisation

One	can	send	commands	to	huber	tower	once	that	step	is	done.

The	homing	procedure	during	initialisation	calls	waiting	function	by	default,	cell	will	run	until	its	done	or	time	limit	reached.

Positionning	methods	and	STOP

It	is	how	you	move	the	tower.

put()	&&	move()	:	Absolute	movement

putr()	:	Relative	movement

stop()	:	Stops	any	operation

wait	=	False,	by	default

wait	=	True,	returns	and	prints	position	by	calling	.get()	method

Query	methods

#	Tower	initialisation	:
SAM_ROTX	=	huber.MotorClass(axis	=	1)
SAM_ROTY	=	huber.MotorClass()
SAM_ROTZ	=	huber.MotorClass(axis	=	2)

#	Absolute	movement	:	
SAM_ROTX.put(0,True)
SAM_ROTY.put(degree=-90,wait=True)
SAM_ROTZ.put(0,True)

#	Relative	movement	:	
SAM_ROTX.putr(0,True)
SAM_ROTY.putr(degree=5,wait=True)
SAM_ROTZ.putr(0,True)

#	Stops	any	tower's	operation
SAM_ROTX.stop()
SAM_ROTY.stop()
SAM_ROTZ.stop()

32

It	is	how	you	get	information	about	the	tower.

get()	&&	get_position()	:	returns	and	prints	encoder	position

getstatus()	:	returns	complete	status	information	(legend	in	documentation)

Position	=	-0.14112
Position	=	-90.00068
Position	=	1.98867

'1.98867'

Help	on	function	getstatus	in	module	huber:

getstatus(self)
				getstatus()	:	Returns	and	prints	the	complete	motor's	status.
				
				-	Legend	:
								1							axis	number																													Axis		
								2							error	number																												ErrN		
								3							error	message																											ErrM		
								4							position																																Pos		
								5							encoder	position																								EPos		
								6							limit	switch	status																					LIMIT		
								7							home	position	status																				HOME		
								8							encoder	home/reference	position	status		EREF		
								9							axis	ready																														Rdy		
								10						oscillation	in	progress																	[0|1]		
								11						oscillation	error																							[0|1]		
								12						continuous	motion	in	progress											[0|1]		
								13						program	is	running																						[0|1]		
								14						current	configuration																			[0|1]		
								15						soft-limit	status																							SOFT	LIMIT		
								16						controller	is	blocked																			[0|1]		
								17						ext.	stop	through	IN-port	enabled							[0|1]

Status	=	0::-0.15:-0.14111995:0:0:0:1:0:0:0:0:0:0:0:0

Status	=	0::-90:-90.0006820016057:0:0:0:1:0:0:0:0:0:0:0:0

Status	=	0::2:1.988672:0:0:0:1:0:0:0:0:0:0:0:0

'0::2:1.988672:0:0:0:1:0:0:0:0:0:0:0:0\r\n\r'

Configuration	methods

These	method	allow	to	change	motor's	configuration.

change_acc_speed()	:	modifies	the	acceleration	speed	of	the	motors.

change_slew_speed()	:	modifies	the	maximum	slew	speed	of	the	motors.

calibrate_eres()	:	modifies	the	encoder	resolution,	fine	tunes	the	step	size.

Default	values	are	6000	and	35000,	optimized	for	the	rotation	axis	SAM_ROTY,	check	???	notebook.

Read	'Useful	information'	for	more	details	of	eres

SAM_ROTX.get()
SAM_ROTY.get()
SAM_ROTZ.get()

help	(huber.MotorClass.getstatus)

SAM_ROTX.getstatus()
SAM_ROTY.getstatus()
SAM_ROTZ.getstatus()

SAM_ROTY.change_acc_speed(number=6000)

SAM_ROTY.change_slew_speed(number=35000)

