EIGER- short manual

September 7, 2017

Contents
T Usage 2
I1.1 Mandatory setup - Hardwarel 2
[T.T1 9M power supply interface: bchipl00f. 3
[[2~ Mandatory setup - Receiver] v v v v v ot 4
1.3 Mandatory setup - Client| 4
12 API versioning] 6
I3 Setting up the threshold| 7
4 Standard acquisition| 7
[F Readout timing- maximum frame rate] 9
6 External triggering options| 11
|7 Autosumming and rate corrections| 12
I8 Client checks - command linel 13
[9 1Gb/s, 10Gb/s links| 16
9.1 Checking the 1Gb/s, 10Gb/s physical links| 16
9.2 Delays in sending for 1Gb/s, 10Gb/s, 10Gb flow control, receiver |
| fitol . . e e 16
9.3 Setting up 10Gb correctly: experience so far|. 17
|L0 Offline processing and monitoring| 17
110.1 Data out ot the detector: UDP packets|. 17
110.2 Data out of the slsReceiver] 18
MO TaW LGS - o o v ovoov e e e e e e e 18
10.4 Offline image reconstruction| 19
10.5 Read temperatures/HV from boards| 20
|IA Kill the server, copy a new server, start the server 21

[B Loading firmware bitfiles| 21

[C Pulsing the detector| 22
[D Load a noise pattern with shape| 23
[E Running the (9M at cSAXS. For now)| 23
1 Usage

1.1 Mandatory setup - Hardware
An EIGER single module (500 kpixels) needs:

e A chilled (water+alcohol) at approximately 21 °C, which needs to dissi-
pate 85 W. For the 9M, a special cooling liquid is required: 2/3 deionized
water and 1/3 ESA Type 48.

e A power supply (12 V, 8 A). For the 9 M, a special cpu is give to remotely
switch on and off the detector: see section [[1.1l

e 2x1 Gb/s Ethernet connectors to control the detector and, optionally,
receive data at low rate. A DHCP server that gives IPs to the 1 Gb/s
connectors of the detector is needed. Note that flow control has to be
enabled on the switch you are using.

e 2x10 Gb/s transceivers to optionally, receive data at high rate.

The equipment scales linearly with the number of modules. Figure [I| shows
the relationship between the Client (which sits on a beamline control PC),
the Receiver (which can run in multiple instances on one or more PCs which
receive data from the detector. The receiver(s) does not necessary have to be
running on the same PC as the client.) It is important that the receiver is closely
connected to the detector (they have to be on the same network). Note that
if you implement the 1Gb/s readout only: client, receiver and detector have to
be all three in the same network. If you implement the 10Gb/s readout, then
client, the 1 GbE of the detector and the receiver have to stay on the 1GbE.
But the receiver data receiving device and the 10GbE detector can be on their
private network, minimizing the missing packets.

The Client talks to control over 1 Gb Ethernet connection using TCP/IP to
the detector and to the receiver. The detector sends data in UDP packets to
the receiver. This data sending can be done over 1 Gb/s or 10 Gb/s.

e Switch on the detector only after having started the chiller: the
500k single module and the 1.5M at ¢cSAXS have a hardware
temperature sensor, which will power off the boards if the tem-
perature is too high. Note that the detector will be power on
again as soon as the temperature has been lowered. The 9M will

Data receiver

)

Controls
TCP/IP 1Gh/s

_ IUDP
/ 1Gh/s or
10 Gb/s

f'. \
—|| FData

‘ Detector

Figure 1: Communications protocol between the Client PC, the receiver PC and
the detector.

not boot up without the correct waterflow and temperature has
it has an integrated flowmeter.

e Switch on the detector only after having connected all the cables
and network. EIGER is unable to get IP address after it has
been switched on without a proper network set up. In that case
switch off and on the detector again.

1.1.1 9M power supply interface: bchip100

So the bchip100, which is a blackfin cpu, is located on the top side of the 9M
and needs to be connected over 1Gb, to the same or a different network as the
detector 1 GbE.

telnet bchip100
cd 9m/

The directory contains some executables that are needed to make your detector
to work:

./on #to switch modules on

./off #to switch modules off

./hvget #gets the current HV value

./waterflow #returns the current waterflow returned by the flowmeter
./temp #returns the water temperature returned by the flowmeter

A watchdog is running on bchip100 to check for the flow and temparature. If
outside of parameters (flow< 80 dl/min, temperature #21+2), the detector
will be switched off. Here is an explanation of the LED color scheme of the
bchip100:

e NO LED Main Power off or Blackfin not ready, yet.

e RED Too high temperature or too less water flow Detector is shut down
and locked. Detector will be unlocked (YELLOW) automatically when
conditions are good again.

e YELLOW Detector is off and unlocked. Ready to be turned on.
e GREEN Detector is on

You can also Check temperatures and water flow in a browser (from the same
subnet where the 9M is: http://bchip100/status.cgi

1.2 Mandatory setup - Receiver

The receiver is a process run on a PC closely connected to the detector. Open
one receiver for every half module board (remember, a module has two re-
ceivers!!!) . Go to slsDetectorsPackage/bin/, slsReceiver should be started
on the machine expected to receive the data from the detector.

e ./slsReceiver --rx_tcpport xxxx

e ./slsReceiver --rx_tcpport yyyy

where xxxx, yyyy are the tcp port numbers. Use 1955 and 1956 for example.
Note that in older version of the software —-mode 1 was used only for the “bot-
tom” half module. Now, the receiver for the bottom is open without arguments
anymore, but still in the configuration file one needs to write n:flippeddatax
1, where n indicated the half module number, 1 if it is a module.

