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Abstract

Breast cancer is the most common type of cancer in women, making early detection particularly impor-
tant. Unfortunately, conventional screening techniques are still restricted as they either provide insuffi-
cient resolution and/or soft-tissue contrast. For this reason, X-ray phase contrast has been investigated
in recent years, potentially leading to higher soft-tissue contrast while still retaining the ability to image
at high spatial resolution. X-ray grating interferometry (GI) is a phase contrast technique that has been
extensively studied as it meets the requirements for clinical compatibility. Several ex-vivo mastectomies
studies have been performed which demonstrated the advantages that GI can bring to mammography. To
make the system ready for clinical use, a grating interferometer has been installed in a Philips Microdose
mammography system at the University Hospital Zurich and is ready for the first in-vivo studies. In 2D
the GI system is only capable of outputting the differential phase contrast (DPC) image. To get the
clinically relevant phase contrast information, the DPC signal has to be integrated in the direction of
the phase stepping. This integration step is challenging due to intrinsic noise in the DPC image which
leads to severe blurring and stripe artefacts. In order to obtain high-quality phase contrast images, the
DPC signal has to be nearly perfectly denoised. In this work we propose a data-driven denoising algo-
rithm, which tries to cope with the high intrinsic noise amplitudes arising in a clinical GI system for
the DPC channel. In particular, we trained an in-house developed deep learning algorithm – developed
for Grating Interferometry Breast Computed Tomography (GI-BCT) called Interpretable NonexpanSIve
Data-Efficient network (INSIDEnet) –, and trained it on a simulated DPC breast projections dataset,
while also adding a Bayesian perspective on to it to model the uncertainty. Furthermore, we combined
the method with ideas from state-of-the-art deep learning architectures, namely the U-Net, which we call
Collaborative-Pyramid Bayesian Neural Network (CP-BNN). We trained the models in a supervised and
unsupervised fashion by exploiting known statistical noise properties of the GI-setup, and showed that
the proposed algorithms outperform traditional state-of-the-art filters and are competitive with sophis-
ticated deep-learning algorithms, while simultaneously providing information of the uncertainty in the
predictions. As a final step, we evaluated our models on real-world experimental data acquired by the
Philips Microdose system. We found that the deep-learning models can denoise simulated as well as real
images efficiently and enable the retrieval of phase contrast images with less stripe artefacts and more
details than without denoising.
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1 Introduction

Receiving a breast cancer diagnosis is the reality for nearly 2.2 million women each year. It is the most
prevalent malignancy in women, which is why early detection of the disease is imperative [1] [2]. This
has led to the introduction of many screening programs – the most widespread screening and evaluation
technique nowadays being mammography. It is able to significantly reduce the number of deaths caused
by breast cancer due to early detection [3]. Unfortunately, mammography is restricted by its limited
sensitivity and specificity, resulting in both overlooked tumors and psychological distress [3]. The causes
for these limitations range from low soft tissue contrast to the inability to generate fully three-dimensional
data [4]. Alternative methods such as digital tomosynthesis (DBT) have shown improvements to the
screening performance, but, as with traditional mammography, are limited in extremely dense breasts
[4].

As a consequence, an ever increasing effort is being made by the research community to exploit X-ray
phase contrast imaging, which can potentially lead to orders of magnitude higher soft-tissue contrast
compared to conventional absorption-based imaging, but still retains the ability to generated images at
high spatial resolutions [5]. X-ray grating interferometry (GI) not only measures the beam attenuation but
is also capable of analyzing the beam refraction induced by the sample as well as the sample scattering
leading to the phase contrast and dark-field image, with the latter having potential benefits for non-
invasive classification and detection of microcalcifications and breast lesions [6] [7]. Several mastectomy
studies have been conducted in the past to see the contribution that GI can make to mammography [7] [8].
They demonstrated that the differential phase contrast and dark-field signal did provide complementary
information to the conventional attenuation signal. It was shown that the phase contrast mammography
could improve image quality, sharpness, lesion delineation and microcalcification visibility, as well as
clearer representation of the breast anatomy. To translate the idea of a GI-setup to clinical practice, a
2D grating interferometry setup has been integrated into an existing Philips mammography scanner [9].
The scanner is installed at the University Hospital Zurich and will be tested in first in-vivo trials soon.

To obtain the clinically interesting phase contrast (PC) signal, the collected differential phase contrast
(DPC) signal from the GI has to be integrated along the direction of phase stepping. Unfortunately, this
integration step has demonstrated to be very challenging to perform. In fact, due to the instrinsic noise in
the DPC-channel, which occurs from detector quantum noise and phase jittering [10], even low amounts
of noise can lead to severe artefacts in the retrieved phase. These manifest themselves as blurring or –
more prominently – stripe artefacts along the integration direction in the phase contrast image. Thus,
an almost perfect denoising must take place in order for the integration to be successful.

Traditional state-of-the-art denoising algorithms, such as non-local means (NLM) [11] or the block
matching and 3D (BM3D) filter [12], form reliable and stable pipelines when applied to images with little
noise. However, their performance deteriorates drastically when being confronted with images with lower
quality. These algorithms were usually built to deal with noise arising from the same distribution and are
thus not fit to deal with heteroscedastic noise as in the DPC-channel. As a result of the increasing use of
deep learning in image analysis and computer vision tasks, denoising deep neural networks (DNN) have
emerged in the field of biomedical imaging [13–17]. These models have shown impressive denoising results
by implicitly learning a prior from the data provided during training. Consequently, these models are
heavily dependent on the data given. Furthermore, due to the concatenation of non-linear calculations,
they lose interpretability. Additionally, traditional deep learning models are prone to overfitting, leading
to lower generalization capabilities. They also tend to be overconfident about their prediction, which
can become especially problematic in areas such as medical diagnostics or autonomous driving [18]. As a
consequence, there have been several approaches to mitigate this problem, especially via the introduction
of stochastic neural networks – namely Bayesian neural networks – which provide both the prediction as
well as the uncertainty in the prediction. On the basis of this development, a subgroup of our TOMCAT
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team has implemented its own deterministic denoising network called "Interpretable NonexpanSIve Data-
Efficient network" (INSIDEnet) for the in-house built grating-interferometer breast computer tomography
(GI-BCT) with promising results on simulated data [19]. Their method deviates from classical deep
learning methods in that they try to combine the interpretability of classical filters and the flexibility
of data-driven models by using transform learning and collaborative filters and adapting them to take
advantage of supervised learning and multiscale processing. Following their work, we propose to translate
their method to our system and implement a probabilistic perspective over the parameters of the model,
allowing us to model the uncertainty and generalize better to the data at hand. We call this method
"probabilistic-INSIDEnet" (P-INSIDEnet). Being inspired by the success of the state-of-the-art deep
neural network architecture – namely the U-Net [20] – we implemented a combination of both algorithms,
leading to a second model called "Collaborative-Pyramid Bayesian Neural Network" (CP-BNN). Due to
the lack of available real data on the Philips system, we simulated medio lateral oblique (MLO) breast
projections and used them to train our own denoising pipeline in both a supervised and unsupervised
way. The reason for unsupervised training lies in matching the real-world scenario of missing clean ground
truth data.

The goal of this thesis is to generate artefact free phase contrast (PC) images from noisy DPC images.
We first demonstrate the demonising performance of both our models – P-INSIDEnet and CP-BNN –
compared to the deterministic INSIDEnet model, the U-Net model, and the BM3D algorithm on our
simulated DPC breast projections. We show that the data-driven model accomplishes better results than
the traditional, non-learning based model. An even superior performance is achieved by the CP-BNN
when compared to the state-of-the-art U-Net model, when evaluated on our simulated data. Although
these results already show high potential, neither one is able to completely eliminate all noise. Thus,
artefacts such as stripes were still visible in the integrated PC images, which required the use of dedicated
destriping algorithms to remove residual artefacts. We found that the „wavelet fourier filter“ [21] is a great
match for this purpose. Eventually, we run our trained models over a set of real collected DPC-images
on the Philips system.
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2 Background

In comparison to conventional X-ray techniques, phase-contrast X-ray imaging allows for the measurement
of two additional physical properties: refraction and scattering. The refraction induced by the sample
provides the so-called phase contrast. The phase contrast has the potential to better distinguish between
different soft tissues. Meanwhile, the scattering information leads to the so-called dark-field (DF) signal,
which allows for the detection of strong scattering structures such as microcalcification crystals [22]. The
interaction of a X-ray beam with matter can be described via the refractive index, which is defined as:

n = 1− δ − iβ (1)

where δ is the real part of the index of refraction which causes changes in the wavefront’s phase and β
is responsible for the absorption of the X-rays in the medium [23]. The phase shift and absorption can
be explained using simple wave equations. The general form of a wave propagating in z-direction (i.e.
k = (0, 0, k)) in vacuum can be written as:

ψv = A exp (i(kz − ωt)) (2)

A refers to the wave’s amplitude, ω the anglular frequency, and t to the time. If this wave now propagates
in a medium, the resulting wave becomes as follows:

ψ = A exp (i(nkz − ωt)) = ψv exp (−iδkz) exp (−βkz) (3)

We can see that the medium induces a phase shift as well as attenuates the wave, with the effects being
dependent on δ and β, respectively. In conventional X-ray imaging, the phase shift information cannot be
detected since only the intensity of the attenuated X-ray beam is measured. At energies higher than 10keV
and for soft-tissues which are made up of light elements, δ is typically three orders of magnitude larger
than β [23]. With the goal of measuring the phase shift, multiple methods have been developed – the most
common ones being crystal interferometry [24], diffraction-enhanced imaging [25], propagation based [26],
and grating interferometry [27]. While all methods can be used with a synchrotron light source, only the
latter holds the prerequisites for clinical applications, such as mechanical robustness, a large field-of-view
(FOV), limited exposure time, and clinically acceptable dosages while keeping a sufficiently high image
quality. Importantly, it only requires moderate spatial coherence and monochromaticity, allowing for it
to be used with conventional X-ray tubes [27].

2.1 Grating Interferometry

Grating Interferometry (GI) is a method which encodes phase shifts induced by a sample into intensity
modulated signals. In the Talbot-Lau configuration, three gratings are placed between the source and
the detector, where one grating is placed directly after the source (G0), the next directly after the sample
(G1) and the last one in front of the detector (G2)1 [29] (Fig. 1 left). In the case of a conventional
X-ray source, the source itself does not provide a sufficiently high spatial coherence for the GI-rationale.
Therefore, by using an absorbing grating (G0) placed in front of the source, we can create an array of
individually coherent sources, which are, however, mutually incoherent to each other. Yet, if the period
of G0 fulfills the condition

p0 =
L

d
p2 (4)

where L is the source-to-G1 distance, d the G1-G2 distance and p2 the G2 period length, then the
interference patterns of the neighbouring line sources shift by one period exactly. As a consequence –

1Variations exist where G1 is placed directly before the sample [28].
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Figure 1: This figure shows the schematic of GI-setup in a mammography scanner (left) and the phase
stepping curve with (red) and without (blue) a sample (right). The differential phase signal can be
obtained by using the relative phase as a reference. The absorption signal is retrieved from the average
of each curve.

since all line sources produce the same interference pattern – spatial coherence is preserved [22]. The
grating after the sample (G1) splits the beam, which results in the incoming beam being divided into
several diffraction orders. The coherence of the beam then leads to constructive interference of the
diffraction orders at distance d – usually where G2 is. Placing a sample in the beam then results in
a distortion of the interference pattern. This distortion is explained by the refraction of the medium,
which shifts the interference pattern laterally by ∆x. From this shift, the refraction angle α can be
deduced since the lateral shift is proportional to the refraction angle (i.e. ∆x ≈ α)[22]. However, these
interference fringes are usually too small to be resolved by a conventional X-ray detector. Thus, a second
line grating (G2) of purely absorbing structure is used to analyze the interference pattern, which arises
as a consequence of the fractional Talbot effect. Usually, this is achieved by laterally stepping one of
the gratings, which translates the lateral offset of the interference pattern into a change of intensity at
the detector [30]. This collected pixel-wise intensity signal is called the phase stepping curve (PSC). By
combining the PSC with and without sample, it is possible to retrieve the absorption, scattering, and
differential phase contrast (DPC) signal (see Fig. 1 right). From this the refraction angle can be deduced
which is proportional to the DPC signal ∂φ∂x multiplied by a geometric conversion factor, which depends
on the G1-G2 distance d and the G2 period length p2 [31]:

α =
p2

2πd

∂φ

∂x
(5)

2.2 Noise Propagation in Grating Interferometer

The noise behaviour in grating-based X-ray imaging in the attenuation, DPC, and dark-field channel have
been analyzed in [10] and [32]. The former found the two main noise sources to be detector quantum
noise and phase-stepping jitter noise. In this work, we neglect the phase-stepping jitter noise, since we
do not simulate mechanical vibrations of the gratings and the piezo-motor (see chapter 3.1). The focus
lies on the detector quantum noise. [10] assume that the detector quantum noise variance is directly
proportional to the mean intensity I:

σ2
I = f1I (6)

Here, the slope f1 is linked to the signal and noise transfer of incoming X-ray photons to the output
in arbitrary digital units. It has to be considered that due to beam hardening of the X-ray spectrum
when passing through an object, f1 is generally different for the reference measurement fr1 and for the
sample measurement fs1 . The uncertainty σI then translates into the errors of the individual images –
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transmission (T), differential phase (DPC), and dark-field (V) by using the error propagation formula:

(σT
T

)2

=
fr1
Nar0

(
1 +

fs1
Tfr1

)
(7)

σ2
DPC =

fr1
2π2νr2Nar0

(
1 +

fs1
fr1TV

2

)
(8)(σV

V

)2

=
fr1

νr2Nar0

[
νr2
(

1 +
fs1
fr1T

)
+ 2

(
1 +

fs1
fr1TV

2

)]
(9)

where we define:

T: Mean transmission signal
V: Mean dark-field signal
ar0: Mean intensity of the reference measurement
N: Number of phase steps acquired over one period
νr: Visibility of reference measurement
fr1 / fs1 : Slope of Eq. (6) for reference/sample measurement

The slopes fr1 and fs1 have to be investigated on the individual settings and detectors. However, for a
photon-counting detector, the Poisson noise model applies and we can assume f1 to be 1.

To a similar conclusion also came [32]. They formulated the problem as a least-squares fitting in matrix
notation and calculated the covariance matrix between the three different contrast channels (assuming
f1 = 1). The only difference in the variance of the individual images is in the DPC variance, where they
calculated it to be:

σ2
DPC =

2

Nar0ν
r2

(
1 +

1

TV 2

)
(10)

Therefore, to get from Eq. (8) to Eq. (10), we have to multiply it by 4π2, which leads to a higher
variance in their model compared to [10]. Unfortunately, we have not found a detailed derivation for this
extra term. Additionally, they found the noise in DPC to be better modelled as a Von-Mises distribution
instead of a normal Gaussian distribution [33]. Following these statistics, it becomes evident that these
images are corrupted by noise that does not allow simple filtering as it would with additive white Gaussian
noise (AWGN). This applies even more so when clinical standards have to be met due to lower mean
intensity and lower number of phase steps. Thus, more sophisticated algorithms are needed to cope with
the heteroscedastic noise intrinsic in the DPC images.

