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• Motivation, multiscale, digital twins and machine learning 

• Bridging heterogeneous codes at different scales (slide 9)

• Numerical diagnostics and digital twin of a microfluidic  experiment. (slide 12)

• Accelerating reactive transport calcualtions (slide 19)

• Significance implications and challenges (slide 22)

• Summary (slide 24)

Outline of presentation 
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Motivation: Realistic multi-scale multi-physics modelling
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• Subsurface processes are governed by mass transport and phase change 
processes that act at several scales.

• Well established numerical tools and process understanding exists at each 
spatial scale (atomistic-, pore-, field- scale).

• Digital twins of the real physical systems require enhanced code-, physics-
and scale- couplings.  



Subsurface processes are governed by mass 
transport and phase change processes
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GeothermalCO2-SequestrationGeological DisposalEnhanced oil recovery

Realistic representation of the processes requires multiscale multiphysics description 



All scales matter: breakdown of relevant scales

Churakov & Prasianakis, Holistic process-based description of mass transport and mineral reactivity in porous media. Am. J. Science, 318 (9) 921-948 (2018)

Processes occurring at the atomic- and pore- scale control the evolution of the geochemical systems.
Currently, there exist several mature numerical tools, and good process understanding, at each scale.



Well established tools and process understanding exists at each 
scale: pore-scale benchmark example. 

Molins et al, Simulation of mineral dissolution at the pore scale with evolving fluid-solid interfaces: Review of approaches 
and benchmark problem set, Computational Geosciences, 1-34 (2020),      https://doi.org/10.1007/s10596-019-09903-x

Vortex methodLattice Boltzmann Chombo CrunchdissolFoam dissolFoam OpenFoam-DBS

Institute:

Participant code:

Such an example is the pore-scale dissolution benchmark with evolving fluid-solid interfaces. 
A calcite rock is dissolved due to the convective flow of acid solution. 
Six different codes participated and gave similar results.  

H+ Concentration contours pH=2

Remaining Challenge: Transfer information and connect the scales / codes

https://doi.org/10.1007/s10596-019-09903-x


Geochemical digital twins 

Predictive capability

Design optimization

Numerical Diagnostics
Process Understanding

Digital Twin

Digital Twin is a modelling based tool of increased realism. For geochemical applications, it should cover
several spatial and temporal scales, as well as all major underlying mechanisms.  



Machine learning, integral part of a digital twin 
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Machine learning is a set of numerical algorithms and models that allows a system to automatically 
learn and improve without being explicitly programmed. 

• Novel algorithms and increased computational power drive the new machine learning wave

• Artifical Neural Networks (ANN) are machine learning tools 

• ANNs are used here in two examples:
a) for coupling heterogeneous codes at different scales, 
in an effort to automate communication between scales and codes
b) for accelerating geochemical calculations coupled to a lattice Boltzmann solver 



Bridging heterogeneous codes at different scales
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Calcite rock 
dissolution

1m

Pore-scale
Lattice Boltzmann

Darcy-scale
MCOTAC (finite volumes)

100μm

Machine Learning
for upscaling

Communication and interfacing of heterogeneous codes at different spatial scales can be based on neural networks. 
The scale specific mechanisms and their dependence on several parameters can be used as the training input. 

Discretization Dx=0.1μm Discretization Dx=0.1m

Trained neural networks are light and robust functions that can be easily 
integrated in any code, written in any of the major programming languages.   

Prasianakis, N.I., Haller, R., Mahrous, M., Poonoosamy, J., Pfingsten, W., Churakov S.V., 
Neural network based process coupling and parameter upscaling in reactive transport simulations (In revision 2019) 



Upscaling strategy: case specific correlations,
extracted from detailed pore-level simulations. 

Prasianakis, N.I., Gatschet, M., Abbasi, A., & Churakov, S. V. Upscaling Strategies of Porosity-Permeability
Correlations in Reacting Environments from Pore-Scale Simulations. Geofluids 9260603 (2018).

Wormhole formation

Face dissolution

During dissolution, the permeability-porosity correlations deviate from typical Kozeny-Carman, and depend highly on the 
chemical and flow gradients. The Peclet (Pe) and Damkohler (Da) numbers can be used for classification of the expected 
evolution paths (e.g. wormhole formation / face dissolution). It is common to fit such correlations in power laws.  

𝐾𝐾 = 𝑎𝑎 ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏  Permeability (K) – porosity correlation:
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Upscaling porosity-permeability correlations 
into a macroscopic Darcy-scale code

The Permeability-porosity correlation in the case of wormhole formation is not possible to be fitted by a single power law, 
and usually requires human-machine interaction for segmenting the correlation to two or more domains (blue-red).
A shallow neural network can be used instead (black). Training is completed in few seconds. Process can be automated.  