Open as many receiver as half module boards. A single module has two half
module boards.

1.3 Mandatory setup - Client

In the case of ¢SAXS, the detector software is installed on the x12sa-ed-1 machine:
/sls/X12SA /data/x12saop/EigerPackage/slsDetectorsPackage
The command line interface consists in these main functions:

sls_detector_acquire to acquire data from the detector
sls_detector_put to set detector parameters

sls_detector_get to retrieve detector parameters

First, your detector should always be configured for each PC that you might
want to use for controlling the detector. All the examples given here show the
command O-, which could be omitted for the EIGER system 0. In the case more
EIGER systems are controlled at once, the call of 1-,.. becomes compulsory.

To make sure the shared memory is cleaned, before starting, one should do:

sls_detector_get O-free
To do that:
sls_detector_put O-config mydetector.config

In the config file, if client, receiver and detector are using 1GbE the following
lines are mandatory (see slsDetectorsPackage/examples/eiger_1Gb.config):

detsizechan 1024 512 #detector geometry, long side of the module first
hostname beb059+beb058+ #1Gb detector hostname for controls
0:rx_tcpport 1991 #tcpport for the first halfmodule

O:rx_udpport 50011 #udp port first quadrant, first halfmodule
O:rx_udpport2 50012 #udp port second quadrant, first halfmodule
1:rx_tcpport 1992 #tcpport for the second halfmodule

1:rx_udpport 50013 #udp port first quadrant, second halfmodule
1:rx_udpport2 50014 #udp port second quadrant, second halfmodule
rx_hostname x12sa-vcons #1Gb receiver pc hostname

outdir /sls/X12SA/data/x12saop/Datal0/Eiger0.5M

In the config file, if client, receiver and detector commands are on 1Gb,
but detector data to receiver are sent using 10GbE the following lines are
mandatory (see slsDetectorsPackage/examples/eiger_10Gb.config):

detsizechan 1024 512 #detector geometry, long side of the module first
hostname beb059+beb058+ #1Gb detector hostname for controls
:rx_tcpport 1991 #tcpport for the first halfmodule
:rx_udpport 50011 #udp port first quadrant, first halfmodule
:rx_udpport2 50012 #udp port second quadrant, first halfmodule
:rx_udpip 10.0.30.210 #udp IP of the receiver over 10Gb
:detectorip 10.0.30.100 #first half module 10 Gb IP
:rx_tcpport 1992 #tcpport for the second halfmodule
:rx_udpport 50013 #udp port first quadrant, second halfmodule
:rx_udpport2 50014 #udp port second quadrant, second halfmodule
:rx_udpip 10.0.40.210 #udp IP of the receiver over 10Gb,

can be the same or different from O:rx_udpip
l:detectorip 10.0.40.101 #second half module 10 Gb IP
rx_hostname x12sa-vcons #1Gb receiver pc hostname
outdir /sls/X12SA/data/x12saop/Datal0/Eiger0.5M

[l i ol ool el e]

One can configure all the detector settings in a parameter file setup.det,
which is loaded by doing:

sls_detector_put O-parameters setup.det

In the case of EIGER, the proper bias voltage of the sensor has to be setup,
i.e. the setup.det file needs to contain the line vhighvoltage 150. Other
detector functionality, which are rarely changed can be setup here. Other im-
portant settings that are configured in the setup.det file are:

e tengiga 0/1, which sets whether the detector is enabled to send data
through the 1 or the 10 Gb Ethernet.

e flags parallel/monparallel, which sets whether the detector is set in
parallel acquisition and readout or in sequential mode. This changes the
readout time of the chip and affects the frame rate capability (faster is
parallel, with higher noise but needed when the frame rate is > 2 kHz.

e dr 32/16 sets the detector in autosumming mode (32 bit counter or not
autosumming, 12 bit out of the chip). This is strictly connected to what
is required for the readout clock of chip. See next point.

e clkdivider 0/1/2. Changes the readout clock: 200, 100, 50 MHz (also
referrered to as full, half, quarter speed). Note that autosumming mode
(dr 32 only works at clkdivider 2=quarter speed). By selecting Refer to
readout timing specifications in section] for how to set the detector.

e flags continuous/storeinram. Allows to take frame continuously or
storing them on memory. Normally continuous should be used. Enabling
the stroreinram mode allows you to obtain the maximum frame rate,
but at the expenses to have to receive the data all at the end of the
acquisition. Refer to readout timing specifications in section [5| for how to
set the detector.