2.3 Deep Neural Networks

Deep Neural Networks (DNN) have been successfully used in a variety of fields, such as speech recognition,
natural language processing, and computer vision, providing solutions to many complex problems [34].
The goal of DNNs is to map an input x to a desired output y by a learned function f(x) = NN(x) = y.
Generally, DNNs are composed of an input layer, several hidden layers, and an output layer. The hidden
layers are usually constructed by applying a linear transformation to the previous layer, followed by a
non-linear function ϕ, also called activation function. In short, the idea of DNNs is to parametrize the
feature maps and optimize over the parameters.

l0 = x (11)

li = ϕ(Wili−1 + bi) (12)

ln = y (13)

where i is the current layer, and Wi ∈ RNi×Ni−1 and bi ∈ RN are the linear transformation matrix and
bias respectively, which depend on the dimension of the current and previous layer. Optimization of the
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parameters θ = {W1, b1, . . . ,Wn, bn} is performed by minimizing a cost-function L over some training
data D using the back-propagation algorithm [35].

θ̂ = arg min
θ

∑
x,y∈D

L(θ;y,x) (14)

From a statistical point of view, this optimization can be described as a Maximum Likelihood Estimation
(MLE). By adding a regularization term to Eq. (14), the optimization becomes a Maximum A-Posteriori
(MAP) estimation.

2.4 Convolutional Neural Networks

Convolutional neural networks (CNN) are deep learning networks for specialized applications such as
image classification, image segmentation, object recognition, and many more in the Computer Vision
domain [36][37]. They are specialized for data with grid-like structures such as images. The main
advantage of CNNs is the relatively small number of parameters compared to fully-connected multilayer
networks. Instead of each node being dependent on the entire input, the nodes are only dependent on
the inputs "close-by" (e.g. pixels in the neighborhood). Furthermore, this weight matrix is shared across
the entire image and is identical for all nodes in the layer. Thus, the number of parameters gets reduced
– thereby promoting robustness against translations in the image. Formally, (12) is modified to:

li,j = ϕ(Wi,j ∗ li−1 + bi,j) (15)

where Wi,j ∈ RK×K×Ci−1 is now a tensor dependent on the kernel size K and input channels Ci−1,
bi,j ∈ RCi−1 is the bias term depending on the output-channel size, and j ∈ {1, . . . Ci} represents the
corresponding output channel. Another advantage for image analysis is based on the fact that images
are composed of hierarchical structures, which CNNs are well suited to leverage. In the initial layers, the
CNN can discern only a small portion of the image and encodes local features such as edges or corners.
With increasing network depth, more global information is encoded since the receptive field2 increases as
well.

2.5 Bayesian Neural Networks/Bayesian Deep Learning

While DNNs perform fairly well in complex tasks, they may be overconfident when confronted with out-of-
training data. Being overconfident in its prediction becomes troublesome in situations where uncertainty
has critical consequences, such as autonomous-driving or medical diagnostics [18]. This behaviour is due
to the frequentist approach of the optimization, i.e. its goal is to optimize a loss function with the optimal
set of parameters as in Eq. (14) [38]. Usually, Stochastic Gradient Descent (SGD) [39] or variations of
it are performed to iteratively find the parameters. Bayesian Neural Networks (BNN) are a special type
of DNN where instead of calculating a point estimate for the parameters, we find a suitable probability
distribution over the model parameters:

θ ∼ P (θ | D) (16)
2The receptive field is the region in the input image that a pixel in the output feature map is affected by.
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We call (16) the posterior distribution. With this, we are now able to model uncertainty in our predictions.
To compute the posterior, we use Bayes’ Theorem:

P (θ | D) =
P (D | θ)P (θ)

P (D)
(17)

where P (D) =

∫
P (θ)

n∏
i=1

P (yi | xi, θ) dθ (18)

where P (D | θ) is called the likelihood, P (θ) the prior and P (D) the marginal likelihood or evidence of
our data, where each data point is assumed to be independent and identically distributed (i.i.d.). Usually,
calculating P (D) is impossible or intractable since we would need to evaluate the integral in Eq. (18)
over all possible model parameters, which can be prohibitively large. Therefore, different methods have
to be performed to obtain the desired parameters of the distribution. One option is to use Markov-Chain
Monte Carlo methods [38, 40–42], where the goal is to seek an approximation of P (θ | D) by sampling
from a simulated Markov Chain. Another option is to perform Variational Inference [43–45], which is the
method used in this work. The goal of variational inference is to approximate the intractable distribution
P (θ | D) by a parameterized simple one Q(θ | λ) that is "as close as possible" that we call variational
distribution. λ in Q correspond to the variational parameters which describe the new distribution. The
approximation is performed by minimizing the Kullback-Leiber (KL) Divergence between the desired
distribution and the simple one:

Q∗ ∈ arg min
Q∈Q

KL(Q||P ) (19)

where Q specifies the variational family and KL(Q||P ) defines the KL-Divergence between two distribu-
tions as:

KL(Q||P ) =

∫
q(θ) log

q(θ)

p(θ)
dθ (20)

= Eθ∼Q
[
log

q(θ)

p(θ)

]
(21)

where q and p are the probability density functions of the two distributions. Although the KL-Divergence
is seen as a distance metric between two distributions, it is not symmetric – i.e. KL(Q||P ) 6= KL(P ||Q).
Since we do not have access to the posterior distribution, we have to rewrite the KL-Divergence to gain
access to available distributions:

arg min
Q

KL(Q||P ) = arg min
q

∫
q(θ)

q(θ)
1
Z p(θ,D)

dθ (22)

= arg max
q

∫
q(θ) [log p(θ,D)− logZ − log q(θ)] dθ (23)

= arg max
q

∫
q(θ) log p(θ,D) dθ +H(q) (24)

= arg max
q

Eθ∼q(θ) [log p(θ,D)] +H(q) (25)

= arg max
q

Eθ∼q(θ) [log p(D | θ)]−KL(q||p(·)) (26)

Here, we are writing the posterior distribution as in Eq. (17), where the evidence is defined as Z. Since
Z is only a constant in Eq. (23), we can neglect it. In Eq. (24), we introduce H as the entropy of a
distribution:

H(q) = −
∫
q(θ) log q(θ) dθ (27)

9



Equations (25) and (26) are also called the "Evidence Lower Bound" (ELBO) i.e. logP (D) ≥ ELBO.
This inequality can easily be shown using Jensen’s inequality and is derived in [46]. Therefore, maximizing
the ELBO leads to a higher evidence, meaning that the marginal probability of our observed data becomes
high as well, indicating that training is on the right track. Intuitively, the optimization can be understood
in two ways: It either prefers distributions Q that maximize the expected joint data likelihood but are
also uncertain, or it prefers distributions Q that maximize the conditional data likelihood but are also
close to the prior. Therefore, our cost function over which we want to optimize is as follows:

L(λ) = Eθ∼q(·|λ) [log p(D | θ)]−KL(qλ||p(·)) (28)

Here, we introduce the variational parameters λ into the equation again, since these are our parameters we
optimize and calculate our gradients over. Unfortunately, this would mean we would need to differentiate
an expectation with respect to a distribution q, which depends on the variational parameters. To avoid
this, we can use the so called "Reparameterization Trick" [47]: Suppose we have a random variable ε ∼ φ
sampled from a base distribution and consider θ = g(ε, λ) for some invertible function g, then it holds
that q(θ | λ) = φ(ε)|∇εg(ε, λ)|−1 and Eθ∼qλ [f(θ)] = Eε∼φ[f(g(ε, λ))]. Thus, using this trick allows us to
calculate the expectation with respect to a distribution φ that does not depend on λ. Suppose we use
a Gaussian variational approximation q(θ | λ) = N (θ;µ,Σ), with our variational parameters λ = [µ,Σ]

we can reparametrize θ = Cε+ µ = g(ε, λ) such that Σ = CCT and φ(ε) = N (ε; 0, I). This allows us to
differentiate (28)

∇λL(λ) = ∇λEθ∼q(·|λ) [log p(D | θ)]−∇λKL(qλ||p(·)) (29)

= ∇C,µEε∼N (0,I) [log p(D | Cε+ µ)]−∇C,µKL(qC,µ||p(·)) (30)

where ∇C,µKL(qC,µ||p(·)) can be calculated exactly via automatic differentiation and the gradient of the
expectation can be obtained via an unbiased stochastic gradient estimate. Finally, after training we can
make predictions by calculating the approximate predictive distribution by sampling from the variational
posterior Q(· | λ)

P (y∗ | x∗, D) =

∫
P (y∗, θ | x∗, D) dθ (31)

=

∫
P (y∗ | θ, x∗)P (θ | D) dθ (32)

= Eθ∼P (·|D) [P (y∗ | x∗, θ)] (33)

≈ Eθ∼Q(·|λ) [P (y∗ | x∗, θ)] (34)

≈ 1

m

m∑
j=i

P (y∗ | x∗, θ(j)) (35)

s.t. θ(j) ∼ Q(· | λ) (36)

In short, we draw m sets of weights from the posterior and average the predictions of the network. When
we assume Gaussian likelihoods, this approximate predictive distribution becomes a mixture of Gaussians.
Using a Bayesian approach on the weights, we are now able to model the uncertainty of the model, also
called Epistemic Uncertainty. By using the individual predictions from Eq. (35) as µ(x∗, θ(j) and the
calculated mean prediction µ̄(x∗), we can compute the epistemic uncertainty:

Var [E [y | x, θ]] =
1

m

m∑
j=1

(
µ(x∗, θ(j))− µ̄(x∗)

)2

(37)
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2.6 Recent Work in Image Denoising

Obtaining high-quality images in real-life settings is challenging due to physical limitations of the record-
ing device or mechanical vibrations during acquisition, which eventually manifest themselves as random
noise in the image. Several techniques have been proposed to remove the noise and maintain as many
features as possible. Technically, image denoising is an inverse-problem where the goal is to recover a
clean image y from a noisy observation x = y + n. There are several categories of denoising algorithms
used nowadays – both internal statistics methods as well as deep learning methods. Internal statistics
methods do not need any training data and are based on hand-crafted priors. One well-known denoising
algorithm is the non-local means (NLM) [11], which predicts pixel values based on an average of selected
pixel values in the image. Block-Matching and 3D Filtering (BM3D) [12], which is also a widely used
algorithm today, tries to find repeated and similar patches in an image, group them together, and filter
them jointly after applying a suitable transformation. Unfortunately, the computational cost is quite
high. These filters provide reliable frameworks when dealing with data with relatively litte noise but
fail when confronted with low image quality. One reason is that these algorithms were mainly developed
to deal with AGWN and can thus not cope with heteroscedastic noise. Due to the progress in machine
learning, especially deep learning, many different approaches have been investigated in the area of image
denoising with impressive results. In 2008, [48] first applied CNNs in the context of image denoising,
where denoising is seen as a regression. The advantage of deep learning methods is that they implicitly
learn the prior with the data at hand. The feed-forward deep convolutional neural network (DnCNN) [13]
and the U-Net [20] are considered as state-of-the-art denoising networks. The idea of DnCNN is based on
residual learning. Instead of learning the clean image, it attempts to predict the noise in every pixel. This
allows the network to be trained for a variety of noise levels. The U-net is a fully-convolutional neural
network with a very deep encoder-decoder architecture, with symmetric skip-connections between the two
parts, making use of residual learning as well. The latter is used as comparison for our proposed method.
Although deep CNNs have shown to provide great denoising capacities, they are strongly dependent on
the training data and are therefore prone to overfitting. Furthermore, it is well-known that denoising
networks can add or remove structures, which would or would not be present in the ground-truth image,
respectively [16]. Such behaviour is undesirable in medical imaging and, in the worst case, could lead to
misdiagnosis.

Recent research has turned the focus of denoising onto unsupervised training. Usually, ground truth
images are not available – especially in medical imaging – and training the aforementioned networks thus
becomes infeasible. [14] presented a method called Noise2Noise (N2N), which uses two noisy image pairs
of the same subject to train its network. Their results are competitive with networks trained with clean
images. It is assumed that the added noise has zero-mean and therefore the mean of multiple corrupted
images of the same signal will result in the desired true signal, which is then expected to be predicted
by the network. Obtaining two noise realisations of an image is difficult – it would need a static setup
and no subject movement. Furthermore, in clinical X-ray investigations, dose requirements have to be
fulfilled, making it difficult to collect two noisy images. Therefore, [15] uses only one noisy image for
training by masking single pixel images in the input and predicting the noisy pixel value, calling their
method Noise2Void (N2V). While the idea is similar to the N2N method, they assume that the true
pixel signals are not conditionally independent from each other, while the noise is. Another unsupervised
method is the Deep Image Prior (DIP) [17]. A network is optimised for a single image by using a random
image as input and optimizing the network’s weights (and the random image). With this method, the
network successfully learns to retrieve the denoised image, while having a hard time recovering the noise.
However, training a network for each image is computationally expensive and the user has to interrupt
network training at the right time.
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3 Methods

3.1 Projection Simulations

Due to the lack of available real data, we created in-silico breast phantoms from which single projections
were obtained to simulate the standard mediolateral oblique view-projection (MLO-projections) in mam-
mography screenings. The phantoms were generated using a 3D mask of a real breast, acquired with a
breast CT scanner at the University Hospital in Zurich. With this, two binary masks were created to
simulate the skin and the whole breast. To simulate the compression of the breast, a scaling was applied
to the dimension in projection direction as well as a morphological erosion operation to deal with thicken-
ing skin generated by the scaling operation (see Appendix A Fig. 23). Eventually, the final binary masks
consisted of 400 × 1646 × 1233 voxels with a voxel size of 100 µm. To facilitate upcoming calculations
for the models, the masks were zero padded to obtain squared image dimensions in the projections (i.e.
400× 1646× 1646). The interior breast tissue was simulated using 50 randomly generated ellipsoids with
different sizes, shapes, orientation, and position, followed by a threshold to differentiate between adipose
and glandular tissue. The edges of the ellipsoids were used to create duct-like structures coming out the
glandular tissue. Additionally, to simulate high scattering areas such as microcalcifications, a maximum
of 10 randomly created balls with radii between 2 and 5 voxels were added to the preliminary phantom
created by the ellipsoids. Then we multiplied the generated phantom with the previously created bi-
nary mask. The complete phantom is then immersed into water, because when using air as background
material, the created projections showed very poor contrast. Mostly responsible for this were numerical
problems in the dynamic range. Due to the high phase difference from background to breast, the largest
part of the dynamic range is used for the differentiation of general breast and background, i.e. a very high
pixel value difference between the two. This means that small differences in intensity in the projected
breast, which consequently only take up a small part of the dynamic range, can be poorly represented
and thus allow for hardly any contrast to be visible.