Calcite rock dissolution

1m

Calcite porosity distribution during acidification along 
the macroscopic domain for two different approaches

The ANN was trained on the microscopic LB simulations, and was subsequently embedded in the Darcy scale code MCOTAC. 
If data exist, the neural network can represent higher dimension parameter spaces: 
e.g. porosity permeability correlations as functions of  K=f(Pe, Da, initial porosity, heterogeneity,…). 



Numerical diagnostics and digital twins
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Lab on a chip experiment (Celestine precipitation)

Augmented reality via modeling diagnostics



Lab on a chip: design and concept
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channels

chamber
pillars

60 µm

Collaboration with J. Poonoosamy, FZ-Jülich, Germany

Advantages: miniaturized environment, shorter time-scales, small quantities of reactants, continuous monitoring, parallel 

Challenges : in-situ conditions of flow and chemistry unknown, control of experiment, manufacturing, design of experiment

Microfluidic reactor 
(μm scale)

Typical lab experiment
(cm scale)



Digital Twin and Numerical diagnostics

Injection of 10 mM SrCl2 and 10 mM Na2SO4     celestine precipitation, crystal growth

Evolution of experiment (camera)

Local flow-field and streamlines visualization 
(numerically calculated, experimentally verified).

Spatial resolution of velocity field at different stages of 
the experiment (numerically calculated)

Local species concentrations, saturation ratio
(numerically calculated, interplay of advection/diffusion)

Local precipitation rates at fluid-solid interface,
prediction of directional differential growth

(numerically calculated, color: precipitation rate)

Poonoosamy, J., Westerwalbesloh, C., Deissmann, G., Mahrous, M., Curti, E., Churakov, S.V., Klinkenberg, M., Kohlheyer, D., Von Lieres, E., Bosbach, D., Prasianakis, N.I., 
A microfluidic experiment and pore scale modelling diagnostics for assessing mineral precipitation and dissolution in confined spaces, Chemical Geology, 528, 5, 119264 (2019)

Augmented reality by combining cross scale lattice Boltzmann modelling diagnostics. Numerical model includes:
a classical nucleation theory (CNT) implementation (nanoscale processes), multicomponent transport, kinetic reactions.

Layers of diagnostics
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Accelerating reactive transport calculations:  
Chemical calculations is the bottleneck 
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Machine learning has been used in several fields of computational physics that involve reactive transport in the past.
Lately there are several efforts also in the field of geochemical reactive flows. Advanced algorithms and available 
computing power are the drivers of innovation.

Leal, Allan MM, Svetlana Kyas, Dmitrii A. Kulik, and Martin O. Saar. "Accelerating Reactive Transport Modeling: On-Demand Machine 
Learning Algorithm for Chemical Equilibrium Calculations.“, arXiv preprint arXiv:1708.04825 (2017), Transport in Porous Media (2020).

Laloy, Eric, and Diederik Jacques. "Emulation of CPU-demanding reactive transport models: a comparison of Gaussian 
processes, polynomial chaos expansion, and deep neural networks." Computational Geosciences 23, no. 5 (2019): 1193-1215.

Guérillot, D., Bruyelle, J. Geochemical equilibrium determination using an artificial neural network in 
compositional reservoir flow simulation. Comput Geosci 24, 697–707 (2020)

Jatnieks, Janis, Marco De Lucia, Doris Dransch, and Mike Sips. "Data-driven surrogate model approach 
for improving the performance of reactive transport simulations." Energy Procedia 97 (2016): 447-453.

Accelerating chemistry in the filed of combustion, reactive flows 

Accelerating geochemistry and geochemical reactive transport calculations

Guerillot, D. R., and J. Bruyelle. "History matching methodology using an optimal neural network proxy and a global optimization method." 
In Third EAGE Integrated Reservoir Modelling Conference, pp. cp-504. European Association of Geoscientists & Engineers, (2016).

Christo, F. C., A. R. Masri, and E. M. Nebot."Artificial neural network implementation of chemistry with 
PDF simulation of H2/CO2 flames." Combustion and Flame 106, no. 4 (1996): 406-427.

Prasianakis, N.I., Haller, R., Mahrous, M., Poonoosamy, J., Pfingsten, W., Churakov S.V., 
Neural network based process coupling and parameter upscaling in reactive transport simulations (In revision 2019) 

Check presentation of 
M. De Lucia, Session 6a,
“Surrogates and caching 
of results in lookup tables: 
tools to speedup reactive 
transport simulations”



Simple speciation, complex reactive transport 
and phase change setup: celestine precipitation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the digital twin of the microfluidic experiment it is necessary to calculate at each time step, and at each node the 
chemical speciation and the saturation index (SI). Local SI drives the precipitation kinetics. 