One should notice that, by default, by choosing the option dr 32, then the
software automatically sets the detector to clkdivider 2. By choosing the
option dr 16, the software automatically sets the detector to clkdivider 1.
One needs to choose clkdivider O after setting the dr 16 option to have the
fastest frame rate. We would recommend expert users (beamline people) to
write their parameters file for the users.

2 API versioning

The eigerDetectorServer running on the boards has a versioning API scheme
that will make it crash if used with a wrong firmware. You can also check your
versioning by hand with the code:

sls_detector_get softwareversion

gets the server (slsDetectorSoftware) version (answer is something like: softwareversion
111920160722.

sls_detector_get thisversion
returns the client version. The answer can be thisversion 111220160718.
/sls_detector_get detectorversion

returns the firmware version . The answer can be detectorversion 11. Killing
and starting the server on the boards allows you to check the firmware version
you have and also if your board is a top/bottom/master/slave.

3 Setting up the threshold

sls_detector_put O-trimen N xXXX yyyy 2zzzz
sls_detector_put O-settings standard #[veryhighgain/highgain/lowgain/verylowgain] also poss:
sls_detector_put O-threshold energy_in_eV

The first line requires to specify how many (N) and at which energies in eV
{ttxxxx, yyyy, zzzz and so on) trimmed files were generated (to allow for an in-
terpolation). This line should normally be included into the mydetector.config
file and should be set for you by one of the detector group. NORMALLY, in
this new calibration scheme, only settings standard will be provided to you,
unless specific cases to be discussed. The threshold at 6000 eV , for example
would be set as:sls_detector_put O-threshold 6000.

4 Standard acquisition

After you setup the setting and the threshold, you need to specify the exposure
time, the number of real time frames and eventually how many real time frames
should be acquired:

sls_detector_put O-exptime 1[time_is_s]
sls_detector_put O-frames 10
sls_detector_put O-period O[time_is_s]

In this acquisition 10 consecutive 1 s frames will be acquired. Note that period
defines the sum of the acquisition time and the desired dead time before the
next frame. If period is set to 0, then the next frame will start as soon as the
detector is ready to take another acquisition.

For EIGER, at the moment 5 settings are possible: standard, lowgain,
verylowgain, veryhighgain and highgain. According to the setting chosen,
one can reach different requirements (low noise or high rate). Refer to the set-
tings requirements for your detector.
Notice that the option settings standard/highgain/lowgain/veryhighgain/verylowgain
actually loads the trimbit files so it is time consuming. Only setting the threshold
does not load trimbit files.

The threshold is expressed in (eV) as the proper threshold setting, i.e. nor-
mally is set to 50% of the beam energy.

At ¢SAXS, the settingsdir and caldir are in
/sls/X12SA /data/x12saop/EigerPackage/calibrations/

You need to setup where the files will be written to

sls_detector_put O-outdir /scratch
sls_detector_put O-fname run
sls_detector_put O-index O

this way your files will all be named /scratch/run_dj_i.raw where j is relative
to each specific half module, ¢ in the index starts from 0 when starting the
detector the first time and is automatically incremented. The next acquisition
index will be 1. One can reset the index to what wished.

To acquire simply type:

sls_detector_acquire O-
Note that acquiring is blocking. You can poll the status of the detector with:
sls_detector_get status

If the detector is still acquiring, the answer will return running. If the detector
has finished and ready for the next acquisition, then it will return idle. You
can also ask for the status of the receiver, to know when it has returned and
finished getting the data with:

sls_detector_get receiver

There is a more complex way of performing an acquisition, that is useful for
debugging and in case one wants a non blocking behavior:

e sls_detector_put O-receiver start
e sls_detector_put O-status start
You can poll the detector status using:

sls_detector_get O-status

When the detector is idle, then you need to stop the receiver doing:
e sls_detector_put O-receiver stop

You can then reset to zero the number of frames caught, if you desire:
e sls_detector_put O-resetframescaught O

The detector will not accept other commands while acquiring. If an acqui-
sition wishes to be properly aborted, then:

e sls_detector_put O-status stop

this same command can be used after a non proper abortion of the acquisition
to reset to normal status the detector.

GbE | dynamic range | continuos maximum frame rate(Hz)
1 16 256
1 32 128
10 16 2560
10 32 1280
10 8 5120
10 4 10240

Table 1: Frame rate limits for the CONTINUOS streming out of images.

dynamic range | images
4 30000
8 15000
16 7600

Table 2: Amount of images that can be stored on board. As while we store
them, we start to send them out, the effective number of images could be larger
than this, but it will depend on the network setup (how fats you stream out
images).

5 Readout timing- maximum frame rate

IMPORTANT: to have faster readout and smaller dead time, one can configure
clkdivider, i.e. the speed at which the data are read, i.e. 200/100/50 MHz for
clkdivider 0/1/2 and the dead time between frames through flags parallel,
i.e. acquire and read at the same time or acquire and then read out. The config-
uration of this timing variables allows to achieve different frame rates. NOTE
THAT IN EIGER, WHATEVER YOU DO, THE FRAME RATE LIMITA-
TIONS COME FROM THE NETWORK BOTTLENECK AS THE HARD-
WARE GOES FASTER THAN THE DATA OUT.