For the generation of absorption and phase projections, the phantom’s distinct areas representing
adipose, glandular, microcalcifications, and skin, were assigned to realistic attenuation coefficients µ
[cm−1] and phase shift coefficients φ [cm−1]. The attenuation coefficients were obtained using the NIST X-
ray Mass attenuation database [49] and [50] for water, skin, and adipose and glandular tissue, respectively.
Similarly, for the phase shift coefficients, the decrement of the real part of the index of refraction δ was
first collected using [50] and [51]. Using the known relation φ = 2πδ/λ [31], where λ corresponds to
the X-ray wavelength matching the design energy of the used mammogram (i.e. 26keV), the phase
shift coefficients were calculated. The dark field image’s phantom was created purely empirically and
no physically meaningful values were provided. The dark field signal measures the small-angle scatter
caused by the object. This signal depends not only on the object of interest, but also on the relative
orientation, the direction of the X-rays, and the gratings. To get a physically correct projection, more
complex algorithms would be required that take the distribution of the scattering into account. In this
work, we have concentrated on conventional projection algorithms, which use forward operations that do
not consider the scattering distribution. From Eq. (10), however, we know that the DF signal has an
influence on the noise in the DPC image, thus resulting in our DPC noise modeling being less realistic if
not simulated correctly. Therefore, having more sophisticated projection algorithms would allow for better
noise simulation. Our phantom itself constituted of the edges of the ellipsoids and the microcalcifications,
where a value of 0.6 and 0.9 was assigned. This was mainly performed to highlight scattering areas in a
breast, where special focus was put on the microcalcifications.

Each of the generated phantoms (absorption, phase, dark-field) was further used to generate clean
and noisy projections. For this, we used the ASTRA Toolbox projections [52] to generate the differential
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Figure 2: Transmission, differential phase, and dark-field projections without noise. Here, only the pixel
entries of the transmission and differential phase channel correspond to physically meaningful values,
while the dark-field projection is built purely empirically. We display the transmission signal instead of
absorption as the former is the direct output of the Philips Microdose System.

phase, transmission, and dark-field image. The projections were generated as follows [31]

ϕs =
λd

p2

∂

∂x

∫
φ(x, y, z) dz (38)

T = exp

[
−
∫
µ(x, y, z) dz

]
(39)

D = exp

[
−
∫
τσ(x, y, z) dz

]
(40)

where d is the G1-G2 distance and p2 is the G2 period length chosen to match our constructed design.
Furthermore, σ corresponds to the aforementioned empirical scattering areas with either 0, 0.6, or 0.9 for
background, scattering edges, and microcalcifications respectively. τ is a scaling factor used to achieve a
dynamic range similar to images obtained in experimental settings and was empirically set to 2.6. These
obtained projections served as ground truth images.

For the generation of the noisy images, we simulated a PSC using flat-field data (intensity map I0,
visibility map V0, and phase map ϕr) from previous experiments in 2012 (see Appendix A Fig. 22),
since obtaining flat-field information from the Philips Mammogram is only possible via correct decoding
keys, which were not provided for this work. With the collected projections from the phantoms and the
flat-field data, we simulated the PSC as follows:

Is,k = I0T · [1 + V0D · cos(k + ϕr − ϕs)] (41)

where s and r stand for signal with and without sample, and k is the k-th phase step uniformly sampled
between 0 and 2π. Thus, Is,k represents the intensity value measured at the k-th phase step. Similarly,
for the background PSC:

Ir,k = I0 · [1 + V0 · cos(k + ϕr)] (42)

Next, we scaled the intensity values to achieve an average photon count of 1000, 3000 and 5000, to
simulate multiple noise levels. To simulate the detector quantum noise, we sampled from a Poisson
distribution with mean Is,k. With this, we performed simple Fourier analysis to retrieve the noisy
projections corresponding to our ground truth images. An example of a generated clean projection set is
depicted in Fig. 2.
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3.2 Developed denoising algorithms

The proposed method picks up on the work of GI-Breast CT (GI-BCT) denoising [19] and was modified
to better process the data at hand. It is a combination of multiple methods, namely collaborative filter-
ing, transform learning, multi scale processing, explicit orthogonality, Bayesian learning, and standard
convolution neural networks. The idea of collaborative denoising filtering consists of three steps: block
matching, filtering, and aggregation as explained in the background section on the BM3D algorithm. In
the block matching step, the algorithm searches for similar patches in the image and stacks them on top
of each other to create a 3D block. Searching for similar patches comes with high computational costs
and thus long denoising time. Next, the 3D blocks are transformed into another domain such as the
wavelet domain or the discrete cosine transform (DCT) domain [12], assuming that the 3D blocks can
be expressed as a linear combination of a few basis elements. Due to the similarity within and between
the 3D blocks, the transformed blocks will be highly sparse. Thus, the noise can be well separated by
performing thresholding or shrinkage of the obtained coefficients. Lastly, the blocks are transformed back
to the original domain and aggregated together to generate the final denoised image.

Collaborative filters, such as the BM3D, have a good performance when dealing with images with
low noise. However, they fail when applied to images corrupted with high noise amplitudes. In addition,
aggregation of similar patches involves long computational times, especially for large images such as those
found in mammography – they can have over 4000 pixels in each dimension. From Eq. (10) we know
that the noise in the DPC channel depends on the flats as well as the transmission and DF image, which
means that each pixel follows a different standard deviation. The noise is thus heteroscedastic, which
makes it hard to be handled by these filters, since they were designed to deal with AGWN. This applies
even more so when the uncertainties deviate strongly, where a falsely chosen parameter for the BM3D
either leads to signal loss or remaining noise.

Instead of using fixed, hand-designed operators such as the Wavelet transform or DCT, it can be more
beneficial to learn this operator with the available data. This method is called transform learning and aims
to learn a transformation matrix where the transformed data is highly sparse [53], allowing for shrinking
or thresholding operators in the transformed space – equivalent to the collaborative filtering step. [19]
uses a combination of these methods in a supervised setting combined with multiscale image processing.
For the transformation matrix an explicit orthogonality constraint has been adapted to provide high
model robustness and interpretability. Instead of the block-matching step from the collaborative filtering,
overlapping patches from the whole image are stacked on top of each other, independent of their similarity.
This dramatically increases computational time. Next, the transformation is carried out with a learnable
transformation matrix and thresholded with learnable thresholding coefficients. Furthermore, the images
are processed across four different scales to ensure noise removal across a wide frequency band.

Using the ground-work from [19], we propose a modified version of the model, adding a Bayesian
view and a convolutional network component onto it. The Bayesian view allows to model uncertainty in
the prediction, making it possible to question the prediction and see whether noise might still be in the
image. This is crucial in medical imaging where artefacts can lead to misdiagnosis.

The upcoming sections are organized as follows: We will first introduce the theory of the model in [19]
in a supervised way, while simultaneously introducing the developed Bayesian view. It is then combined
with a state-of-the-art CNN architecture. Finally, the developed method is modified to be compatible
with unsupervised training.

3.3 Probabilistic Interpretable NonexpanSIve Data-Efficient Network

Let Xn ∈ RN×N be the noisy input image and Xc ∈ RN×N the corresponding clean image, where for
simplicity we assume a quadratic image with length N . First, Xn is divided into overlapping patches
to facilitate the computational costs by using smaller transformation matrices. Here, stripe S = 2
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was empirically determined to be optimal. We denote the stacked flattened overlapping patches as
P ∈ RM×M×N

2
p , where M depends on the input image size N , patch size Np, and stride S in horizontal

and vertical direction as M =
N−Np
S + 1. This tensor is then multiplied via an Einstum sum with the

orthogonal transform matrix Q ∈ RN
2
p×N

2
p to generate the transformed patches P̂ ∈ RM×M×N

2
p

P̂ = QP (43)

Here, Q is created via the Cayley transform [54] to ensure orthogonality. In detail, let A be any skew-
symmetric matrix (i.e. AT = −A) and I the identity matrix, then the orthogonal matrix Q can be
computed as Q = (A− I)(A+ I)−1. Furthermore, a skew-symmetric matrix can in turn be constructed
by an arbitrary matrix B via A = B − BT . Thus, B is our trainable matrix, which will be transformed
into a orthogonal matrix Q.

This is where our Bayesian perspective comes into play: Let us assume our flattened matrix B̂ is
sampled from a multivariate Gaussian distribution B̂ ∼ N (µ,Σ) where µ ∈ RN

4
p and Σ = diag(σB) are

the mean and covariance matrix and σB is a vector in RN
4
p . We used a diagonal covariance matrix, since

simulating a complete covariance matrix would dramatically increase the computational burden of our
system. It is important to mention here that this leads to underestimation of the uncertainty in the
model, which has to be taken into account when evaluating the images. Thus, our trainable parameters
were the mean µ and covariance vector σB of the distribution. We approximate the real intractable
posterior distribution P (B̂ | D) with our variational posterior Q(B̂ | D,λ) constructed as a Gaussian
multivariate. To allow for efficient gradient calculation and sampling, we rely on the reparametrization
trick:

B̂ = µ+ ε� σB (44)

where � denotes the element-wise multiplication and ε ∼ N (0, I). Finally, the vector B̂ has to be
reshaped to a matrix B with size N2

p ×N2
p to be used as our input matrix for the Cayley transform.

After transformation, the individual entries are filtered using an approximation of the hard threshold-
ing on the coefficient magnitudes. Here, a steep sigmoid function is used to allow the threshold parameter
to be trainable.

T =
1

1 + exp
(
−
(
|P̂ | − Γ

)
· ρ
) (45)

ρ is the steepness of the sigmoid function and was set to 100 to approximate the box function sufficiently
well. Furthermore, the threshold parameter Γ was initially set to 10−6 to ensure that all coefficients
are kept at the start of the training. The transformed patches are then multiplied with T element-by-
element to represent the filtered coefficients of our image and finally transformed back to the original
image domain via an Einstein sum to generate the filtered image.

PD = QT [P̂ � T ] (46)

The described steps are then repeated n times, representing an iterative denoising algorithm where each
transform domain thresholding step improves the quality of the image. It can also be seen as a layer
in a CNN. Importantly, however, this operation follows a clear mathematical reasoning whilst in CNNs,
the layer represents an unconstrained forward operator followed by a non-linear operation. Eventually,
the filtered patches are put back to their original position to generate the denoised image XD. To avoid
border artefacts, we used Tukey windows [55].
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3.3.1 Image decomposition and reconstruction

To capture a wider noise frequency range, we denoise the images at multiple scales. After going through
the transform learning layer, we downsample the output image XTL1 ∈ RN×N×2 by first convolving it
with a Gaussian kernel of radius r = 3 and σ = 0.667 to blur the image and next apply an average
pooling to downsample it by a factor of 2. σ is purposefully chosen so that 99% of the downsampled
area is covered by the kernel with r = 3 representing a sufficiently large coverage. The downsampled
image is then again fed to a collaborative filtering layer and the process is repeated m times, generating
m sequentially denoised images XTLi ∈ R

N

2i−1× N

2i−1×2 for i ∈ {1, . . . ,m}. It is important to note that
the complete pipeline happens sequentially. Denoising it in parallel would be possible as well, however,
this would lead to redundancies since we would denoise the same frequency at multiple scales.

After denoising at multiple scales m, the denoised images XTLi are used to reconstruct the predicted
image. For this [19] lends its ideas from [56]. At each scalem, the low- Lm and high-frequency components
Hm are separated. The low-frequency component Lm is obtained in a similar fashion as the downsampling
operation from before – smoothing and downsampling, which will remove the high-frequency components
– followed by upsampling and smoothing. The high frequencies, on the other hand, are obtained by
subtracting the low frequencies from the image. By combining the low frequencies from the lower scale
and the higher frequencies from the upper scale, we can assemble our denoised imageXm,denoised. Starting
at the lowest two scales and continuing it iteratively until the top generates our final denoised image
Xdenoised.

3.3.2 Loss function and optimization

Due to the Bayesian perspective on the weights of our model, we resorted to our variational inference loss
in Eq. (28) and used the reparameterization trick to be able to calculate the gradient. We modelled the
likelihood of our data p(D | θ) as a Gaussian distribution, where θ = {µL1 , σL1 ,ΓL1 . . .ΓLN } represents
the trainable parameters in the model. Modifying the cost function in Eq. (28) from a maximum to a
minimization problem and inserting the Gaussian distribution for the likelihood results in:

L(λ) = −Eθ∼q(·|λ) [log p(y | x, θ)] +KL(qλ||p(·)) (47)

= −Eε∼N (0,I) [log p(y | x,Cε+ µ)] +KL(qλ||p(·)) (48)

≈ − 1

m

m∑
i=1

log p(y | x,Cεi + µ) +KL(qλ||p(·) (49)

=
1

m

m∑
i=1

||f(x, θi)− y||22 +KL(qλ||p(·) (50)

where again we used Monte Carlo sampling to approximate the expected value. Here, f(x, θi) represents
the neural network with the input being the noisy image x and the sampled parameteres θi. Although in
the equations the reparameterization trick seems to only be applied for one layer, it counts for every single
layer where a variational distribution is used. Only the B matrices are modelled as distributions, while
the threshold parameters Γ are modelled as point masses, – i.e. deterministic. In general, the Γ could also
be modelled as a distribution, yet we were not able to generate converging and satisfactory results with
it. Intuitively, every single forward pass through the model constitutes of different parameters and only
the means and standard deviations – next to the thresholds Γ – are optimized. For the KL-Divergence
term we assumed a Gaussian distribution on the prior of the weights p(·) = N (µP , σ

2
P I). Usually, it is

not possible to know the distribution of the weights a priori, which has become a challenging problem
and active area of research [57] [58]. We draw on the work from [59], where the idea is to use a pretrained
deterministic model as prior knowledge for the prior distribution. For this, we trained the INSIDEnet
model from [19] until convergence on our data and used the optimized weights as the mean in our prior
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distribution µP . Still, the uncertainty σP in our prior remains a hyperparameter, which has to be tuned
by the user. Since we initially modelled our variational family as a multivariate Gaussian distribution
with diagonal covariance matrix, we could calculate the KL-loss per transformation layer in a closed form
[60]:

KL(qλ||p(·)) =

N2
p∑

i=1

log
σP
σi

+
1

2σ2
P

[
(µi − µP,i)2

+ σ2
i − σP

]
(51)

µi and σi are the entries of the vectors containing the mean and standard deviation of the corresponding
variational family in a layer, µP the weights from the pretrained model, and σP is a single scalar value
representing the standard deviation from the prior weight distribution. Intuitively, putting a prior on
the weights is equivalent to a regularization, ensuring that the weights do not deviate too much from the
prior.

For the optimization, we relied on the Adam optimization algorithm [61] and used a batch size of 1
to generate the unbiased stochastic gradient estimates. Finally, inserting Eq. (51) into Eq. (50) and
multiplying a scalar factor to the KL-loss, we got our final loss for a single training step as:

L(α, λ, x, y) =
1

N
||f(x, λ)− y||22 +

τ

B
KL(qλ||p(α)) (52)

With α = {µP , σP } representing the prior parameters. Here, we changed the L2 loss into the MSE and
divide the KL-loss by the number of batches/training samples, to ensure that the KL-Divergence is only
calculated over the complete dataset once per epoch. τ is a regularization parameter as it is known from
Ridge regression [35]. Our loss is optimized over the variational parameters λ and threshold parameters
Γ. We trained the network until convergence, i.e. until the loss on the validation set did not improve
anymore.

