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Safety Systems in iPWRs
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Integrated 

Systems

Many SMRs integrate systems into the RPV:

• Steam generator (SG)

• Pressurizer

• Conrol rod drive mechanism (CRDM)

• Natural circulation (NC)

Passive Safety

Systems

Passive Safety systems include:

• NC cooling (no pumps)

• Passive DHRS/PRHRS

• CR insertion

• IVMR (depends on injection type)

• …

[2]
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Methods of interest:

• Analytical Hierarchical Process (AHP) Project Ref. [27]

• Artificial neural networks Project Ref. [27]

• Failure Mode and Effect Analysis (FMEA) Project Ref. [24]

• Flow map Project Ref. [17]

• Hazard and Operability analysis (HAZOP) Project Ref. [24]

• Least-squares method Project Ref. [27]

• Monte Carlo Project Ref. [8], [27]

• Morris method Project Ref. [8], [27]

• Pearson and Spearman coefficients Project Ref. [8], [16], [27], [31]

• Phenomena Identification and Ranking Table (PIRT) Project Ref. [24], [27]

• Reliability Methods for Passive Safety Systems (RMPS) Project Ref. [24]

• Software System for Uncertainty and Sensitivity Analysis (SUSA) Project Ref. [31]

• Variance-based methods Project Ref. [27]

Sensitivity Determining Methods
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In-Vessel Melt Retention – PWR vs. iPWR
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PWR Generally:

• Active injection of coolant into or around the vessel

• Large volumes

• Difference in power-to-coolant and power-to-

surface ratio

iPWR Generally:

• Passive injection of coolant

• Small volumes

• Smaller power-to-coolant ratio

[5]



In-Vessel Melt Retention – Literature Overview
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MELCOR 

models

Non-MELCOR

models

Particulate debris porosity, molten cladding (pool) drainage rate, 
molten Zircaloy melt breakthrough temperature, refreezing heat 
transfer coefficient for stainless steel, core plate creep properties, 
core barrel heat transfer, …

Melt properties, gap thermal resistance, radiative heat transfer for 
thin metallic layers, …

9 papers reviewed
Published
2014-2021

3 MELCOR 
specific 
papers

1 MELCOR 
paper related 

to SMRs



9 papers reviewed
Published
2014-2021

3 MELCOR 
specific 
papers

1 MELCOR 
paper related 

to SMRs

In-Vessel Melt Retention – Results
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Surface-to-
power ratio

Heat flux of
corium

Core barrel heat
transfer

• Simple scaling factors from PWR to iPWR may not be enough

Smaller power output Reduced RPV surface for ex-vessel cooling

vs.

Power-to-coolant ratio

vs.

[2]



Changing geometry

9 papers reviewed
Published
2014-2021

3 MELCOR 
specific 
papers

1 MELCOR 
paper related 

to SMRs
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Published
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Surface-to-
power ratio

Heat flux of
corium

Core barrel heat
transfer

• Surface:

• Area of HS

• Scaling factors HS_LBT  XHTFCL, 

XMTFCL, XHTFCLR

• Additional data HS_LBS 

ASURFL, CLNL, BNDZL

• Material and Thickness

• Node data HS_ND MATNAM, XI

• Power:

• COR_ELPOW  IPOW

• LHC_DH

• CV and HS

• External Data Files 

(EDF)

• Tabular Functions (TF)

• Control Functions (CF)
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• MELCOR implementations:
• Study on COR package components
• Parameters:

• HTC from debris to penetration structures
• HTC from debris to lower head
• HTC from oxidic molten pool to lower head
• HTC from metallic molten pool to lower head
• Atmosphere heat transfer scaling factor (convective, radiative)

9 papers reviewed
Published
2014-2021

3 MELCOR 
specific 
papers

1 MELCOR 
paper related 

to SMRs

In-Vessel Melt Retention – Results
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Published
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• MELCOR implementations: • Area of HS

• Scaling factors HS_LBT  XHTFCL, 

XMTFCL, XHTFCLR

• Additional data HS_LBS  ASURFL, 

CLNL, BNDZL

• Material and Thickness

• Node data HS_ND MATNAM, XI

9 papers reviewed
Published
2014-2021

3 MELCOR 
specific 
papers

1 MELCOR 
paper related 

to SMRs

In-Vessel Melt Retention – Results
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• Heat Transfer Paths:

• Radiative Exchange Factors COR_RF 

 FCNCL, FSSCN, FCELR, FCELA, 

FLPUP

• MELGEN Arbitrary Conduction or 

Radiation Heat Transfer Path 

COR_HTR

9 papers reviewed
Published
2014-2021

3 MELCOR 
specific 
papers

1 MELCOR 
paper related 

to SMRs

In-Vessel Melt Retention – Results
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Natural Circulation – PWR vs. iPWR
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PWR Generally:

• Only 20% of power can be removed

by NC alone

• PRHRS and HX pool

• Smaller coolant-to-power ratio

iPWR Generally:

• NC for heat removal in normal operation

• Marine based SMRs

• Larger coolant-to-power ratio

• Difference in SG height (driving head)

• Reactor pool
[7]



Natural Circulation – Literature Overview
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Ocean based

plants

PRHRS

Flashing

driven NC

UHS pool

modelling

Rolling amplitude, rolling period, pressure in the primary coolant
system, initial steam pressure, HTC factor in boiling, …

MSIV actuation time, HX area, HX height, compensation tank 
volume, hydraulic resistance, containment pressure, …

Spray flow rate, pressurisation space volume, downcomer flow
area, …

Nodalisation

16 publications 
reviewed

Published
2004-2021

1 MELCOR 
specific 
papers

1 MELCOR 
paper related 

to SMRs



• MELCOR implementations:

16 publications 
reviewed

Published
2004-2021

1 MELCOR 
specific 
papers

1 MELCOR 
paper related 

to SMRs

Natural Circulation – Results
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Heat exchange area
and coefficients

Coolant mixing Nodalisation

Changing geometry Changing HX areas Changing number of pipes
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16 publications 
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Published
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specific 
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1 MELCOR 
paper related 
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• Laminar/turbulent flow: change Reynolds 
number

• For reactor ultimate heat sink pool: changed 
with atmosphere laminar and turbulent range

• Sensitivity coefficients  global

• MELCOR implementations:

16 publications 
reviewed

Published
2004-2021

1 MELCOR 
specific 
papers

1 MELCOR 
paper related 

to SMRs

Natural Circulation – Results
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16 publications 
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[11]

Helical Coiled Steam Generators – Concept
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Helical Coiled Steam Generators– Literature
Overview

Page 24

Geometrical

Factors

Modelling

practices

Mathematical

models

Tube diameter, number of tubes, coil pitch, coil length, coil diameter, 
shell side inner and outer diameters, radial and axial pitch ratio, …

“Entangling” of the HCSG, nodalisation according to the Courant-
Frederick-Levy condition, sliced nodalisation, …

Heat transfer coefficient, friction factor, dynamic instabilities, …

12 papers reviewed
Published
2000-2021

0 MELCOR 
specific 
papers

0 MELCOR 
paper related 

to SMRs

Parameter 

Analysis
SG break position, power level, pressuriser pressure, core inlet
coolant temperature, …



• Geometry usually design specific
• Influenced by:

• Number of steam generators
• Number of coils
• Coil pitch
• Coil diameter

• MELCOR implementation:
• General geometrical changes
• Multiplication factor for tubes
• HCSG model

• HS_LB  IBCL = 2 (Zukauskas)
• HS_LB  IBCL = 3 (HelicalSG)
• HS_ZUKL

• HCSG transfer coefficients (C4186)

12 papers reviewed
Published
2000-2021

0 MELCOR 
specific 
papers

0 MELCOR 
paper related 

to SMRs

Helical Coiled Steam Generators– Results

Page 25

Geometrical
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models

Channel 
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1. Original sized tube bundle modelled
as one tube
With equivalent:
• flow area
• heat transfer surface area
• hydraulic diameter
• heated hydraulic diameter

12 papers reviewed
Published
2000-2021

0 MELCOR 
specific 
papers

0 MELCOR 
paper related 

to SMRs

Helical Coiled Steam Generators– Results

Page 26

Geometrical
Factors

Nodalisation and model
implementation

Friction factor and heat 
transfer coefficient 

models

Channel 
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[12]



2. Single equivalent tube bundle 
“unraveled” to make a single 
inclined tube
With equivalent:
• Length
• Vertical change in height
• Corresponding to bundle 

height

12 papers reviewed
Published
2000-2021

0 MELCOR 
specific 
papers

0 MELCOR 
paper related 

to SMRs

Helical Coiled Steam Generators– Results
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3. Unraveled tube divided into 3 parts
• subcooled region
• boiling region
• superheated

12 papers reviewed
Published
2000-2021

0 MELCOR 
specific 
papers

0 MELCOR 
paper related 

to SMRs

Helical Coiled Steam Generators– Results

Page 28

Geometrical
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[12]
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Published
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paper related 
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Geometrical
Factors

Nodalisation and model
implementation

Friction factor and heat 
transfer coefficient 

models

Channel 
interactions

• Oscillations between tubes
• Especially for large differences in 

temperatures, pressures etc.

• MELCOR implementations:
• May not be resolvable (yet!)
• Possible in designs with

external SG



• Correct modelling is important
for licensing

12 papers reviewed
Published
2000-2021

0 MELCOR 
specific 
papers

0 MELCOR 
paper related 

to SMRs
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models

[12]

Project Ref. [41]



• MELCOR implementations:
 Until recently no inclusion

of counter current flow
• Zukauskas model for the

shell side
• Helical coil SG heat

transfer model for the
tube side

12 papers reviewed
Published
2000-2021

0 MELCOR 
specific 
papers

0 MELCOR 
paper related 

to SMRs

Helical Coiled Steam Generators– Results
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• Zukauskas model HS_ZUKL/R:
• Diameter (DIAM)
• Transverse (ST) and longitudinal 

(SL) pitch for tube bundle
• Aligned or staggered
• Correction factor (CORRECTION)

• Multiplier (MULTIPLIER)
• Number of rows (ROWS)

12 papers reviewed
Published
2000-2021

0 MELCOR 
specific 
papers

0 MELCOR 
paper related 

to SMRs

Helical Coiled Steam Generators– Results
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• Tube side helical coil SG model:
• Subcooled water flow HTC
• Two-phase flow HTC

• Annular flow with nucleate
boiling

• Evaporating film condition

12 papers reviewed
Published
2000-2021

0 MELCOR 
specific 
papers

0 MELCOR 
paper related 

to SMRs

Helical Coiled Steam Generators– Results
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Geometrical
Factors

Nodalisation and model
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Channel 
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Friction factor and heat 
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models

 Final two-phase HTC with the help
of two functions (F and S) 



• Goal: Review sensitive parameters in MELCOR for modelling 

improvements

• Not many sensitivity or parameter studies performed with MELCOR

• However, many studies conducted with RELAP, ATHLET, MARS, etc.

 confirms interest and necessity

• Due to lack of papers: Potential of model developments 

considerable

• Common parameters to be investigated:

• Heat transfer

• Nodalisation

• Follow up investigation of these parameters while modelling an 

experimental facility

Conclusion and Outlook

Page 34

Conclusion
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