In the case of REAL CONTINUOUS readout, i.e. continuous acquire and
readout from the boards (independent on how the chip is set), the continuous
frame rates are listed in table[I} Note that in the continuous flag mode, some
buffering is still done on the memories, so a higher frame rate than the proper
real continuous one can be achieved. Still, this extra buffering is possible till
the memories are not saturated. The number of images that can be stored on
memories are listed in table

The maximum frame rate achievable with 10 GbE, dr 16, flags continuous,
flags parallel,clkdivider 0, 6.1 kHz. This is currently limited by the con-
nection between the Front End Board and the Backend board. We expect the 32
bit mode limit to be 2 kHz (clkdivider 2). In dynamic range dr 8 the frame
rate is 11 kHz and fordr 4 is 22 kHz. For 4 and 8 bit mode the frame rate
are directly limited by the speed of the detector chip and not by the readout
boards.

In table [3]is a list of all the readout times in the different configurations:

dr clkdivider mode readout t(us) max frame rate (kHz) max exptime (us) min period (us) max images
4 0 parallel 3.4 22 40 44 50k

4 0 nonparallel 44 21 3 49 50k

4 1 parallel 6 10.5 85 92 100k
4 1 nonparallel 88.7 10.5 3 93 100k
4 2 parallel 11.2 5.4 185 197 infinite
4 2 nonparallel 176.5 5.4 3 180 infinite
8 0 parallel 3.4 11.1 85 89 24k

8 0 nonparallel 85.7 11.1 3 91 24k

8 1 parallel 6.1 5.7 174 181 52k

8 1 nonparallel 170.5 5.7 3 175 52k

8 2 parallel 11.2 2.9 330 342 infinite
8 2 nonparallel 340.3 2.9 3 344 infinite
16 0 parallel 3.4 6 164 168 12k
16 0 nonparallel 126 3.4 164 295 23k
16 1 parallel 6.1 2.9 339 346 28k
16 1 nonparallel 255 1.7 339 592 infinite
16 2 parallel 11 1.5 66 78 infinite
16 2 nonparallel 504 0.85 7 512 infinite
32 2 parallel 11 2

32 2 nonparallel 504 <2

Table 3: Readout settings. The min exptime possible is 3—5 us.

10

As if you run too fast, the detector could become noisier, it is im-
portant to match the detector settings to your frame rate. This can
be done having more parameters files and load the one suitable with
your experiment. We experienced that highgain settings could not be used
at 6 kHz. We recommend to use the detector in 32 bit mode with
clkdivider 2, flags parallel. We recommend to use the detector in
16 bit mode with clkdivider 1, flags parallel. In general, choose first
the desired dead time: this will tell you if you want to run in parallel or non
parallel mode. Then, choose the maximum frame rate you want to aim, not
exceeding what you aim for not to increase the noise.

6 External triggering options

The detector can be setup such to receive external triggers. Connect a LEMO
signal to the TRIGGER IN connector in the Power Distribution Board. The
logic 0 for the board is passed by low level 0—0.7 V., the logic 1 is passed to the
board with a signal between 1.2—5 V. Eiger is 50) terminated. By default the
positive polarity is used (negative should not be passed to the board).

sls_detector_put O-timing [auto/trigger/burst_trigger/gating]
sls_detector_put O-frames x

sls_detector_put O-cycles y

sls_detector_acquire O-

No timeout is expected between the start of the acquisition and the arrival of
the first trigger.
Here are the implemented options so far:

e auto is the software controlled acquisition, where exptime and period
have to be set.

e trigger 1 frame taken for 1 trigger. You frames needs to be 1 always,
cycles can be changed and defines how many triggers are considered. In
the GUI this is called trigger exposure series.

e burst_trigger gets only 1 trigger, but allows to take many frames. With
frames one can change the number of frames. cycles needs to be 1. In
the gui it is called trigger readout.

e gating allows to get a frame only when the trigger pulse is gating. Note
that in this case the exp time and period only depend on the gating signal.
cycles allows to select how many gates to consider.

Hardware-wise, the ENABLE OUT signal outputs when the chips are really
acquiring. This means that the single subframes will be output in 32 bit mode.
The TRIGGER OUT outputs the sum-up-signal at the moment (which is use-
less). This will be changed in the future to output the envelop of the enable
signal.

11

We are planning to change some functionality, i.e. unify the trigger and
burst trigger modes and make both frames and cycles configurable at the
same time.