33

You	can	get	axis	configuration	with	that	command	:	(for	knowing	encoder	resolution)

smc	1.2.1129
?conf3
#	configuration	settings	of	axis	3
alias3:3~rotating_basement_y
type3:0
unit3:deg
gnum3:2000
gden3:1
mres3:0.0005
dcpl3:4
rofs3:0
blp3:0
bln3:0
mdir3:0
lsa3:0
lsnf3:0
ofs3:100000
rfs3:10000
hsdm3:0
sdm3:1
sdpw3:0
slen3:0
slneg3:0
slpos3:0
frun3:6000
ffast3:35000
acc3:10
dec3:10
macc3:10
mdec3:10
emips3:-1
cf3:1
corr3:0
ecl3:1
eclst3:1
ecp3:0
ect3:1
edev3:0.01
edir3:0
ehst3:0.5
eias3:1
emode3:0
erofs3:-0.284
eres3:1.09864247883122E-04
esh3:1
esm3:4
est3:1
mpr3:250
prst3:0.02
prt3:0.5
twen3:0.0
biss_if3:0
biss_id3:
biss_ch3:0
biss_e3:0
biss_i3:0
biss_t3:360

Homing	procedure

It	is	how	one	can	run	homing	for	the	Huber	tower.

By	default,	waiting	function	is	activated.

It	homes	and	puts	to	position	0.00

Sending	any	command

SAM_ROTY.calibrate_eres(old_eres	=	10.4904,	should_be_position	=	15.0,
																								encoder_position	=	SAM_ROTY.get())

SAM_ROTY.anycommand("?conf3")

SAM_ROTX.home(wait	=	True)
SAM_ROTY.home(wait	=	True)
SAM_ROTZ.home(wait	=	True)

34

Allows	to	send	whatever	command	you	would	like	to.

The	'	\r'	is	alreay	implemented

It	returns	the	whole	messages	printed	by	the	controller	(not	robust	at	all)

smc	1.2.1129
?status
1:0::-0.15:-0.14114988:0:0:0:1:0:0:0:0:0:0:0:0
2:0::2.1:2.0890992:0:0:0:1:0:0:0:0:0:0:0:0
3:0::123.3995:123.40018240781:0:0:0:1:0:0:0:0:0:0:0:0
4:0::0:0:0:0:0:1:0:0:0:0:0:0:0:0

smc	1.2.1129
?status
1:0::-0.15:-0.14114988:0:0:0:1:0:0:0:0:0:0:0:0
2:0::2.1:2.0890992:0:0:0:1:0:0:0:0:0:0:0:0
3:0::123.3995:123.40018240781:0:0:0:1:0:0:0:0:0:0:0:0
4:0::0:0:0:0:0:1:0:0:0:0:0:0:0:0

smc	1.2.1129
?status
1:0::-0.15:-0.14111995:0:0:0:1:0:0:0:0:0:0:0:0
2:0::2.1:2.0890992:0:0:0:1:0:0:0:0:0:0:0:0
3:0::123.3995:123.40018240781:0:0:0:1:0:0:0:0:0:0:0:0
4:0::0:0:0:0:0:1:0:0:0:0:0:0:0:0

smc	1.2.1129
goto3:10

smc	1.2.1129
?ip
129.129.99.103

Implementation	in	LabStetup

epics.PV	or	epics.Motor	(PSI	controllers)

If	for	some	reason	one	need	to	plug	it	back	to	PSI	controllers,	that	is	how	you	control	them.

epics.Motor

Use	m	=	epics.Motor('X02DA-LAB-XIFM:SAM_ROTY')

Use	readback=1	to	get	encoder's	position	!

epics.PV

SAM_ROTY	=	epics.PV('X02DA-LAB-XIFM:SAM_ROTY')

epics.Motor

SAM_ROTX.anycommand("?status")	#	status	with	no	selected	axis	returns	everything
SAM_ROTY.anycommand("?status")
SAM_ROTZ.anycommand("?status")

#	absolute	position	
SAM_ROTY.anycommand("goto3:10")

SAM_ROTY.anycommand("?ip")

	

import	epics

#	Record	postion	with	encoders	from	PSI	controllers	:

35

Encoder	position	of	axis	X:	-0.140865
Encoder	position	of	axis	Y:	-0.00352576
Encoder	position	of	axis	Z:	0.7987744999999999

epics.PV

Did	not	find	a	way	to	get	encoder	position...