Evolution of Concentration of Sr+2

Evolution of Saturation ratio

Typical workflow for calculation of SI: 
Knowing the concentrations of primary 
species, an external LMA solver, e.g. 
GEMS / PHREEQC is invoked for the 
calculation of the chemical speciation

Injection of fresh 10 mM SrCl2 and 10 mM Na2SO4 mixture 
 celestine precipitation, crystal growth



Accelerating geochemistry, and accuracy considerations
Comparison of Exact LMA, Lookup table, Neural Network
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Exact LMA
GEMS

PHREEQC
Vs Vs

Evolution of the domain average 
supersaturation for the different methods: 
exact LMA, lookup table (linear interpolation), 
neural network with 2 hidden layers. 

40x40 lookup table 
generated from exact LMA,
coupled to LB

N
a 2

SO
4

Exact LMA coupled 
to lattice Boltzmann (LB)

Neural network trained on 70% of the 
lookup table entries, RMSE=6.64 * 10-5 ,
coupled to LB 

In this setup, ANN proves to be 
orders of magnitude faster compared 
to LMA and extremely accurate also 
compared to lookup table.

Zoom in

Prasianakis, N.I., Haller, R., Mahrous, M., Poonoosamy, J., Pfingsten, W., Churakov S.V., 
Neural network based process coupling and parameter upscaling in reactive transport simulations (In revision 2019) 



• A typical Lattice Boltzmann code for 4 master species can perform ~ 1’000’000 grid (lattice) point updates per 
second (1 MLUPS), on a single CPU core. Geochemical calculations occur at every timestep / every lattice point

• Typical geochemical speciation code (GEMS/PHREEQC) delivers ~ 1’000 cold start geochemical calculations per 
second on a single CPU core (e.g. Xeon E5-2650v4 2.2 GHz ). In this case, chemistry consumes 99.9% of the 
computational time (1000 times slower than the flow solver)

• The neural network shown here, with 2 hidden layers and 8 neurons per layer, has a sustained throughput 
performance of ~ 13’000’000 calculations of SI per second, on the same cpu core (c code function). This is a 
speed-up of geochemical calculation ~ four orders of magnitude, chemistry is not anymore the bottleneck !  

• Similar speed-up is observed also from the lookup table implementation, and for simple problems it can be 
more straightforward to implement. However, linear interpolation can be less accurate, and for more complex 
problems the lookup table grows exponentially. E.g., precision of 100 points per dimension (input variable), for 
6 dimension (input), results in a 1 Trillion points (10^12) and occupies in memory 31 Exabyte (100 times more 
than the storage capacity of the largest supercomputer) 

• Training a neural network for higher dimensions, to achieve the desired accuracy is still very challenging, and 
the difficulty increases with the complexity of the geochemical problem. High quality of training data is also 
required. However, the network performance does not decrease with the number of dimension rather than 
with the number of neurons per layer. Pre-training or training on-the-fly are both very promising options.  

• See next slide for high performance computing. 

Significance, implications and challenges
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Supercomputing: Transport is fast, chemistry is 
slow, hybrid computer architecture
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Swiss Supercomputing Center (CSCS)

Piz Daint Nvidia Tesla P100 GP-GPUs

X-ray tomogram
(1 Billion Voxels)

Current supercomputers allow to simulate geometries with > 10 billion voxels (grid points). Most advanced systems have 
hybrid CPU/GPU computational nodes. Transport and chemical calculations take place at every voxel, at every timestep

Chemistry
GEMS / PHREEQC

Transport (flow)
Lattice Boltzmann

Chemistry
Neural Network

1 CPU-core
~ 1’000/s

1 CPU-core, 4 species
~ 1’000’000/s

1 CPU-core 
(depending on system)
->more than 1’000’000/s

1 GPU 
-> Impossible 
Code not available

1 GPU, 4 species
-> 100’000’000/s

1 GPU
-> Expected speedup 

10-100 times the CPU

For high performance computing, where problem can be 
solved entirely in parallel GPU setup (Lattice Boltzmann),  
surrogate modelling is an enabling step. 

Comparision of Calculations per second



• Ever increasing realism of multiphysics simulations is an enabling technology for digital 
twins e.g. lab on a chip digital twin, nuclear waste repository 

• Real-time digital twins can assist in the interpretation and the steering of laboratory 
experiments. The potential is yet to be explored.

• Machine learning can assist in bridging the scales and physics in multiscale 
multiphenomena simulations 

• Artificial neural networks (ANN’s) can replace the geochemical solver or any underlying 
physical process during runtime. Acceleration of several orders of magnitude is expected. 
This is especially important for conducting sensitivity and uncertainty analysis

• Neural networks must be trained carefully to achieve the desired accuracy. More research 
is needed to identify better the fields of application.

• Lookup table techniques work best for low dimension problems. Their exponential growth 
with the number of inputs is prohibitive for higher dimensional problems. 

Summary 
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Wir schaffen Wissen – heute für morgen
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