7 Autosumming and rate corrections

In the case of autosumming mode, i.e, dr 32, the acquisition time (exptime
is broken in as many subframes as they fit into the acquisition time minus all
the subframes readout times. By default the subexptime is set to 2.621440 ms.
This implies that 12 bit counter of EIGER will saturate when the rate is above
or equal to 1.57 MHz/pixel. The minimum value is of order of 10 ns (although
as explained values smaller than 500 us do not make sense). The maximum
value is 5.2 s.
The subframe length can be changed by the user by doing:

sls_detector_put O-subexptime [time_in_s]

One needs to realize that the readout time, for each subframe is 10.5 us
if the detector is in parallel mode. 500 pus if the detector is in non paral-
lel mode. Note that in dr 32, as the single frame readout from the chip is
500 ps, no subexptime<500 us can be set in parallel mode. To have smaller
subexptime, you need the nonparallel mode, although this will have a larger
deadtime than the acquisition time.

Rate corrections are possible online (and the came procedure can be used
offline) by creating a look-up table between the theoretically incident counter
value ¢; and the detected counter value ¢4. In the EIGER on board server, this
look-up table is generated assuming that the detected rate ng can be modeled
as a function of the incident rate n; according to the paralyzable counter model:

ng = n; - exp(—n; - T), (1)

where 7 represents an effective parameter for the dead time and the loss in effi-
ciency. The look-up table is necessary as we are interested to obtain ¢;(c4) and
equation [I] is not invertible. One needs to notice that the paralizable counter
model to create a look-up tables applies only if photons arrive with a contin-
uous pattern (like at the SLS). If photons are structured in fewer but intenser
bunches, deviations may arise. This is the case for some operation modes at
the ESRF. For those cases we are studying how to correct, probably from a
simulated correction tables if an analytical curve cannot be found. In the new
calibration scheme, 7 is given as a function of the energy. It is loaded
from the trimbit files and interpolation between two trimbit files are
performed. One needs to make sure the appropriate 7 value is written in
the trimbit files, then need to load the appropriate settings and vthreshold
before.

Online rate corrections can be activated for dr=32. They are particularly
useful in the autosumming mode as every single subframe is corrected before

12

summing it. To correct for rate, the subframe duration has to be known to the
correction algorithm. Rate corrections for dr=16 will be activated as well in the
next firmware release. To activate the rate corrections, one should do:

sls_detector_put O-ratecorr [tauval_in_ns]
To deactivate:
sls_detector_put O-ratecorr O

Now to activate the rate corrections with the value written in the trimbit
file or interpolated from there, once would do:

sls_detector_put O-ratecorr -1

Every time either the rate corrections are activated, 7 is changed or the
subframe length is changed, then a new correction table is evaluated. Note that
computing the correction table is time consuming.

8 Client checks - command line

Guide on returned strings:

1. sls_detector_get free

Returns a list of shared memories cleaned (variable number depending on
detector):

Shared memory 273612805 deleted
Shared memory 276922374 deleted
Shared memory 270270468 deleted
free freed

Note that occasionally if there is a shared memory of a different size (from
an older software version), it will return also a line like this:

*x**x shmget error (server) **x-1

This needs to be cleaned with ipcs -m and then ipcrm -M xxx, where
xxx are the keys with nattch 0.

2. sls_detector_get settings
settings standard

standard is only if correct. undefined or anything else is wrong.

13

10.

11.

12.

13.

sls_detector_get threshold
threshold xxxx

Returns a string (xxxx) that can be interpreted as the threshold in eV. If
it fails to set it, returns the last threshold it was set (which the detector
still has). If settings are not defined or different trimbits are chosen, it
will return ”undefined”

sls_detector_get fname
fname string

sls_detector_get exptime

exptime number

where number is a string to be interpreted as a float in (s).
sls_detector_get period

period number

where nuymber is a string to be interpreted as a float in (s).

. sls_detector_get frames

frames number

where number is a string to be interpreted as an integer.
sls_detector_get cycles

cycles number

where number is a string to be interpreted as an integer.
sls_detector_get status

status string

where string can be idle or running.
sls_detector_get index

status number

where number is a string to be interpreted as an integer.
sls_detector_get dr

dr number

where number is a string that should be interpreted as an integer (4/8/16/32).
sls_detector_get clkdivider

clkdivider number

where number is a string that should be interpreted as an integer (0/1/2/3).
sls_detector_get flags

flags stringl string?2

where stringl is a string should be always continous and string2 can
be either nonparallel or parallel.

14

14.

15.

16.

17.

18.

19.

20.

21.

sls_detector_get timing
timing string

where string is a string which can be auto/trigger/burst_trigger/gating.

sls_detector_get enablefwrite
enablefwrite number

where number is a string which should be interpreted as an integer ”0” or
» 177 .

sls_detector_get framescaught
framescaught number

where number is a string which should be interpreted as an integer of the
complete frames got by the receiver.

sls_detector_get frameindex
frameindex number

where number is a string which should be interpreted as an integer of the
last frame number read from firmware. It comes from the receiver, though
and reset after every acquisition series.

sls_detector_get subexptime
subexptime number

where number is a string that should be interpreted as a float in s. The
default value is 0.002621440.

sls_detector_get ratecorr
ratecorr number

where number is a string that should be interpreted as a float in s. 0.000000
means correction off. Values above zero are the value of 7 in ns.

sls_detector_get vhighvoltage
vhighvoltage number

where number is a string that should be interpreted as an int and for
proper Eiger setting is approximately 150 V if it is correctly set. If two
master modules are presents (multi systems), the average is returned (still
to be tested). If one asks for the individual n half module bias voltage
through sls_detector_get n:vhighvoltage, if the n module is a master,
the actual voltage will be returned. If it is a slave, -999 will be returned.

sls_detector_get busy
busy number

where number is a string that should be interpreted as an int for 0/1
meaning no/yes. This command tells if the sharedmemory has in memory
that an acquisition has been started or not. It should allows to use the
non blocking acquire, regardless of any delay to the detector getting into
‘running’ mode.