3.4 Collaborative Pyramid Bayesian Neural Network CP-BNN

Continuing on the work from the previous chapter, we implemented a combination of collaborative trans-
form filtering and standard convolution layers. While the INSIDEnet model allows to simultaneously
denoise absorption and phase, it is not possible to fuse both informations into one image. Therefore,
using convolutional layers after the collaborative filtering, we could fuse both channels and give the DPC
channel more weight. The final architecture of the model is depicted in Fig. (3). The model takes two
images as input – DPC image and absorption image Xn ∈ RN×N×2. These images are then fed into the
collaborative filtering layers. To capture noise at lower frequencies, we applied the same rationale for the
downsampling as in the INSIDEnet described in chapter 3.3.1. As seen in Fig. (3), the described pipeline
resembles the encoder in the U-Net architecture, while providing interpretability in each single step of
the encoder.

At each scale, the denoised outputs XTLi that the collaborative filters produce are additionally fed
to a convolution block. These blocks consist of two 2D deterministic convolution layers followed by a
2D variational layer – where the convolution kernel is sampled from a trained distribution following the
rationale from chapter 2.5 – and a 2D-convolution layer at the end. The idea, on the one hand, was to fuse
the informations from both channels and on the other to resemble the skip-connections from the U-Net
at lower scales. Next, the downscaled information has to be brought up to the original dimensions. This
happens via an upsampling layer, where first the images are upsampled to twice the size in dimension
using a bilinear interpolation and afterwards blurred again as in the downsampling layer. This information
is then fed to a concatenation layer, where the information from the higher scale is concatenated with the
upsampled information from the lower scale. This resembles the composition of low and high frequencies
components from chapter 3.3.1. However, here, the operation does not have any constraints and we allow
the network to learn the fusion operation from lower to upper scales. The images are then again fed
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Figure 3: Overview of the collaborative pyramid Bayesian neural network denoising algorithm. The
input image is first denoised sequentially at every scale using the transform learning filter. Afterwards,
the images at lower scales are upsampled and concatenated to fuse information from high frequencies
and low frequencies implicitly learned by the convolutional layers itself. With the variational inference
layer, the epistemic uncertainty of the model can be analysed, which allows to see whether more careful
consideration has to be given in the output image.

to a convolution block. This procedure is repeated until reaching the original image dimensions where
eventually the output of the last convolutional layer is the predicted image.

The model was trained on a loss function consisting of three terms splitted across different sections
of the model. We used the mean squared error (MSE) on the full-resolution image as well as on the
lower scale layers after the collaborative filtering. The latter ensured that the lower scaled collaborative
filtering layers learn the transformation matrix properly and put weight on early denoising effects inside
the model. It acted as a regularization on the transformation matrix and prevented from learning the
identity matrix, which may happen due to vanishing gradients or imbalances in the role distribution of
the network, which could give more value to the expressiveness of the convolutional layers. Training the
model without deep supervision resulted in a similar outcome. However, when analyzing the encoder, we
found that the filtering was more adapted to the kernels of the convolutional layer, while our goal was to
keep the transformation matrices similar to those in the INSIDEnet model. Next, due to the Bayesian
view on some convolutional layers, the KL-Divergence had to be considered between the trained posterior
and the prior as described in Eq. (28). Finally, our loss function was as follows:

L =
1

N2
||Xdenoised −Xclean||22 + ρ

3∑
i=2

2(i+1)

N2
||XTLi −Xcleani ||22 +

τ

B
KL(qλ||p(·)) (53)

We used the Adam optimization algorithm with an exponentially decaying learning rate and trained the
model with a batch size of 1 until convergence.
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3.5 Unsupervised denoising

Most of the work presented in the literature for deep learning denoising focuses on supervised learning,
where clean and noisy images are available. Yet, obtaining those image pairs in is generally difficult and
becomes even harder in medical imaging, where dose requirements have to be met. Additionally, most
networks are trained with AWGN where a single standard deviation is used for the noise generation.
However, this simple aspect is not valid in medical images, especially in DPC images. Thus, we focused
on trying to train the network with only noisy images. For this, we drew our inspiration from [62], where
the idea is to add simulated noise to the already noisy image, which is statistically close to the inherent
noise of the image itself. They called this method Noise as Clean (NAC).

Training a supervised network fθ is equivalent to minimizing an empirical loss function L over the
parameters θ describing the network. If we now state that the probability that the clean and noisy image
pairs (yi, xi) occur with probability p(yi, xi) = p(xi)p(yi | xi), the optimization can be written as:

θ∗ = arg min
θ

∑
i

p(yi, xi)L(fθ(yi), xi) (54)

= arg min
θ

∑
i

p(xi)p(yi | xi)L(fθ(yi), xi) (55)

= arg min
θ

Ex
[
Ey|x [L(fθ(y), x)]

]
(56)

Next, we assume that the mean and the variance of the image intensity is much higher than that of the
noise. i.e. E[x]� E[no] and Var[x]� Var[no]. By assuming additive noise (y = x+ no), the expectation
of the corrupted image should have a similar value as the clean image.

E[y] = E[x+ no] = E[x] + E[no] ≈ E[x] (57)

Now, we add simulated noise ns, which has similar statistics as the observed noise no – i.e. E[ns] ≈ E[no]

and Var[ns] ≈ Var[no] – to the observed image y, which generates a new image z = y + ns. From Eq.
(57) it holds that E[z] ≈ E[y]. By the Law of Total Expectation [63], it follows:

Ey [Ez [z | y]] = E[z] ≈ E[y] = Ex [Ey [y | x]] (58)

With this as well as Eq. (56), we see that the optimal parameters change little when adding similar noise
to the corrupted image, making it possible to train a network with only noisy observations, if the noise
statistics are known.

θ∗ = arg min
θ

Ex
[
Ey|x [L(fθ(y), x)]

]
(59)

≈ arg min
θ

Ey
[
Ez|y [L(fθ(z), y)]

]
(60)

Fortunately, the noise propagation in grating interferometers have been studied in previous years,
which allowed us to adapt the NAC rationale from before to our data and methods. With Eq. (7) - (10),
we were able to generate noise realisations similar to the ones inherent in the simulated image. Since
we only used the absorption and differential phase channel, we only simulated noise for these channels.
To check whether our simulations cope with the theory described in [10] and [32], we calculated the
standard deviations according to Eq. (7) - (10), and sampled a new noisy image z from it, and compared
it numerically with the original noisy image y. We performed this by comparing the MSE from the
clean to the original noisy image and the MSE from the simulated noisy image to the original corrupted
image. The simulated noise for the absorption channel was sampled from a Gaussian distribution with
mean 0 and pixel wise variance according to Eq. (7) and added to the corrupted image yT to generate
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Figure 4: The NAC framework takes as inputs the noisy images from all three channels {yT , yDPC , yDF }
as well as the flat images from the mean intensity and visibility {ar0, vr}. With these, uncertainties in
the images can be approximatively calculated and a new noisy image can be sampled. Eventually, the
network is trained in a supervised fashion by using the original noisy images as target and the simulated
noisy images as input

zT = yT + nT with nT ∼ N (0, σ2
T ). Noise distribution in X-ray absorption images can be modelled with

a Poisson-Gaussian distribution [64]. To facilitate our calculations, we sampled our synthetic noise from
a Gaussian distribution. For the differential phase, we performed the same procedure but sampled the
new image from a Von-Mises distribution with mean the original corrupted image yDPC and a measure of
concentration κ = 1/σ2

DPC , leading to zDPC ∼ VM(yDPC , κ). Sampling from a Von-Mises distribution
leads to an image in [−π, π], so no phase wrapping can occur. We found that the sampled noise using
Eq. (10) was more in agreement – in terms of MSE – with our generated simulations than Eq. (8).

The stated uncertainties are all calculated using the clean signal of every channel. However, in
practice it is not possible to gather noise-free images. Therefore, we resorted to the noisy images for
the calculations of the uncertainties. Yet, due to the disagreement in statistics coming from using the
noisy signals instead of the clean, the user may or may not tune the strength of the uncertainties with a
constant factor, such that the sampled uncertainties are more in agreement with the inherent noise of our
simulations. This becomes even more important when dealing with relatively higher noise amplitudes,
occuring when using a lower average photon count. With the newly generated noisy images, we could
then train the model in the standard supervised fashion as stated in Eq. (53). The general pipeline is
depicted in Fig. 4.

3.6 DPC integration and stripe noise removal

To collect the phase contrast image, we needed to integrate Eq. (38) in the direction perpendicular to
the grating lines. An integration can be seen as a low-pass filter since the operation in the image domain
is a division by the spatial frequency in the Fourier domain [65]. Hence, the image gets smoothened
in the integration direction, whereas perpendicular to it, high frequencies remain unfiltered and lead to
amplified noise, which results in strong stripe artefacts along the direction of integration. The intuition
for their existence can also be understood from a purely statistical view, which we demonstrate here
on AWGN. Let X ∈ RN×N be a purely noisy image, where each pixel is sampled independently and
identically distributed (i.i.d.) from a Gaussian distribution N (0, σ2). For our analysis, we create, a
purely noisy image with dimensions 2000 × 2000 sampled from a Gaussian distribution with µ = 0 and
σ = 0.3 as depicted in Fig. 5 (left). Without loss of generality we integrate our image in y-direction
using a Riemann-sum with constant step-size – a different step-size would only result in different scaling.
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Figure 5: The left image depicts pure noise sampled from a Gaussian distribution with µ = 0 and
σ = 0.3. On the right is the integrated image with the vertical stripe artefacts. In red are the analysed
rows corresponding to the histograms in Fig. 6

Therefore, the integrated image I at position (xi, yj) is computed as follows:

I(xi, yj) =

j∑
k=1

X(xi, yk) (61)

Since every pixel is i.i.d, we fix a column i in the noisy image and only do our analysis of the stripes
over this column. For simplicity, we will omit the second dimension and write our noisy image as X(yj).
When looking at the integrated image in Fig. 5 (right), it can be seen that the stripes become stronger
along the Riemann-sum direction. This can be explained via simple statistical calculations. As our pixels
are i.i.d., we can calculate the expectation value and variance at a depth j as follows:

E [I(yj)] = E

[
j∑

k=1

X(yk)

]
=

j∑
k=1

E [X(yk)] = 0 (62)

Var [I(yj)] = Var

[
j∑

k=1

X(yk)

]
=

j∑
k=1

Var [X(yk)] =

j∑
k=1

σ2 = jσ2 (63)

In Eq. (63), we use the fact that our pixels are i.i.d. such that the covariance terms Cov(X(yi), X(yl)) = 0

for ∀i 6= l. Therefore, we can sum up the individual variances. We expect the intensities of the stripes to
be zero, however, the intensity range becomes larger, due to the increasing variance. Thus, we see stripes
with larger absolute intensity values. After integration we choose three rows and analyse their intensity
distribution. If we now plot the histogram of the intensity values of the three rows of Fig 5 (right) and
fit a Gaussian curve on the data provided, the values match our calculation – with small errors (see Fig.
6). However, when dealing with heteroscedastic noise the rows will not follow a Gaussian distribution
anymore, since every single entry in the row has a different variance. This complicates both the analysis
as well as the stripe removal.

3.6.1 Combined Wavelet Fourier Filtering

Knowing the origin of the stripes demonstrates how important denoising in the DPC channel is. Little
noise already results in a striped integrated image. To compute stripe-free images would require a
completely noise free DPC image, which, depending on the noise level, can be difficult to achieve. Thus,
we proposed to use our denoising networks as a first preprocessing step to collect integrated noisy images
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Figure 6: Normalized intensity histogram of each row and the fitted Gaussian probability density function
with the fitted and theoretical parameters. Note, that the scales are different in each histogram, which
dependent on the calculated and fitted standard deviation depicted in every image.

with significantly less stripes and – even more crucial – more remaining image features compared to
integrating our noisy images directly. To tackle the problem of stripe-artefacts, we used a dedicated
algorithm called combined wavelet Fourier filter (WFF) [21]. The WFF was mainly designed to deal with
ideal stripes, i.e. vertical stripes that have a constant offset of arbitrary width over the whole image.
Yet, the occurrence of ideal stripes in integrated DPC images is unlikely. Due to the randomness and
the heteroscedasticity of the noise, the generated stripes resemble more fluctuating stripes, monotonic
increasing / decreasing stripes, or even partial stripes, where they are only visible at some parts of the
image. We could nonetheless show that the WFF is also able to remove imperfect stripes, if the right
parameters are chosen.

In Fourier and numerical wavelet analysis, a discrete signal f(t) can be approximated by a set of basis
functions Γn(t), n ∈ {1, . . . , N}, so that f(t) ≈

∑
n anΓn(t), where these basis functions are orthogonal

to each other. Decomposing a signal into orthogonal basis functions allows to group and modify specific
structural properties of the image. A single step of 2D-discrete wavelet transformation decomposes an
image f(x, y) into a set of four different coefficient bands by letting the image pass successively through
a series of filters in horizontal and vertical direction. It splits the signal using high-pass (H) and low-pass
filter (L) into high frequency and low frequency components [21]. The high frequency components are
called the detail coefficients and are represented as ch, cv, cd, the horizontal, vertical, and diagonal detail
bands, respectively, created as HL, LH, and HH. The low frequency components are the approximation
coefficients a and generated by passing them through both low-pass filters in either direction, i.e. LL. In
dyadic, decimated wavelet transforms the split into low and high frequency parts leads to a signal with
half the coefficients. To increase the frequency resolution, the decomposition is repeated N times over
the approximation coefficients. Thus, the 2D wavelet representation of a signal is a set of coefficients:

WΨ(x, y) = {aL,m,n, ch,l,m,n, cv,l,m,n, cd,l,m,n}, l ∈ {1, . . . , N} (64)

WΨ represents the wavelet decomposition with wavelet set Ψ and m,n are the entries/coordinates in the
coefficients at level l.

Due to the coefficient partitioning, when the wavelet transformation is applied to the striped images,
the information from the stripes is exclusively contained in the vertical coefficients cv,l,m,n and the
final approximation coefficient from the low frequency band aL,m,n. Since we fractionate the signal
dyadically, the frequency band of each successive vertical detail band consists of dyadically decreasing
focal frequencies. Hence, the stripe information at each level is dependent on the spatial frequency
spectrum of the stripes in horizontal direction, which is directly linked with its width. Therefore, the
highest decomposition N is directly correlated with the maximum expected stripe width.