Low	level	control	:

The	names	are	inspired	by	the	user	manual

All	these	commands	can	also	be	written	into	the	user	interface	of	the	SMC	controller

If	done	manually,	no	need	od	\r,	it	works	as	'enter'

Direct	command	:

"move[axis]:[distance]	\r"	for	relative	movement

"goto[axis]:[position]	\r"	for	absolute	movement

"eref:[axis][direction]	\r"	brings	back	to	reference	position,	a	way	of	homing	SAM_ROTY

Positive	rotation	sense	:

Axis	X	:	pos	=	horaire

Axis	Z	:	pos	=	horaire

Axis	Y	(top	view):	pos	=	anti-horaire

Program	commands	:

#	Record	postion	with	encoders	from	PSI	controllers	:
X	=	epics.Motor('X02DA-LAB-XIFM:SAM_ROTX')
Y	=	epics.Motor('X02DA-LAB-XIFM:SAM_ROTY')
Z	=	epics.Motor('X02DA-LAB-XIFM:SAM_ROTZ')

print('Encoder	position	of	axis	X:',X.get_position(readback=1))
print('Encoder	position	of	axis	Y:',Y.get_position(readback=1))
print('Encoder	position	of	axis	Z:',Z.get_position(readback=1))

#	absolute	position
Y.move(10,	wait	=	True)	

#	relative	position
Y.move(10,	relative	=	True)

X	=	epics.PV('X02DA-LAB-XIFM:SAM_ROTX')
Y	=	epics.PV('X02DA-LAB-XIFM:SAM_ROTY')
Z	=	epics.PV('X02DA-LAB-XIFM:SAM_ROTZ')

print('Desired	position	of	axis	X:',X.get())
print('Desired	position	of	axis	Y:',Y.get())
print('Desired	position	of	axis	Z:',Z.get())

#	absolute	position
Y.put(10,	wait	=	True)

#	relative	position
#	did	not	find	how	to	...

import	socket

HOST	=	"129.129.99.103"		#	The	server's	hostname	or	IP	address
PORT	=	1234		#	The	port	used	by	the	server

with	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)	as	s:
				s.connect((HOST,	PORT))
				s.sendall("move3:7	\r".encode())
				data	=	s.recv(1024)

36

A	smc	program	line	usually	consists	of	several	command	lines,	terminated	by	the	command	line	nl	which	indicates	the	end	of	a	program

line

By	clicking	start,	it	reruns	the	last	program	entered

Example	:	3:10.0s[start-stop	speed][max	slew	speed]

3:10	\r	2:1.0s500r2500a10	\r

Configuration	commands	:

Shows	homing	:

It	will	not	work	for	rotation	axis	because	LIMIT	SWITCH	is	needed

home[axis]:he;jg15000

Query	commands	:

?e	return	encoder	position	of	all	motors

?status	returns	the	status	of	all	motors

with	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)	as	s:
				s.connect((HOST,	PORT))
				s.sendall("clr	\r	3:10	\r	2:1.0s500r2500a10	\r	delay5	\r	nl	\r	end	\r	start	\r".encode())
				data	=	s.recv(1024)

#	homing	procedure	for	SAM_ROTX	(WORKS	ALSO	FOR	SAM_ROTZ	WITH	2	INSTEAD	OF	1)
with	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)	as	s:
				s.connect((HOST,	PORT))
				s.sendall("clr	\r	home1:he;jg15000	\r	nl	\r	end	\r	start	\r".encode())
				data	=	s.recv(1024)

#	Homing	procedure	for	SAM_ROTY	(NO	LIMIT	SWITCH)
with	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)	as	s:
																s.connect((HOST,	PORT))
																s.sendall("clr	\r	eref3:-	\r	nl	\r	end	\r	start\r".encode())
																data	=	s.recv(1024)

command	=	"?e3		\r"
with	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)	as	s:
				s.connect((HOST,	PORT))
				s.sendall(command.encode())
				time.sleep(0.1)
				data	=	s.recv(1024)
msg	=	data.decode()

print("?e3	=	"	+	msg)

Processing	math:	100%

37