15

9 1Gb/s, 10Gb/s links

9.1 Checking the 1Gb/s, 10Gb/s physical links
LEDs on the backpanel board at the back of each half module signal:

e the 1Gb/s physical link is signaled by the most external LED (should be
green)

e the 10Gb/s physical link is signaled by the second most external LED next
to the 1Gb/s one (should be green)

9.2 Delays in sending for 1Gb/s, 10Gb/s, 10Gb flow con-
trol, receiver fifo

Extremely advanced options allow to:

e Activate the flow control for 10 Gb/s E (by default the 1 Gb/s E is always
active and cannot be switched off:

./sls_detector_put flowcontrol_10g 1

e Delay the transmission of the left port. This delay option is useful in
the case of many simultaneous receivers running, such that it reduces the
throughput to the receivers all at the same time. To be used board by
board (i.e X:, Y:,etc.. with different units:

./sls_detector_put X:txndelay_left xxxx

e Transmission delay of the right port, same as above. The value here should
be different from the left port to spread the transmission even more

./sls_detector_put X:txndelay_right yyyy
As example:

for X in \$(seq 0 4); do ./sls_detector_put \$X:txndelay_left \$((X*100000)); done

./sls_detector_put \$X:txndelay_right \$((X*¥100000)); X=\$((X+1)); done

e Set transmission delay of the entire frame. This is required as you want
to finish sending the first frame to all receivers before starting sending the
second frame to the receivers with shorter delay time. This value has to
be greater than the maximum of the transmission delays of each port.

./sls_detector_put txndelay_frame zzzz

16

In the example before, it would be: zzzz=4*100000-+ 100000

e Readjust the size of the fifo of the receiver between listening and writing
(useful when writing is limited)

./sls_detector_put rx_fifodepth xxxx

xxxx is 100 images by default.

e Deactivate a half module (for ROI or debugging). Note that the MASTER
module SHOULD NOT be deactivated:

./sls_detector_put X:activate O

where X is the half module you want to deactivate. The receiver at this
point will return fake data (overflow) for this module. If you wish to
eliminate the receiver overall for this module, then you need to run a
configuration file where this module has been removed. To activate back
a module, do:

./sls_detector_put X:activate 1

9.3 Setting up 10Gb correctly: experience so far
For configuring well the 10Gb card not to loose packets, as root, do:
ethtool -G xthl rx 4096, ethtool -C xthl rx-usecs 100

where xthl can be replaced with the correct 10Gb device. To minimise loosing
packets, priorities are set better as root user, so have the receiver as root. To
try to bypass being root, we trued something like this:

/etc/security/limits.conf username rtprio 99

but somehow it did not fully worked so we kept the trick of being root.
Very important is to activate the flow control in 10Gb (in 1Gb it is on by
default and not configurable)

./sls_detector_put flowcontrol_10g 1

Set the transmission delays as explained in the manual.

10 Offline processing and monitoring

10.1 Data out of the detector: UDP packets
The current UDP header format is described in figure

17

Byte o 1 2 3 4 5| 5] 7

Bits 7.0 15...8 23..16 31..24 39...32 47..40 53..48 63...54
Frame Nurmber (8 bytes)
SubFrame Num or ExpTime in 10ns steps (4 bytes) | Packet Number (4 bytes)

Bunch ID (8 bytes)
Time Code in 100ns steps (8 bytes)

Module ID (2 bytes) | X coordinate (2 bytes) | ¥ coordinate (2 bytes) Z coordinate (2 bytes)
Debug (4 bytes) |R0ul1d Robin addr (2 bytes)|Det (1byte) \Hdr (1by)
Frame Nurmber the frame ID this UDP packet belongs to
SubFrame Num or ExpTime in 10ns steps (EIGER) On EIGER it is the subframe number in summing mode. For non summing mode this is 1.
SubFrame Num or ExpTime in 10ns steps (Non-EIGER) Exposure time in 100ns steps
Packet Number the packet ID within the frame
Bunch ID Ehe bunch 1D when the image was taken, for EIGER 0
Time Code in 100ns steps The time when the image was taken. This is not an absolute time value
Module ID From which module of the detector the packet comes from
XIYIZ coordinates the X/¥/Z coordinate of the detector module
debug debug information, should be 0 in non-debug firmware
Round Robin pointer to the round rebin address table in the detector
Det Detector type (3 Eiger. 8 Jungfrau). see sls_receiver_defs.n, enum detectorType
Hdr Header version, for now it's 1
Byte Order 1lis @1 00.80, 256is 00 01 00 00.00

Figure 2: UDP header out of EIGER

O:rx_udpport 50011 | O:rx_udpport2 50012
1:rx_udpport 50013 | 1:rx_udpport2 50014

Table 4: UDP port geometry for a single module, 4 UDP ports.