Having the information from the stripes now stored exclusively in the vertical detail band, we can
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now use the FFT to filter them. When performing the FFT F (x̂, ŷ) on an ideal striped image f(x, y)

the complete frequency information of them is stored on the x̂-axis – i.e. δ(ŷ) Dirac delta functions at
all x̂ – and no frequency components in ŷ 6= 0 stem from the stripes. Consequently, by eliminating the
information stored on the x̂-axis, the stripes would be erased in the back-transformed image. However,
ideal stripes are unlikely. Thus, a simple approach would be to apply a bandpass filter in the Fourier
domain around ŷ ≈ 0. This can be done with a Gaussian function:

g(x̂, ŷ) = 1− exp(− ŷ2

2σ2
) (65)

The width of the filter in ŷ-direction is determined by the standard deviation σ. It takes the expected
deviation from the vertical of the stripes in x-direction into account and is selected accordingly. Thus,
multiplying the Gaussian filter with the vertical detail coefficients will eliminate the stripes stored in it.
Filtering the coefficients on every level N will generate our filtered wavelet coefficients c̃v,l,m,n, which can
then be used to reconstruct the final destriped image (see. Alg. 1).

f̃(x, y) =W−1
Ψ (C) where C = {aL,m,n, ch,l,m,n, c̃v,l,m,n, cd,l,m,n}, l ∈ {1, . . . , N} (66)

Algorithm 1 Wavelet-FFT Filter
Input: Noisy Image X, σ, wavelet basis Ψ, Number of levels N
Output: Destriped image X̃

for n← {1, . . . , N} do
{X, ch,n, cv,n, cdn} =WΨ(X)

for n← {1, . . . , N} do
ĉv,n = FT (cv,n)
g(x̂, ŷ) = 1− exp(−ŷ2/2σ2)
ĉv,n = ĉv,n � g(x̂, ŷ) . Element-wise multiplication
cv,n = FT −1(ĉv,n)

X̃ = X
for n← {N . . . , 1} do

X̃ =W−1
Ψ ({X̃, ch,n, cv,n, cdn})

return X̃

In short, the algorithm consists of three distinct parts. First, the wavelet composition is calculated by
recursively splitting the high-frequencies components and using the low-frequencies components as a new
input for the wavelet transformation. Next, the vertical detail coefficients are Fourier transformed and
bandpassed on all decomposition levels to generate the filtered coefficients. Lastly, the destriped image
is reconstructed using the filtered coefficients and the inverse wavelet transformation.
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4 Results

To evaluate the effectiveness of the described algorithms, we performed a comparative study on the
simulated mammographic projections. We compared the algorithms to a deep CNN, namely the U-Net,
as well as to the classical state-of-the-art BM3D filter. Furthermore, we analysed the performance of the
deterministic INSIDEnet in comparison to the probabilistic INSIDEnet (P-INSIDEnet) and compared
the epistemic uncertainty of the CP-BNN and P-INSIDEnet. The study was performed on supervised
trained models as well as on unsupervised trained models using the NAC method. Lastly, we performed
destriping of the integrated predicted denoised DPC images using the wavelet-FFT filter. All deep
learning models were implemented in Tensorflow 2.1 [66] and trained on a NVIDIA Titan RTX GPU
with 24GB of memory.

4.1 Supervised Denoising: Comparative Study

Before entering the denoising algorithms, the clean projections – absorption and differential phase – were
scaled to be within [0, 1]. The noisy counterparts were scaled identical to the clean projections. Each two
channels were then stacked together to create the 2D multichannel images. To prevent biased training,
these images were randomly shuffled in each epoch. We trained all models on 440 image pairs, validated
them on 110 and tested them on 64. The images were simulated with an average photon count of 1000 to
simulate a high noise level. The INSIDEnet models and the U-Net model processed the differential phase
and absorption images jointly, while the CP-BNN, although taking both channels as input, only predicted
a denoised DPC image, thus presenting with more features per data point. The deterministic INSIDEnet
predicted on three different scales (i.e. m = 3) with patch size Np = 8 and n = 5. We trained the model
using the MSE loss until the validation loss did not improve anymore. We then used this model as a
prior for the probabilistic INSIDEnet with the trained B-matrices as our prior mean and a prior standard
deviation of 10−3. The standard deviation was chosen by performing various tests, which compared the
performances of the training, and selecting the one with the best results. The P-INSIDEnet was then
trained using the loss function from Eq. (52), where B was set to 440 to meet the number of training
images, since we were training with a batch size of 1 and τ = 0.01. Our CP-BNN model was constructed
as seen in Fig. 3 and trained on the loss function from Eq. (53) with a multivariate normal distribution
as prior over the weights. The U-Net model evaluated features on five different scales, leading to a total
model with 510338 parameteres and trained with a MSE loss. The parameter number was chosen to be
similar to the parameter numbers of our other models. We then used the Adam optimization algorithm
(β1 = 0.9, β2 = 0.999) with an initial learning rate of 0.0001 with exponential decay on all models for
training. Lastly, we compared the obtained images from our machine learning models to the state-of-
the-art BM3D model. An overview of all models and their parameters is provided in Tab. 1. It can be
immediately determined that the deep learning models are at least 300 times faster than the BM3D.

We only show the denoising results of the DPC channel, as this is the channel this work focused on.

Trainable Parameters Prediction Time/Image
Probabilistic INSIDEnet 493455 0.28s (× samples)
INSIDEnet 247695 0.26s
CP-BNN 300875 0.26s (× samples)
U-Net 510338 0.04s
BM3D 0 61.26s

Table 1: Overview of the trained and compared models. Listed are the number of trainable parameters
and the prediction time for a single image, respectively. Note that in the Bayesian models we predict
multiple images for the same input image – it should therefore be considered that the prediction time is
increased depending on the number of samples used. While the BM3D model has no trainable parameters,
the standard deviation of the noise still has to be computed and provided prior to the denoising.
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Figure 7: Supervised results: MSE, MAE, SSIM and SNR over the whole test set evaluated on all five
models trained in a supervised fashion. The SNR was calculated over the whole background, where a
mask was obtained using the transmission image. On the top: results using an average photon count of
1000. On the bottom: results with an average photon count of 5000.

MSE MAE SSIM SNR
1000 Photons
Input 3.54e-2 (4.46e-3) 0.135 (5.96e-3) 0.196 (1.52e-3) 25.81 (0.2)
P-INSIDEnet 1.12e-3 (1.62e-4) 2.09e-2 (1.42e-3) 0.856 (7.43e-3) 155.76 (1.29)
INSIDEnet 1.12e-3 (1.66e-4) 2.04e-2 (1.48e-3) 0.859 (8.27e-3) 158.14 (0.96)
CP-BNN 1.1e-3 (1.58e-4) 2.00e-2 (1.47e-3) 0.861 (8.38e-3) 155.7 (2.64)
U-Net 1.11e-3 (1.6e-4) 2.07e-2 (1.46e-3) 0.863 (8.08e-3) 151.33 (0.57)
BM3D 2.54e-3 (5.55e-4) 2.53e-2 ( 2.62e-3) 0.76 (2.4e-2) 167.57 (1.09)
5000 Photons
Input 6.56e-3 (7.16e-4) 5.95e-2 (2.47e-3) 0.561 (2.45e-3) 55.38 (0.38)
P-INSIDEnet 8.97e-4 (1.38e-4) 1.85e-2 (1.51e-3) 0.888 (8.73e-3) 161.2 (1.35)
INSIDEnet 9.02e-4 (1.4e-4) 1.79e-2 (1.46e-3) 0.891 (9.1e-3) 163.3 (0.51)
CP-BNN 8.73e-4 (1.3e-4) 1.78e-2 (1.41e-3) 0.890 (8.89e-3) 156.12 (2.21)
U-Net 8.86e-4 (1.31e-4) 1.85e-2 (1.39e-3) 0.884 (7.22e-3) 154.34 (0.33)
BM3D 1.16e-3 (2.2e-4) 1.99e-2 (1.97e-3) 0.842 (1.7e-2) 166.45 (0.68)

Table 2: Supervised results: Denoising results summarised from Fig. 7 in mean and standard deviation
(in parentheses) from all metrics across all 64 test images. Outlined next to the denoising results are
the original metrics values between clean image and noisy image (here referred to as Input). The best
performing value of each model is highlighted.

The results from the absorption channel of the INSIDEnet and U-Net models can be seen in Appendix
A.2. We evaluated the models using 64 test images with an average photon count of 1000 on one hand
– same as in the training –, and an average photon count of 5000 on the other hand to see whether
the models are capable of denoising lower noise levels. In the Bayesian models (P-INSIDEnet and CP-
BNN) we predicted 15 images per given input image to approximate our predictive posterior distribution
(see Eq. (35)), since every time we predict, the weights are newly sampled from the trained variational
distribution. Our predicted image was then equivalent to the mean from all 15 images. The quality
of the denoisig was evaluated using the MSE, structural similarity index (SSIM), mean absolute error
(MAE), and signal-to-noise (SNR). For all metrics except the SNR, a ground truth image is required.
For the calculation of the SNR we added π to every pixel so that the image would be between [0, 2π],
and the mean remain positive. Since each simulated breast has a different structural anatomy, it is
challenging to find a constant signal region inside the breast. Therefore, we calculated the SNR over the
whole background (i.e. ratio of mean over standard deviation) using a mask obtained from the absorption
image. Quantitative results of our evaluation can be seen in Fig. 7 and summarised as mean and standard
deviation in Tab. 2.
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Figure 8: Supervised results: Denoising results on a zoomed-in region from a DPC projection over all
five models and the difference between the original noisy and predicted image. Top row left: clean and
noisy image. In subsequent rows (left and right) are the predicted images and differences from CP-BNN,
P-INSIDEnet, INSIDEnet, U-Net, and BM3D. The gray value units are angles per centimetre [rad/cm].

Overall, the CP-BNN outperforms all other proposed models in MSE and MAE and is even slightly
better than the U-Net, while the U-Net and INSIDEnet show better results in the SSMI at 1000 and
5000 photons, respectively. All data-driven denoising models demonstrate similarly satisfying results in
denoising capacities on the test images, while the BM3D filter’s performance is clearly inferior. It is not
constant but fluctuates strongly depending on the input image. However, the BM3D model scored in
the SNR values, which is better than the data-driven models. It has to be emphasized that the SNR
values have only been calculated in the background of the breast and no conclusion could therefore be
made over the SNR values inside the breast projection. Interestingly, all deterministic models – including
the BM3D filter – have an almost constant predicted SNR value, while the probabilistic models show
strong fluctuations (especially the CP-BNN). Another interesting observation can be made between the P-
INSIDEnet and the INSIDEnet, where the latter is used as prior for the former. Providing a probabilistic
view on the weights of the INSIDEnet not only did not improve the overall performance of the denoising,
but rather worsened it. While still having better values in the MSE at 5000 photons, they underperformed
on the MAE and especially SSMI. This indicates that gaining insight into the uncertainty of the model can
come at the cost of less accuracy in the results. This can be statistically explained: The P-INSIDEnet
weights are taken from a learned variational distribution, whereas the INSIDEnet weights are purely
deterministic. However, the value of these weights is consistent with the mode of the MAP estimation –
that is, the weights are chosen to always match the local optima on the training set. The P-INSIDEnet
weights, on the other hand, are chosen randomly, so it is unlikely that all weights will match the mode
of this variational distribution, resulting in lower accuracy. Comparing the values from the test images
with 1000 and 5000 photons, we can see that the models are able to adapt to less noise levels with even
better overall results. While all models significantly improve the metrics on less noisy images, the values
of the BM3D have only been improved to the extent that they can now be compared with the values of
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Figure 9: Detail profiles over a horizontal line in the DPC image for each algorithm. The clean detail
profile is superimposed over the predicted ones in blue color. The profiles are taken over a large part of
the image, i.e. 600 pixel long (original image dimension 1536 × 1536). Note that the scale in the first
figure is larger in order to depict the complete noise profile.

the data-driven models over images with 1000 photons.
The denoising results of the five algorithms on DPC projections are depicted in Fig. 25. The results

are displayed on a zoomed-in patch of the image for better visualization of the features and noise. The
top left row depicts the clean image with an average photon count of 1000 and its noisy counterpart.
The other rows (left and right) show the performance of the five algorithms along with the corresponding
difference image, displaying the discrepancy between the denoised and the noisy input image. The data-
driven models effectively remove a large part of the noise, while keeping most of the features in the
image. Nevertheless, some details that are visible on the clean image are not retained by any of the
data-driven algorithms. The predicted images are also less crisp than the clean image. The BM3D filter
(bottom right), meanwhile, is much less effective in comparison. While it is able to remove the high
frequencies noise uniformly well, it fails to retain small features and over-smooths the complete image.
The difference image in the BM3D shows that it is unable to deal with heteroscedastic noise – the data-
driven methods, meanwhile, show areas with higher noise amplitudes (see red arrows), indicating the
presence of heteroscedastic noise.

To investigate the detail preservation of each model, Fig. 9 shows intensity profiles taken from a test
image depicted in Fig. 10, overlayed over each intensity profile from the predicted DPC images of the
models. It reveals that all deep learning models are able to retain most of the information, whereas the
traditional BM3D model over-smooths the image and loses substantial information. For the most part,
the deep learning models underestimate the absolute signal, leading to images with lower phase shifts.
This may indicate that the models are too sensitive and therefore prefer to attenuate the signal more.
One reason could stem from the training loss, where high deviations lead to a higher penalty. DPC
images, or gradient images in general, can be approximated by a Laplacian distribution and are centred
around 0. Overpredicting the signal therefore leads to a higher global penalty in the overall image than
cautiously predicting the signal closer to 0, which we believe is the reason for the underprediction as seen
in the line profiles. Nevertheless, the line profiles demonstrate the astonishing detail preservation from
deep learning models.
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Figure 10: Supervised results: Denoising results and uncertainty from the CP-BNN and P-INSIDEnet
model. Top row: clean and noisy images – whole projection and zoomed-in region. Second row: predic-
tions from the CP-BNN and P-INSIDEnet. Last row: epistemic uncertainty of the models on the whole
projection and zoomed-in region.

4.1.1 Uncertainty in Bayesian Models

We demonstrated the results on purely deterministic predictions as well as the approximative means of
the predictive posterior. We will now show the advantage of having a Bayesian view on the weights. For
this, we resort to the prior comparative study and demonstrate the results from the Bayesian model in
hand with their epistemic uncertainty in Fig. 10.

Here, we focus on the uncertainty of the individual models: The epistemic uncertainty was calculated
as the mean squared difference from the approximative mean predictive posterior and the individual
images (see Eq. (37)). By analysing the uncertainties from each mode, we immediately see that the
uncertainty in the P-INSIDEnet is generally higher in the background but the CP-BNN shows more
uncertainty in regions with high signal amplitdues, such as edges. Interestingly, both models are highly
uncertain around the border of the breast, indicating that high signal amplitudes or edges lead to high
uncertainty. Especially in the vicinity of the nipple, the P-INSIDEnet displays high deviations over all
predicted sample images. Zooming in on the patches, we can see that the CP-BNN is more uncertain in
areas with high absolute signal amplitude – even more so with high positive signal, which also manifests
itself on the whole breast. On the other hand, the P-INSIDEnet is more certain in its prediction but is
highly uncertain in areas with high positive signal. Also visible in both images – although stronger in
the P-INSIDEnet than in the CP-BNN – is the profile of the flat image of the visibility (see Appendix
A.1). Especially in the same regions where the signal of the visibility flat reaches a local minimum, the
uncertainty becomes slightly higher. Another source of high uncertainty are microcalcifications, indicated
by the green arrows. Microcalcifications are highly scattering and absorbent and are thus well displayed
in absorption and dark-field images. Following Eq. (10), these microcalcifications result in high noise
amplitudes in the DPC channel, due to the low transmission and dark-field signal.
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4.2 Unsupervised Analysis

In clinical settings, it is difficult to collect noise-free radiographic images without compromising the
patients’ safety. It is therefore impossible to train a deep neural network in a supervised fashion. To
overcome the problem of insufficient training data, an area of research is to move to unsupervised settings,
where clean images are not necessary. In this section we will analyse the method from chapter 3.5. In
this case, we only need noisy projections from all the three contrast channels to generate synthetic noise
and overlay it on the original noisy images. We generated our synthetic noise using Eq. (10) for DPC
and Eq. (7) for absorption. It should be emphasized again that the clean signal is necessary to calculate
the correct uncertainty intrinsic in the noisy images. To see whether the calculations would also hold
for noisy images, we calculated the MSE from the original clean image to the noisy image and the MSE
from the newly calculated syntethic noisy image to the original image. We found that using the provided
equations led to higher MSE than between the original pairs, meaning that our synthesized noise consisted
of higher noise amplitudes. We thus tuned the equations by chancing the number of phase steps N and
found that N = 5 approximated the original MSE well. With this we were able to train all our models
again in a supervised fashion by using the newly synthetic noisy image as input and the noisy original
image as target. However, we found that matching the MSE value did not provide good training results,
so we performed various tests by again changing the number of phase steps. The best results in terms of
SSMI were achieved with N = 4 – anything lower yielded worse outcomes, indicating that the noise level
added to the images was too different compared to the intrinsic noise. The calculated uncertainty along
with the absolute value of the added noise can be seen in Fig. 11. It shows that both the intrinsic noise
as well as our added noise follow the calculated uncertainty distribution.