10.2 Data out of the slsReceiver

For a module, the geometry of the ports are as in table white the option
n:flippeddatax 1, which flips in vertical the content of the module. By con-
vection, we usually use 1:flippeddatax 1, but one could flip the top instead.

10.3 “raw” files

If you use the option of writing raw files, you will have a raw file for each UDP
port (meaning most likely 2 chips), 4 files per module. In addition to the raw
files, you will get also a “master” file, containing in ascii some detector general
parameters and the explanation of how to interpret the data from the raw files.

The master file is named: filename master_0.raw and for version “3.0” of
the slsDetectorSoftware looks like:

Version : 1.0

Dynamic Range : 16

Ten Giga : 1

Image Size : 262144 bytes
X : 512 pixels

y : 256 pixels
Total Frames 01

18

Exptime (ns) : 1000000000

SubExptime (ns) 1 2621440
Period (ns) : 1000000000
Timestamp : Thu Aug 17 10:55:19 2017

#Frame Header

Frame Number : 8 bytes
SubFrame Number : 4 bytes
Packet Number : 4 bytes
Bunch ID : 8 bytes
Timestamp : 8 bytes
Module Id : 2 bytes
X Coordinate : 2 bytes
Y Coordinate : 2 bytes
Z Coordinate : 2 bytes
Debug : 4 bytes
Round Robin Number : 2 bytes
Detector Type 1 byte

Header Version 1 byte

Note that if one wants to reconstruct the real time the detector was acquiring
in 32 bit (autosumming mode), one would have to multiply the SubExptime (ns)
for the SubFrame Number.

10.4 OfHine image reconstruction

The offline image reconstruction is in slsDetectorsPackage/slsImageReconstruction.

The detector writes a raw file per receiver. An offline image reconstruction
executable has been written to collate the possible files together and produce
cbf files. The executable uses the CBFlib-0.9.5 library (downloaded from the
web as it download some architecture dependent packages at installation).

At cSAXS, the CBFlib-0.9.5 has been compiled -such that the required packages are

downloaded in /sls/X12SA /data/x12saop/EigerPackage/CBFlib-0.9.5.

To use it for a single module:
cbfMaker [filename with dir]
eg. cbfMaker /scratch/run 63.d1_f000000000000_3.raw

To use it for a 1.5 multi modules:
cbfMaker [filename] [pixels x] [pixels y] ([singlemodulelongside_x]

eg. cbfMaker /scratch/run_63_d0_f000000000000_3.raw 3072 512 1 0.
The [singlemodulelongside_x] and [start det] param are optional. De-
faults are “1”, the detector long side is on the x coordinate and start to recon-
struct from module 0. The executables:

19

[start det])

bcfMaker1.5M [file_name_with_dir]
bcfMaker9M [file_name_with_dir]

contain the hardcoded geometry for the 1.5M (3 modules horizontal on the long
side) and for the 9M at ¢SAXS: 6(short side)x3 (long side) modules.

Missing packets in a frame and border pixels (x2 and x4 are given with value
—1 at the present time.

It is important to know, that the pixels at the edge between 2 chips count
more as double size. We can virtually introduced 1 virtual pixel per double
larger pixel, so to have an even number of counts everywhere. Virtual pixels
(not filled) between module gaps are also inserted.

2;

>

GapPixelsBetweenChips_x
GapPixelsBetweenChips_y
GapPixelsBetweenModules_x
GapPixelsBetweenModules_y =

1]
[\S)

8;
36;

10.5 Read temperatures/HV from boards

With an updated kernel on the linux boards (ask to the SLS detector group for
specifications), it is possible to monitor the temperature on the boards:

temp_fpga #gets the temperature of the fpga

temp_fpgaext #gets the temperature close to the fpga

temp_10ge #gets the temperature close to the 10GE

temp_dcdc #gets the temperature close to the dc dc converter
temp_sodl #gets the temperature close to the left so-dimm memory
temp_sodr #gets the temperature close to the right so-dimm memory
temp_fpgafl #gets the temperature of the left front end board fpga

temp_fpgafr #gets the temperature of the right front end board fpga

You need to use the command specifying from which board you desire the
temperature readings, for example:

./sls_detector_get O:temp_fpga
./sls_detector_get 1:temp_fpga

In 500k—2M pixel systems there is a hardware temperature safety switch, which
will cut power to the BEBs when reaching a too high temperature. For the
9M system, there is a temperature sensor read by the bchip100 PCU which will
shutdown the detector when above a certain temperature.

The HV can also be set and read through the software:

./sls_detector_put vhighvoltage 150
./sls_detector_get vhighvoltage

Note that the get vhighvoltage would return the measured HV from the master
module only. If getting the vhighvoltage for individual halfmodules, only the
master will have a value different from -999.

20

A Kill the server, copy a new server, start the
server

All the below operations are form a terminal and assume you login to the boards.
Kill current server:

ssh root@bebxxx #password is root
killall eigerDetectorServer # kill server and stopserver

Copy a new version of the server (if necessary, otherwise skip it):

cd executables

scp user@pc:/path/eigerDetectorServerNewVersion .
chmod 777 eigerDetectorServerNewVersion

mv eigerDetectorServerNewVersion eigerDetectorServer
sync

Start the server again:

./eigerDetectorServer &

B Loading firmware bitfiles

A bcep executable (which needs tftp installed on the PC, is needed.

1. Manual way: you need to press something on the detector. To program
bitfiles (firmware files), do a hard reset with a pin/thin stuff in the holes
at the very back of the module. They are between the top 7 LED and
the bottom 1 and opposite for the other side. Push hard till all LEDs are
alternating green and red.

2. Software way (possible only if you have the correct programs copied on
your board. If not, as the sls detector group).

ssh root@bebxxx
cd executables
./boot_recovery

In both case, after booting, only the central one should be on green and red
alternating.
From a terminal, do:

nc -p 3000 -u bebxxx 3000

where xxx is the board number. It is enough top monitor with nc only one board.
Pres enter twice (till you see a prompt with the board hostname printed) and
keep this terminal to monitor. It takes a bit of time to load the bitfiles, but the
terminal tells you.

From another terminal you do:

21

./bcp
sleep
./bcp
sleep
./bcp
sleep

feb_left.bit bebxxx:/febl

300; #or till the screen over netcat has told you Successful
feb_right.bit bebxxx:/febr

300; #or till the screen over netcat has told you Successful
download.bit bebxxx:/fw0

300; #or till the screen over netcat has told you Successful

If you need to program a new kernel (only needed when told to do so):

./bcp kernel_local bebxxx:/kernel

sleep

300; #or till the screen over netcat has told you Successful

do the same for the other boards. You can program in parallel many boards,
but you cannot load two bitfiles on the same board till loading and copying one
process has finished. So load all left febs together, then proceed to the right
febs, then the bebs. Power off completely everything. Power it on.

C Pulsing the detector

There are two ways to pulse the detector:

e Pulse digitally: when you are interested to the output readout and do
not care about the analog response from the pixels:

sls_detector_put vthreshold 4000

sls_detector_put vtr 4000

sls_detector_put pulsechip N #to pulse N

sls_detector_put pulsechip -1 #to get out of testing mode

Note that the answer will be 2 - N + 2 in this case.

e Pulse analogically: You want to really check the analogical part of the
detector, not just the readout.

sls_detector_put vcall 3600
sls_detector_put vthreshold 1700
sls_detector_put vrf 3100

for i in $(seq 0 7) ;

do px=$((-255+1));
sls_detector_put pulse 0 $px O;
for j in $(seq 0 255) ; do
sls_detector_put pulsenmove N O 1;
done;

done;

sls_detector_p resmat O
sls_detector_acquire

You read N in every pixel if you are setup correctly.

22

D Load a noise pattern with shape

For debug purposes, we have created a noise pattern with a shape. If you recon-
struct correctly your image, you should be able to read ”.EIGER” in the same
direction for both the top and bottom in normal human readable orientation. To
load the special noise file look at settingsdir/eiger/standard/eigernoise.sn0xx
in the package.

sls_detector_put trimbits ../settingsdir/eiger/standard/eigernoise
sls_detector_put vthreshold 4000
sls_detector_put vtr 4000

E Running the (9M at cSAXS. For now)

e login as x12saop@xbl-daq-27

e setup_eiger #loads environmental variables and brings you to the right
directory to execute commands

slsReceiverScript3 1991 36 # from one shell.. opens 36 receivers

p config ../../eiger_9m_10gb_xbl-daq-27_withbottom.config

23

	Usage
	Mandatory setup - Hardware
	9M power supply interface: bchip100

	Mandatory setup - Receiver
	Mandatory setup - Client

	API versioning
	Setting up the threshold
	Standard acquisition
	Readout timing- maximum frame rate
	External triggering options
	Autosumming and rate corrections
	Client checks - command line
	1Gb/s, 10Gb/s links
	Checking the 1Gb/s, 10Gb/s physical links
	Delays in sending for 1Gb/s, 10Gb/s, 10Gb flow control, receiver fifo
	Setting up 10Gb correctly: experience so far

	Offline processing and monitoring
	Data out of the detector: UDP packets
	Data out of the slsReceiver
	``raw'' files
	Offline image reconstruction
	Read temperatures/HV from boards

	Kill the server, copy a new server, start the server
	Loading firmware bitfiles
	Pulsing the detector
	Load a noise pattern with shape
	Running the (9M at cSAXS. For now)