One of the disadvantages of the NAC method is that the performance is highly dependent on the
inherent noise level [62]. Consequently, we tried the NAC method on various noise levels by changing the
average photon count from 5000 downwards. We found that satisfactory results could only be reached
if the images had an average photon count of at least 3000. Therefore, we only present the results
originating from models trained on such images.

Similar to the supervised case, we tested our algorithms on 64 images, whereas training and validation

Figure 11: Calculated uncertainties based on Eq. (10) and (7) along with the synthetic noise and original
noise. For better visualization we depict the absolute values of the difference between clean and noisy
image and between the synthetic image and original noisy image.
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Figure 12: Unsupervised results: MSE, MAE, SSIM and SNR over the whole test set evaluated on all
five models. On the top: results using an average photon count of 3000. On the bottom: results with an
average photon count of 5000.

MSE MAE SSIM SNR
3000 Photons
Input 1.11e-2 (1.07e-3) 7.72e-2 (2.77e-3) 0.435 (1.8e-3) 43.93 (0.305)
CP-BNN 2.31e-3 (2.8e-4) 3.29e-2 (1.58e-3) 0.783 (5.24e-3) 111.64 (0.879)
U-Net 2.44e-3 (2.51e-4) 3.54e-2 (1.4e-3) 0.748 (3.28e-3) 94.52 (0.458)
INSIDEnet 2.4e-3 (2.66e-4) 3.42e-2 (1.44e-3) 0.771 (3.7e-3) 104.5 (0.465)
P-INSIDEnet 2.43e-3 (2.7e-4) 3.46e-2 (1.46e-3) 0.756 (4.86e-3) 103.48 (0.498)
BM3D 1.38e-3 (2.38e-4) 2.14e-2 (1.82e-3) 0.818 (1.56e-2) 166.43 (0.685)
5000 Photons
Input 6.59e-3 (6.22e-4) 5.96e-2 (2.12e-3) 0.561 (1.88e-3) 55.47 (0.358)
CP-BNN 1.44e-3 (1.75e-4) 2.58e-2 (1.26e-3) 0.845 (4.55e-3) 129.51 (1.32)
U-Net 1.59e-3 (1.6e-4) 2.85e-2 (1.14e-3) 0.815 (2.86e-3) 109.67 (0.43)
INSIDEnet 1.52e-3 (1.67e-4) 2.73e-2 (1.17e-3) 0.837 (3.3e-3) 119.8 (0.417)
P-INSIDEnet 1.55e-3 (1.7e-4) 2.77e-2 (1.18e-3) 0.823 (4.58e-3) 118.71 (0.518)
BM3D 1.16e-3 (1.93e-4) 2e-2 (1.69e-3) 0.842 (1.41e-2) 166.41 (0.626)

Table 3: Unsupervised results: Denoising results summarised from Fig. 12 in mean and standard deviation
(in parentheses) from all metrics across all 64 test images. Outlined next to the denoising results are
the original metrics values between clean image and noisy image (here referred to as Input). The best
performing value of each model is highlighted.

was performed on 320 and 84 images, respectively. The hyperparameters for training were kept the
same. Prior to entering the denoising pipeline, the original noisy images were scaled to be within [0, 1].
This scaling is similar to the one used in the supervised setting, with the difference that we applied the
information from the noisy images instead of the clean images to ensure completely unsupervised training.
We applied the same scaling on the synthesized noisy images and trained the models until convergence.
The results on the test set are depicted in Fig. 12 and summarized in Table 3, where again the MSE,
MAE, SSIM, and the background SNR have been evaluated using the clean images.

Overall, the traditional BM3D outperforms all unsupervised trained deep learning models significantly.
The deep learning models, in turn, have similar values amongst themselves, with CP-BNN providing the
best performance. Interestingly, all our developed models outperform the U-Net model, indicating that
the combination of a data-driven and model-based approach performs better when being trained in an
unsupervised fashion. Fig. 13 depicts the zoomed-in denoising results of the single algorithms. Although
the BM3D model shows the best numerical results on all test images, we can clearly see that it fails
to retrieve small features and the image appears washed-out and blurry. The deep learning models on
the other hand are able to mostly keep these small high-frequency features and not lose resemblance
to the clean image. Compared to the original noisy image, the predicted images are less affected by
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Figure 13: Unsupervised results: Denoising results on a zoomed-in region from a DPC projection over all
five models and the difference between the original noisy and predicted image. Top row left: Clean and
noisy image. In subsequent rows (left and right) are the predicted images and differences from CP-BNN,
P-INSIDEnet, INSIDEnet, U-Net, and BM3D. The gray value units are angles per centimetre [rad/cm].
Note, the dynamic range in the difference image is smaller to depict it more clearly.

noise, but they still have a sandy texture, which explains the poor numerical results compared to the
BM3D. Furthermore, both traditional as well as data-driven algorithms fail to attenuate the high noise
amplitudes, which are mostly apparent in regions where the visibility flat has its lowest values (see
Appendix A.3). When inputting images with a higher average photon count – and consequently lower
noise level – the deep learning models approach the numerical values of the BM3D, where even superior
mean results can be achieved with the CP-BNN on the SSMI metric. Similar to the supervised case,
the models are able to adapt to lower noise levels than they were trained on. This can be explained by
Eq. 59. Training the models in a unsupervised fashion and following the rationale from chapter 3.5, it
can be concluded that the trained parameters approximate the optimal parameters when trained in a
supervised fashion with clean and noisy images – concluding that our unsupervised models have the same
characteristics as our supervised models.

4.3 Destriping of integrated images

The generation of completely noise free images is challenging and has not been achieved with either
our proposed or traditional models. Thus, following the reasoning from chapter 3.6, we expected our
integrated denoised images to be corrupted by stripe artefacts. However, according to our statistical
analysis, the stripes should be less pronounced. We therefore continued our denoising analysis with
known destriping methods and investigated whether the WFF was appropriate for our purpose.

To find suitable wavelet basis and hyperparameters for the WFF, we performed a grid search analysis
over a single striped image and compared the resulted destriped image with the original clean phase image
using the MSE and SSIM. We found that a Daubechies wavelet (DB) with a size of 16, a decomposition
level of 6, and a normalized standard deviation of 0.125 performed well on our data. We investigated the
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P-MSE MSE P-MAE MAE P-SSIM SSIM P-SNR SNR P-CNR CNR
Lowest Quality
Input 0.108 2.79e-3 0.232 3.8e-2 4.48e-2 0.654 2.23 8.72 0.73 4.16
P-INSIDEnet 1.69e-2 1.48e-2 0.108 0.108 0.429 0.739 11.14 11.89 4.63 6.04
INSIDEnet 4.74e-3 4.32e-3 5.92e-2 5.79e-2 0.668 0.814 11.25 11.52 7.41 7.77
CP-BNN 2.50e-3 2.29e-3 3.89e-2 3.78e-2 0.591 0.625 11.22 11.33 8.44 8.82
U-Net 3.00e-3 2.8e-3 4.43e-2 4.41e-2 0.763 0.845 10.93 10.94 6.84 7.06
BM3D 8.99e-3 3.24e-3 6.73e-2 4.65e-2 0.53 0.726 8.68 10.18 3.01 4.86
Highest Quality
Input 6.78e-2 1.2e-3 0.188 2.68e-2 0.05 0.766 3.47 15.54 1.76 11.42
P-INSIDEnet 3.33e-2 2.98e-2 0.1454 0.1453 0.365 0.711 15.46 24.51 5.10 13.83
INSIDEnet 3.30e-3 2.98e-3 4.72e-2 4.57e-2 0.701 0.826 17.63 19.5 13.02 14.91
CP-BNN 8.06e-3 7.88e-3 7.83e-2 7.81e-2 0.748 0.795 17.85 20.09 11.87 13.46
U-Net 3.32e-3 3.19e-3 4.28e-2 4.82e-2 0.749 0.818 17.59 19.72 12.35 14.14
BM3D 5.12e-3 1.18e-3 5.17e-2 3.48e-2 0.595 0.769 11.29 17.04 6.43 12.36

Table 4: Destriping quantitative analysis: Measurements were performed prior and after the destriping
algorithm. Prior measurements are indicated by the letter P in the table.

algorithm on both the best and worst denoised images of our previous supervised analysis. Afterwards
we compared the appearance of the integrated output from our DPC denoising models before and after
the destriping algorithm. The integration of the images was performed with a Riemann-sum along the
vertical direction as in Eq. (61) with a step-size of 0.01cm, which matched the simulated pixel-size. For
the comparison, we computed the MSE, SSIM, MAE, SNR, and the contrast-to-noise ratio (CNR). Unlike
the evaluation of the denoised DPC images in the previous chapters, it was now possible to calculate
the SNR and CNR in the interior of the breast. To be able to compute the SNR and CNR, we selected
an area in the clean PC image with high pixel values – representing highly refractive material (HR)
(i.e. adipose tissue) –, and an area with lower pixel values inside the breast, representing the projected
glandular tissue (GT). We calculated the SNR using the mean and standard deviation of the area, which
is highly refractive, and the CNR using the mean and standard deviations of both areas:

SNR =
µHR
σHR

(67)

CNR =
µHR − µGT√
σ2
HR + σ2

GT

(68)

The results of our analysis can be seen in Table 4 and in Fig. 14 and 15. Note that we only depicted the
results from our own developed models (CP-BNN and P-INSIDEnet) and refer for the complete list to
Appendix A.

Fig. 14 depicts the results on the images where the model performed the worst. The comparison to
the clean image was performed by first scaling the clean image to [0, 1] and then applying the same scaling
to the rest of the images. This was done to mitigate the bias terms added by the models, which could lead
to higher SNR values. Overall, the performance prior to the destriping is dominated by the results from
the U-Net, CP-BNN and INSIDEnet. The values from the images corrupted by large stripe artefacts
are remarkably improved after running the destriping filter. These improvements are less prominent in
images with already little stripe artefacts, such as the images from the CP-BNN, U-Net, and INSIDEnet.
Although the values improved significantly in the original noisy input and the prediction from the BM3D
after destriping, the images themselves are still corrupted by wavy stripe artefacts, remaining noise, and
blurriness. This is also supported by the SSIM, SNR and CNR values, where the performance from
the deep-learning models show superior results. Surprisingly, although the P-INSIDEnet showed better
results in the DPC channel than the BM3D, its integrated image depicts strong and bright stripe artefacts
in the area of the breast, which did not improve much even after destriping, indicating remaining high
noise amplitudes in the DPC channel.
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Figure 14: Depiction of the destriping performance of the WFF over the worst performing image of the
supervised analysis. First row depicts the DPC and integrated image pairs. Second row depicts the
denoised DPC image from the CP-BNN model along with the integrated image, the destriped image, and
their difference. Last row shows the equivalent order but for the P-INSIDEnet model.

Figure 15: Depiction of the destriping performance of the WFF over the best performing image of the
supervised analysis. Equivalent order as in Fig. 14.
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Continuing on the higher quality image, we see the same trend as in the lower quality. However,
the CP-BNN has approximately two times higher MSE and MAE values compared to the U-Net and
INSIDEnet, although visually, the CP-BNN prediction seems equally affected by stripe artefacts. This
leads to the conclusion that the pixel values of the integrated CP-BNN are elevated compared to the
clean image. Looking at Fig 14, this can also be confirmed visually. The projected glandular tissue
is brighter than in the clean image. This increased brightness is also visible in all other deep learning
models, where the INSIDEnet even shows the least increase. Compared to the low quality image, the
P-INSIDEnet model is worse at restoring the integrated image with wider and stronger stripe artefacts
– although having better prior values in the DPC image. This indicates that the P-INSIDEnet remains
corrupted by high noise amplitudes. In the higher quality image, too, the destriping in the original noisy
input leads to a significant improvement of the image quality. However, if we check the SNR and CNR
values, we see that although the stripes are attenuated, the image is still noisy and distorted by artefacts,
which could not be improved much even after applying traditional denoising filters before integration,
thus, demonstrating the superiority of deep learning models over traditional filters. It has to be noted
that although the results lead to higher image quality, the images are still corrupted by wide and blurred
stripes, with the width of the stripes depending on the stripe density before destriping.

4.4 Real world denoising results

So far we evaluated our models on simulated data. We now analyse the denoising capabilities of the
models, which have been trained on simulated data, on real DPC images. These images depicting a breast
specimen with and without compression we were acquired on the Philips Microdose GI-Mammogram
system see Fig. 16. The acquired images from the system were not calibrated to the correct physical
output values. Their dynamic range was between 108 to 109 for absorption and −109 to 109 in phase.
In order to match the dynamic range of our training data, we scaled the images to be approximately in
the same range as our training images by comparing the histograms of the single images. Nevertheless,
to prevent the drawing of false conclusions, we omit numerical values in our further analysis.

In theory, the histogram of a gradient image (such as the DPC image) can be approximately explained
by a Laplace distribution [67]. We can see that this holds true for the simulated DPC images (see Fig. 17
first row). However, the histograms of the acquired images are bimodal (see. Fig 17 first image in second
row). Since there is a mismatch between training and testing data, naively applying the trained models
to real data, does not yield satisfying result. To address this problem we tried to shift the two peaks to
a center of mass at zero, such that it resembles the histograms of the training images. We believe that
one reason for this distribution could be grating misalignments, which would lead to phase shifts that are
structured over the whole image. This reasoning is plausible, since strong stripe artefacts are visible on
the images, leading to shifts in the positive and negative DPC signal. To centre the histogram, we took

Figure 16: Images acquired on the Philips Microdose system with built in GI. Left set constitutes of the
breast without compression and right with compression.
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Figure 17: Histograms of the training images and the acquired images of the Philips Microdose system.
The first row depicts the histogram of a training image pair, where the distribution resembles a Laplace
distribution. Second row depicts the distribution of the compressed specimen acquired with the Philips
system. The three histograms correspond to the acquired, the transformed, and the destriped images,
respectively. Note, that the histogram of the uncompressed specimen is similar to the compressed one.

an image without a sample from the system and calculated the mean value m̂ from it. We used the mean
value without the sample because we only take into account values from the background that are not
influenced by the sample. Since the histogram distribution was almost symmetrical in the background,
the image was set to a new center of mass by subtracting m̂ and then using its absolute value. It then
only had to be shifted to 0 to form the desired transformed image T . The whole process is described as
follows:

z = |x− m̂| (69)

T = z − ẑ (70)

where ẑ is the mean value of z, which shifts the whole image to be centred around zero. The histograms
of the transformed images are depicted in Fig. 17 along with the transformed images in Fig. 18. The
transformed images show significantly less stripes than the original image, thus suggesting truth in our
assumption that the stripes are responsible for the bimodal distribution. To remove remaining stripes we
applied the WFF with a DB16 wavelet basis, a normalized standard deviation of 0.2, and a decomposition
level of 6. The destriped images and their histograms can be seen in Fig. 18 and Fig. 17, respectively.
After applying the WFF, the histograms were smoother and visually similar to the histogram of the
noisy training image. We then used the destriped image as input for the algorithms. To facilitate reading
we will call the transformed destriped image as the noisy image and the original acquired image as the
original image.

The images are 4965 × 4413 in dimensions. In our models we used Tukey windows to avoid border
artefacts, which were hard-coded to work with images of dimension 1536× 1536. Therefore, we first cut
the edges of the image where only background was depicted to create images of the size 4176× 4176. We
then divided this image into overlapping patches of 1536×1536 with a stride of 660 to facilitate numerical
computations – more patches would result in more computational time but not in better prediction. After
denoising we used these patches to reconstruct the final image. Results from the individual algorithms
are depicted in Fig. 18 with zoomed-in regions in Fig 19.
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Figure 18: The two acquired images along with the denoised results from both the trained and traditional
algorithms. First row from each half depicts the original acquired image along with its transformed and
destriped image, and the original transmission image. The next two rows depict the results from the
algorithms. 36



Figure 19: Zoomed-in regions from the acquired images along with the denoised results from both the
trained and traditional algorithms. First row from each half depicts the original acquired image along
with its transformed and destriped image, and the original transmission image. The next two rows depict
the results from the algorithms.
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On first glance, all methods have managed to denoise the image to a certain degree. Starting at
the top, the CP-BNN model showed the best results in denoising the background. However, the signal
intensities of the DPC image were lower compared to the other models. Therefore, we adjusted the
contrast so that signals were visible in the image. Nevertheless, by looking at the patched images, we can
clearly see that it contains features that previously were not visible in the original noisy patches. These
additional details are also apparent in all other models except for the BM3D. From then on, the question
arose whether the models that take two channels as input learn to translate essential information from
the absorption channel to the DPC channel. To investigate this, we trained two additional models which
only take the DPC channel as input (referred by DPC after the model name in the figures). Interestingly,
the predicted images from these models do not show these added details, indicating that they have been
translated from the absorption channel to the DPC channel in the previous models. Another indication
for this is the predicted background. All models trained on two channels are able to significantly reduce
the noise in the background, while both the single channel models and the BM3D have a harder time
in mitigating the noisy signal. A model that probably depends very strongly on the absorption channel
is the CP-BNN. This is especially evident in the prediction of the compressed breast where the stripe
artefacts in the lower field change sign and correspond more to the artefacts on the absorption channel
(see red arrows). On all other models, these stripes remain the same as in the original noisy image.

We see that the P-INSIDEnet and INSIDEnet model show similar results with no major differences in
neither the whole image nor the patches. Surprisingly, when comparing the sample and the background,
there is a shift in the values that makes the sample look like it is floating above the background. Again,
we believe this is due to the translation of the absorption channel into the DPC channel. By looking at
the predictions of the U-Net, it can be seen that the images are more blurred at the edges of the specimen
compared to the (P)-INSIDEnet. Inside the specimen, however, little difference can be observed. The
traditional BM3D model is able to satisfactorily retrieve the high signals arising from the edges of the
sample, but adds patchy and blurry artefacts in areas with lower signal intensities. The trained one-
channel models, on the other hand, are able to improve the image quality while simultaneously keeping
the high-frequency details. Comparing the two one-channel models, we can see no visual differences
between their predictions.

4.4.1 Integrated DPC

To assess the effectiveness of the denoising performed by both the proposed algorithms and the BM3D, we
investigated the image quality of the integrated denoised images. The denoised images show that while the
predictions in the background may differ, they show promising signal retrieval inside the specimen. When
integrating the images directly, the images become blurred and are affected by heavy stripe artefacts,
which do not allow any analysis. In order to compare the predictions of the individual models, we manually
segmented the specimens and only integrated over them. As described before, the predicted images from
the two-channel (P)-INSIDEnet had an added bias, which separated them from the background. To
ensure that the integration is not affected by a constant bias term – which in the integrated image leads
to a linear increase in pixel values – we subtracted the mean value of the masked specimen from the DPC
image to shift the distribution inside the specimen to zero mean. Afterwards, we integrated the images,
the results of which can be seen in Fig. 20. Due to remaining acquisition artefacts after denoising in the
images of the compressed specimen, we only show the results from the specimen without compression.
After integration we applied the WFF to remove stripe artefacts caused by the remaining noise in the
DPC image. As a wavelet basis we used again the DB16 with a normalized standard deviation of 0.3 and
a decomposition level of 8. The destriped integrated images can be seen in Fig. 20 next to their original
counterpart. Fig. 21 depicts zoomed-in regions of the integrated images.

The image with the most stripes shows the original integrated image. This was to be expected, because
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Figure 20: Integrated images of the specimen without compression. The images come in pairs of original
integrated images and images after applying the WFF for stripe removal.

the DPC picture as seen in Fig. 18 has the poorest image quality. Surprisingly, the integrated image of
the noisy DPC image already shows significant improvement, with the number of occurring stripes being
comparable to the integrated images of the individual algorithms. What stands out is the integrated CP-
BNN prediction, which looks completely different from the rest of the images. In particular, the image
resembles the original absorption image, proving our previous claim about the CP-BNN. The other two-
channels are less affected by the absorption channel. However, while the dark area at the top right of
the sample is not visible in the filtered original image, it is visible in the absorption channel, indicating
that some information is transferred from the absorption channel to the predictions as well. This can
also be deduced from both the one-channel models and the BM3D, which do not have this dark region
in the upper right corner. Another example of transferred information from the absorption channel is
clearly depicted by the green arrows. These vessel-like structures are barely visible in the original image,
nor in the denoised one-channel images, however, they become apparent in the predictions of the two-
channel algorithms. It has to be further investigated to which extent a translation is benefical for the
diagnosis. Clearly, a complete information leakage as it has happened in the CP-BNN is not desirable.
However, small features from absorption could help in pinpointing high-frequency details and help the
denoising of the image. When comparing the results of the one-channel algorithms, almost no difference
can be observed – especially not much improvement over the noisy image. This is surprising, since in the
predicted DPC channels all algorithms were able to significantly reduce the noise. When then comparing
the results of the one-channel models with the original and noisy images in the zoomed-in images, we
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Figure 21: Zoomed-in images of the integrated DPC images from the Philips Microdose System. The
original image can be seen in Fig. 20. The green arrows point to added translated information from the
absorption channel. The red circles show the detail preservation from deep learning models compared to
BM3D.

can see differences: The noisy image has a fibrous, washed-out texture that is superimposed on the
whole image, while the denoised images are smoother and show the details more clearly. By looking very
carefully, minor differences between the deep learning models and the BM3D can be perceived – indicated
by the red circles in the image. This is the consequence of the missing high frequency detail conservation
of the BM3D model in the DPC denoising. Although the image quality of the DPC images improved
after denoising, this did not result in the same effect in the integrated image. Consequently, the DPC
images have to be perfectly denoised to be able to compute high quality PC images.
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5 Discussion

The aim of this thesis was to investigate image denoising in DPC images using deep learning algorithms
with the goal of retrieving a high-quality phase contrast image. This image is especially relevant in clinical
settings, as it can result in higher soft tissue contrast compared to absorption, but without sacrificing
spatial resolution. To provide clinics with this advantage, a GI system was built into a Philips Microdose
Mammography system. However, images attained with in-vivo patients are required to comply with
clinical regulations, which result in significantly higher noise levels in the images. Thus, strong denoising
tools are crucial in obtaining the desired high-quality phase contrast image from the collected DPC
image. To this end, we have developed a set of deep learning algorithms and compared them to already
established methods such as the BM3D and U-Net.

In chapter 4.1, we analyzed the denoising results from models trained in a supervised fashion. Imme-
diately apparent was the inability of the BM3D filter to denoise DPC images while keeping relevant high
frequency features. This becomes clear both visually (see Fig. 25) as well as when checking the numerical
values (see Tab. 2), and even more so when regarding the intensity profile on a single image (see Fig. 9).
This demonstrates the need for more sophisticated algorithms that can cope with more complex noise.
We were able to show that data-driven models significantly improved image quality, which is especially
impressive as they were able to keep up with the U-Net when evaluated on our simulated data. Unfortu-
nately, all models failed to retrieve very detailed information from the noisy image, as seen in the patch
images from Fig. 25, and again more clearly in the respective intensity profiles. In fact, the algorithms
were capable of following the intensity profiles, but underestimated the amplitudes by up to a factor of
2, which in turn led to information loss. This problem may arise from the MSE loss and the Laplacian
distribution of the images. In a clean image, relatively few pixel values deviate from zero. Particularly
the background takes up a significant proportion of the entire image where pixel values ideally should be
zero. When the MSE is calculated, it averages the error in the pixels over the whole image. The training
then tries to tune the weights to optimize the image globally. Since most of the values are close to zero,
it might tend to pull the prediction close to zero as well.

The idea behind the INSIDEnet was finding a good trade-off between performance and interpretabil-
ity/robustness. All steps follow a clear mathematical reasoning, which is missing in the U-Net. By moving
back and forth from the image domain to a learned transformation domain, it is possible to visualize the
denoising after each filtering step (see Appendix A.5), leading to an explainable deep learning model.
Visualizing the single filtering steps in a U-Net architecture is not possible since the output of single
layers consists of multiple channels and do not lie in an interpretable image space. By comparing the
two architectures, however, similarities can be observed. The INSIDEnet has a similar "U"-structure
as the U-Net. In addition, the image processing consists of linear matrix multiplication followed by a
non-linear activation, where the latter is motivated by the proximal operator of the l0 norm [19]. While
the INSIDEnet is already quite similar to the U-Net, we went one step further and integrated the decoder
structure missing in the INSIDEnet architecture to create the CP-BNN model. The main idea was to
combine the pre-filtered channels into one single channel by applying multiple convolutional layers in
every scale and eventually predicting the filtered denoised DPC image.

Continuing on the path of explainable deep learning models, we added a Bayesian perspective on the
transformation matrices of the INSIDEnet and in the convolutional layers of the decoder in the CP-BNN.
This allowed us to inspect not only the denoised image but also the uncertainty of the model as depicted
in Fig. 10. While all transformation matrices in the INSIDEnet follow a variational distribution, only
single convolutional layers in the CP-BNN are modelled from a variational family. This means that
only the uncertainty of the fusion and the one after the pre-filtering of the encoder was modelled in the
CP-BNN.

Both models were highly uncertain at the boarder of the breast and in regions with high absolute
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intensity amplitude such as edges. This can be deduced from the intrinsic noise statistics. The edges
inside the breast were simulated as highly scattering with a low DF signal and thus, following Eq. (8),
led to high uncertainty and high noise amplitudes. Therefore, we believe that the models were most
uncertain inside the breast where the DF signal was low. Following this rationale, we can also explain
the high uncertainty of pixels containing microcalcifications. Microcalcification are highly absorbing and
scattering which lead to a low transmission and DF signal, and consequently to an increased uncertainty.
Another reason may be the loss landscape and the susceptibility of the model to small changes in the
weights. In a Bayesian neural network the weights are modelled as a distribution. During prediction, we
try to approximate the predictive posterior using Monte Carlo sampling over the trained distribution of
the weights (see Eq. (35)). This means that each prediction is performed with different weights. The
uncertainty is then equivalent to the variance of the predicted images. Having a smooth convex loss
landscape with a clear minimum makes the model less prone to small changes in the weights and thus
results in similar predictions. However, if the learned distribution falls in a peaked, non-smooth local
optimum, even slight deviations lead to a significant increase of the loss and stronger deviations in the
predictions. We thus believe that some areas in the image are more susceptible to small deviations than
others, leading to the uncertainty seen in the images.

While the CP-BNN had low uncertainty in the background, the P-INSIDEnet model had a constant
uncertainty bias. To move from the image space to the sparse transformation domain we performed an
Einstein sum of the matrix Q with all stacked patches. In the transformation domain, the entries of the
transformed tensor are thresholded by the deterministic threshold constant Γ. Due to the probabilistic
modelling of B – which leads to the matrix Q – and Γ, the entries in the tensor are differently thresholded,
which eventually affects the whole image after back-transformation. Interestingly, the uncertainty in
the P-INSIDEnet showed similarities with the uncertainty image calculated using Eq. (8). The high
uncertainty is most prominent at the minima of the flat-field visibility map.

Training our networks in a supervised fashion with clean and noisy image pairs has yielded promising
results. Yet, in clinical settings it is not possible to obtain clean images, nor is it possible to extract the
same projection of a breast twice in order to train a network in a N2N fashion without jeopardizing the
patient’s safety or violating clinical standards. Even if it was possible to obtain two noisy projections,
the images would have to be perfectly registered, which in real-world physical settings is unlikely due
to patient movement or machine vibrations. Therefore, a pre-processing step would be needed prior to
inputting the data into our algorithms. Following the theory from N2N and NAC, and using the well-
known noise statistical relations in the individual contrast channels, we were able to train our networks
in a supervised fashion using synthetic generated noise overlapped on the existing noisy image and using
this noisy image as target. Yet, this method comes with a disadvantage: it only performs well when
dealing with images with low noise level – in our case requiring at least an average photon count of 3000.

Numerically, our models performed worse than the BM3D but were better in retaining high-frequency
features with small amplitude, where the BM3D fails. The BM3D is dependent on a single parameter
provided by the user – namely the standard deviation of the noise. Especially in data with heteroscedastic
noise, where the noise amplitudes vary spatially in the image, this can lead to information loss. Deep
learning techniques overcome this problem and learn to distinguish the noise levels in the image. Unlike
the supervised setting, where we used 440 images for training, we only used 320 in the unsupervised
setting. This was done to be more memory efficient, since for the calculations of the uncertainty we would
load an extra image channel (DF image) into the pipeline. Another reason for less training images was
to see if our models can be trained with less data, since not much real data is available yet. Surprisingly,
our models led to superior results compared to the widely used U-Net model. As stated in [19], the
INSIDEnet imposes a strong inductive bias on the denoising problem which allows it to be trained with
very limited data. From this, it may be concluded that the U-Net requires more data to perform at
equal level as the INSIDEnet and CP-BNN. Another reason is the architecture: As soon as the images

42



propagate through the U-Net, they are divided into different image channels, which most likely are in
different spaces and only reach the image space again in the last layer. The INSIDEnet, on the other
hand, goes back into the image space after each filter step. We therefore believe that it can better deal
with little data as well as the NAC method. In contrast to the U-Net, the CP-BNN was trained with an
intermediate-loss term, to ensure that after each layer in the encoder the images were less perturbed by
noise. The convolutional layers in the skip connections and in the encoder therefore needed to deal with
less noise and could thus use their expressive power on "simpler" data.

Perfect denoising is a challenging task and almost impossible to achieve if the noise level is high.
We have tried various architectures to see whether they are capable to denoise our images so that a
clean integration can be performed. While the models showed promising results in retrieving the clean
signal information, the predicted images were still corrupted by noise, which became most apparent after
integration. Still, due to the prior denoising, the integrated images showed significantly less blurring
and stripe artefacts, which enabled us to draw conclusions about the interior structure of the breast. To
further increase image quality, we used the WFF to get rid of the remaining stripes in the images.

With our proposed algorithms and the WFF, we were able to retrieve images without any major
disturbing stripe artefacts inside the breast, but some wide stripes with low amplitude remained on the
overall image. While the original integrated image and the BM3D denoised image showed significantly
less stripes after applying the WFF, blurred structures, strong undulating stripes, and noise remained.
Regions with high noise amplitudes were especially affected. Our deep learning models in combination
with the WFF in turn provided high quality images, which demonstrates the potential of deep learning
techniques compared to traditional denoising algorithms. However, tuning the WFF to perform well
can be a time-consuming task. It depends on multiple factors: the type of the stripes, the width, the
bias, and the image size. While we adapted the parameters of the WFF to fit one predicted image
from the deep learning models, we believe that finding new parameters for every single prediction would
result in better destriped images. However, the idea of this work was to bring fast and reliable denoising
algorithms to clinics, where no adjustment of parameters is necessary. Consequently, we only used one set
of parameters to destripe all predicted images. One way to overcome parameter tuning is to implement
a fully end-to-end deep learning technique from noisy DPC images to clean phase contrast images using
the ideas from WFF. For example, it could be possible to train the wavelet coefficients instead of pre-
selecting the wavelet prior for the transformation. Furthermore, one could train the standard deviation
in the Gaussian window used in the FFT, or even make it adaptive to the data, which would allow for
adjustments to the specific type of stripes in the image.

Finally, we have evaluated the algorithms on real data acquired on the Philips Microdose System at
the University Hospital Zurich. One of the issues with our deep learning models was that the image
values had to be scaled to a range equivalent to the one from the training set. The obtained images
however, had a dynamic range in the order of 109, which made it hard to correctly calibrate them. We
thus found that the best denoising results were obtained when scaling the absorption images to the same
range as in the training and scaling the DPC images so that the histogram of the new images becomes
similar to the one used in training. Yet, due to the bimodal distribution of the DPC histogram in the
acquired images, further pre-processing had to be performed to ensure correct denoising performance.
Interestingly, transforming the histogram to a unimodal distribution improved the image quality notably
where stripes from the acquisition have been removed or diminished. The nature of these stripes has yet to
be investigated; however, we assume that they might result from grating imperfections and misalignments.
After destriping the remaining stripes in the transformed image, the calculated histogram resembled the
one from training. Nevertheless, correctly calibrated data in [−π, π] as well as [0, 1] for absorption (and
DF – in case of NAC), is crucial for the algorithms to function properly.

Although our models were trained on simulated data, the denoising results on real data were surpris-
ingly good. Each model was able to mitigate the noise and improve image quality. The results from the
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two-channel models indicated that information from the absorption channel leaked to the DPC image
– the CP-BNN was most affected by this. Our reason for training the models with both channels was
that they gave better results overall on all training, validation, and test sets. Here we already suspected
that there would be a flow of information between absorption and DPC. However, we did not expect this
information to be as high as can be seen in the CP-BNN. Consequently, we believe that our simulated
projections in absorption and DPC are physically too similar. In fact, we assume that the gradient of
phase and absorption are similar up to scalar factors. This means that the network, especially the CP-
BNN in the fusion channels, learns to calculate the gradient of the absorption channel and scale it to the
correct range of the DPC image. We found that the denoising capacities in the background is strongly
dependent of the scaling of the absorption channel. We thus believe that choosing the right scaling could
improve image quality and even make it less prone to information leakage from the absorption channel
into the DPC channel. Yet, finding the right scale is challenging. This difficulty has already resonated
in the scaling of the DPC channel, where, however, the challenge is less pronounced due to the approxi-
mation to a Laplacian distribution. It is now to be determined to which degree information leakage from
absorption to DPC is justifiable and/or desirable.

To avoid information being leaked to the DPC channel, additional models have been trained to only
take the DPC image as input. These models, however, showed worse results compared to the two-channel
models when evaluated on the test set (see Appendix A.6). However, we believe that their denoising
capacities are more effective since they have to perform without any information from the absorption
channel. On the real images, they were able to significantly reduce the noise inside the specimen. This
could be observed especially in the zoomed-in regions. Particularly noteworthy is the comparison to the
BM3D. The deep learning models are able to extract the information from the noisy image without adding
patchy structures or blurring. This shows the superiority of the deep learning models over conventional
denoising tools, even though they were trained on purely simulated data. We believe that, with more
real data, it should be possible to fine-tune our trained models in either a NAC-fashion or N2V-fashion,
as we suspect that the weight distribution only requires slight adjustment to denoise the current images
satisfactorily.

Lastly, we compared the results of the integrated denoised DPC images. Segmentation of the region
of interest, as we did in our experiment, is generally not possible in clinical settings. On the one hand, the
boundaries of the regions are sometimes difficult to identify due to noise and acquisition artefacts. On the
other hand, it is time-consuming to perform a manual segmentation. Simple automatic segmentation such
as thresholding would be a possibility, but due to the zero centering of the data it is challenging to find
an exact threshold, especially if each object is different. It should be emphasized that by integrating the
predicted images with the background, we would have gotten worse results and heavier artefacts than seen
on the masked and integrated images. This is mainly due to the fact that no algorithm was able to denoise
the complete background and thus remaining noise would result in heavier stripe artefacts and blurring in
the direction of integration. Surprisingly, what was supposed to be a pre-processing step with histogram
transformation and destriping, turned out to be a big advantage not only in the DPC channel, but even
more so in the integrated image. The original integrated image showed strong stripe artefacts, which
could be removed with the WFF. However, it would not have been possible if we had integrated over the
background as well. The noisy integrated image, on the other hand, has significantly less stripe artefacts,
from which a wide amount of information can be retrieved. Remarkably, the results of the algorithms
did not provide any outstanding improvements for the integrated image, which is counter-intuitive as
the DPC images themselves showed less noise. Even more astonishing are the similarities between the
integrated noisy image and the images coming from the one-channel model, where basically no difference
can be perceived. By looking at the zoomed-in images, it is possible to see that the noisy PC image has
some smearing inside the specimen, where the filtered ones do not. However, apart from that, the images
look the same and would most likely not lead to a misinterpretation of the image. Our assumption about
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the information leakage with the CP-BNN model were proven after we integrated the predicted DPC
image, which resulted in an integrated image that looked very similar to the original absorption image.
This concludes that although the model has shown a better performance on our simulated data, it is not
trustworthy on real data. However, with better simulations and/or better network architecture, the one
stream information flow from absorption to DPC could be mitigated.

6 Conclusion

Deep learning denoising algorithms have become increasingly useful in various imaging areas. However,
until recently only one paper has investigated denoising and enhancement of the image quality from
DPC images [68]. Their approach differed from ours in that they directly tackled the problem during
the signal retrieval from the phase-stepping curve with subsequent image denoising using known and
widely used deep learning architectures. Our approach, on the other hand, tackles the problem in the
projection domain, thus after the signal retrieval, using newly developed architectures with a clear and
mathematical reasoning. Additionally, we added a Bayesian perspective to model the uncertainty in
the prediction. While we were able to train our models in a supervised and even unsupervised way
with satisfactory results, the predicted images from the models themselves did not deviate much from
each other. This suggests that with both the newly developed methods and the state-of-the-art U-Net
architecture, no perfect denoising can be achieved, while still keeping all the details from the original
image. Yet, a perfect denoising is crucial to be able to generate high-quality phase contrast images, which
has not only proven itself in the simulations but also on real data. We thus propose to go into a different
direction when continuing this work. One possibility would be to train a variational network, which has
become popular in image reconstruction [69–71]: Instead of first predicting the denoised DPC image and
performing the integration afterwards, it would directly learn to reconstruct the phase contrast image
from the noisy DPC image by exploiting the knowledge of the differentiation as a forward operator. The
denoised DPC image, if desired, could then be directly retrieved by taking the gradient of the predicted
phase contrast image. We believe that with this approach, it would be possible to retrieve the phase
contrast image, even if it was trained on simulated data. This would pave the way to model-based deep
learning algorithms and more reliable and interpretable models.

While we successfully implemented a Bayesian view on our models, we believe that this extra feature
adds only little value. Knowing the uncertainty in the prediction can be crucial in areas where decisions
have to be made, such as medical diagnostics. Being able to assess uncertainty in our denoised predictions,
however, did not improve the image quality in any sense. Yet, it gave us the ability to better interpret the
decision made by the single algorithms and help understand where the stripe artefacts may originate from
when integrating the image. This Bayesian aspect may be more useful when combined with a variational
network. The uncertainty could then be helpful to classify how well the model approximation, such as
the forward operator, and the regularizations work, and which uncertainties result intrinsically out of the
reconstruction of the variational model.

Applying the models on real data has shown impressive results, even though they were trained on
simulated data. Yet, after integration and segmentation, the added value from the previous denoising
has greatly diminished. The integrated predicted images only slightly improved the visual quality of
the images compared to the noisy image. Therefore, we believe that the background noise in DPC
has a significant negative effect on the quality of the images. Using only the region-of-interest shrinks
the amount of blurriness and stripe artefacts in the integrated images. Hence, we believe that with an
automatic segmentation model, the quality of the phase contrast images could be greatly improved. The
problem of noise in the background would be completely eliminated and the noise inside the sample could
be reduced with our proposed models.

In conclusion, our models have not only shown promising results in denoising DPC images in both
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the simulated case and on real samples but were also fast in their predictions. Moreover, the results on
real images – especially the ones from the CP-BNN – have shown the importance of accurate simulations
for our task. These should be simulated even better in the future. Nevertheless, it should be emphasized
that these models have only been trained on simulated images and can lead to better results if trained
or fine-tuned on real data. Finally, to build an automatic pipeline from DPC to phase contrast, better
models and algorithms are required.
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A Appendix

A.1 Masks and flats

Figure 22: Used flats for the simulation of the PSC curve and the generation of the individual projections.

Figure 23: 3D mask of the used breast. Left is the original 3D mesh acquired on the Breast-CT system
of the University Hospital Zurich. On the right is the simulated squeezed breast created with an affine
transformation and morphological operations.
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A.2 Absorption Results

Figure 24: Absorption results: MSE, MAE, SSIM and SNR over the whole test set evaluated on all two-
channel prediction models. On the top: results using an average photon count of 1000. On the bottom:
results with an average photon count of 5000.

MSE MAE SSIM SNR
1000 Photons
Input 2.32e-3 (1.77e-3) 2.25e-2 (9.38e-3) 0.958 (7.51e-3) 24.9 (0.282)
U-Net 7.05e-6 (5.12e-7) 1.86e-3 (6.2e-5) 0.990 (1.66e-3) 27.35 (0.376)
INSIDEnet 1.03e-5 (6.48e-7) 2.27e-3 (6.03e-5) 0.986 (2.29e-3) 27.21 (0.375)
P-INSIDEnet 1.06e-5 (7.53e-7) 2.43e-3 (9.38e-5) 0.984 (2.74e-3) 27.21 (0.369)
BM3D 9.06e-6 (1.42e-6) 2.1e-3 (6.2e-5) 0.988 (2.13e-3) 27.361 (0.374)
5000 Photons
Input 4.179e-5 (1.187e-6) 5.08e-3 (8.321e-5) 0.92 (1.31e-2) 26.8 (0.351)
U-Net 4.602e-6 (3.971e-7) 1.371e-3 (6.107e-5) 0.994 (1.188e-3) 27.37 (0.374)
INSIDEnet 5.494e-6 (4.06e-7) 1.557e-3 (6.249e-5) 0.992 (1.303e-3) 27.30 (0.382)
P-INSIDEnet 6.017e-6 (6.674e-7) 1.802e-3 (1.41e-4) 0.991 (1.906e-3) 27.294 (0.378)
BM3D 8.101e-6 (4.178e-5) 1.803 (1.6e-4) 0.989 (2.127e-3) 27.373 (0.374)

Table 5: Absorption results: Denoising results summarised from Fig. 24 in mean and standard deviation
(in parentheses) from all metrics across all 64 test images. Outlined next to the denoising results are
the original metrics values between clean image and noisy image (here referred to as Input). The best
performing value of each model is highlighted.
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Figure 25: Denoising results on the whole breast and zoomed-in region from a absorption projection
over all two-channel models and the difference between the original noisy and predicted image. Top row
left: Clean and noisy image and patches, respectively. In subsequent rows are the predicted images and
zoomed-in regions along with the difference from P-INSIDEnet, INSIDEnet, U-Net, and BM3D.

53



A.3 Unsupervised Results

Figure 26: Denoising results visualized on the whole projection, from which zoomed-in regions have been
taken in Fig. 13. Note that the dynamic range is smaller to better visualize high noise amplitudes.
Arrows indicate regions where the visibility flat has a minimum and therefore the noise levels are high.
Each algorithm fails to retrieve the clean signal hidden behind these high corrupted regions.
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A.4 Destriping Results

Figure 27: Depiction of the destriping performance of the WFF over the worst performing image of the
supervised analysis. First row depicts the original DPC and integrated image pairs. The next rows depicts
the denoised DPC image from the individual models along with the integrated image, the destriped image,
and their difference.

55



Figure 28: Depiction of the destriping performance of the WFF over the best performing image of the
supervised analysis. First row depicts the original DPC and integrated image pairs. The next rows depicts
the denoised DPC image from the individual models along with the integrated image, the destriped image,
and their difference.
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A.5 Filters

Figure 29: Denoising capabilities of the CP-BNN visualized after each filter layer at every scale. The
rows indicate the scale, starting from the highest scale – i.e. full resolution – to the lowest scale

Figure 30: Denoising capabilities of the INSIDEnet visualized after each filter layer at every scale. The
rows indicate the scale, starting from the highest scale – i.e. full resolution – to the lowest scale
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A.6 DPC models evaluation

Figure 31: MSE, MAE, SSIM and SNR over the whole test set evaluated on all six models trained in
a supervised fashion. The SNR was calculated over the whole background, where a mask was obtained
using the transmission image. Models trained only on DPC images are marked with "DPC" after the
name. On the top: results using an average photon count of 1000. On the bottom: results with an
average photon count of 5000.
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