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Zusammenfassung
Fachbereich Physik, Mathematik und Informatik

Institut für Kernphyik

Master of Science

Ein Kamerasystem zur Ausrichtung für das Mu3e-Experiment

von Goran Stanić

Das Mu3e-Experiment wird am PSI (Paul Scherrer Institut) im schweizerischen Vil-
ligen durchgeführt und hat es zum Ziel den Lepton-Flavor-verletzenden Zerfall µ →
e+e+e− bei Verzweigungsfraktionen von über 10−16 zu finden oder auszuschließen.
Der Mu3e-Detektor ist hauptsächlich ein Spurdetektor, der aus dünnen monolithi-
schen aktiven Pixelsensoren mit Hochspannung (HV-MAPS) besteht. Diese werden
durch szintillierende Fasern und Kacheln ergänzt, die präzise Zeitmessungen ermögli-
chen. Die einzelnen Detektorteile sind in einem Detektorkäfig integriert, der in einen
1 T-Solenoidmagneten eingesetzt ist.

Eine der größten Herausforderungen des Experiments liegt in der präzisen Ausrich-
tung der Detektorelemente. Eine Fehlausrichtung (Misalignment) kann durch verschie-
dene Faktoren verursacht werden. Dazu zählen die Konstruktion der einzelnen Detek-
torelemente sowie deren Integration bis hin zu den Umgebungsfaktoren während der
Betriebszeit des Experiments. Um die bestmögliche Impulsauflösung zu erreichen und
die Auswirkungen der Fehlausrichtung zu reduzieren, wird ein spurbasiertes Ausrich-
tungsprogramm verwendet. Dieses hat jedoch den Nachteil, dass sogenannte schwache
Moden, d. h. Verformungen des Detektors, die Spuren gleicher Qualität erzeugen, nicht
aufgelöst werden können.

Das Ziel der vorliegenden Arbeit ist es die schwachen Moden zu korrigieren, indem
ein hochpräzises kamerabasiertes Ausrichtungssystem entworfen und entwickelt wird,
das die Detektorposition von außen überwacht. Das System besteht aus mehreren
Infrarotkameras, die sich gegenseitig und den Aufbau des Detektors beobachten. Das
Hauptaugenmerk besteht darin, die Messgenauigkeit der Kameras so weit zu erhöhen,
dass sie mit der einzelnen Pixel des Tracking-Detektors vergleichbar ist, die bei 80 µm
liegt.
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The Mu3e experiment is going to be conducted at PSI (Paul Scherrer Institute) in
Villigen, Switzerland, and it aims at finding or excluding the lepton flavor violating
decay µ→ e+e+e− at branching fractions above 10−16. The Mu3e detector is mainly a
tracking detector built from thin High-Voltage Monolithic Active Pixel Sensors (HV-
MAPS) complemented by scintillating fibers and tiles for precise timing measurement.
The individual detector parts are integrated and placed on a detector cage which is
inserted in a 1 T solenoid magnet.

One of the main challenges of the experiment lies in the precise alignment of
detector elements. Misalignment can be driven by multiple factors ranging from the
construction of individual detector elements, their integration, all the way to the envi-
ronmental factors which are present during the on-time of the experiment. In order to
achieve the best possible momentum resolution and reduce the effects of misalignment,
a track-based alignment program will be utilized. Track-based alignment cannot, how-
ever, resolve so-called weak modes - deformations of the detector that produce tracks
of equal quality.

This thesis aims at correcting for the weak modes by designing and developing
a high-precision camera-based alignment system that monitors the detector position
from the outside. The system will consist of multiple infrared cameras, which will
observe each other and the detector set-up. The main goal is to drive the camera
measurement precision to be comparable to the individual tracking detector pixels,
which is at 80 µm.
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Chapter 1

Introduction and Physical
Motivation

“Observation, reason, and experiment make up what we call
the scientific method.”

Richard P. Feynman

1.1 The Standard Model

Over the previous couple of decades, in the search for the fundamental building
blocks of matter and interactions between them, physicists have been developing and
continuously testing a currently dominant description of nature, the Standard Model
(SM). Since 2012, after the discovery of the SM’s crown jewel - the Higgs boson -
it has been the most successful, self-consistent theory, predicting and explaining
countless modes of decay, the nature of interactions between different particles, and
the general way in which the world around us unfolds.

As seen in Fig. 1.1, the SM contains two overarching categories of elementary
particles: fermions - the half-integer spin constituents of matter, and bosons - the
integer spin force-carriers which are responsible for mediating interactions between
fermions, giving rise to the electromagnetic force, the weak force and the strong
force. The Higgs boson is a category in itself, as it is a manifestation of the Higgs
field, which is responsible for giving mass to all the other fundamental particles.
In addition, fermions can be subdivided into two categories, namely into quarks
and leptons, each consisting of six fundamental particles, two in each of the three
generations of matter. Up quarks and down quarks make up protons and neutrons,
which together with electrons account for all the visible matter in the Universe. Lest
we forget, each of the fermions has its antimatter counterpart, bringing the number
up to 12 in total.

Even though the Standard Model represents a pinnacle of physics research to
date, it does not account for some of the greatest scientific mysteries, such as the
existence of Dark Matter and Dark Energy and the matter-antimatter asymmetry
in the Universe. There is also an obvious problem of merging the SM with General
Relativity, which would include gravity into the force-carrier family. This is pre-
cisely why looking Beyond the Standard Model (BSM) in search of answers is what

1
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Figure 1.1: The Standard Model of particle physics.

occupies physicists all around the world. It is a fertile ground both for known and
unknown unknowns that lie before us.

1.2 Leptons and lepton flavor violation

Leptons are a group of half-integer spin elementary particles that do not interact
strongly and can be either charged (electron-like) or neutral (neutrino-like). They
come in three generations, the electronic, the muonic, and the tauonic, and each
generation forms a weak isospin doublet which allows us to assign them different
flavors and flavor numbers. Particles from the electronic generation have an elec-
tronic number Le = 1, from the muonic generation the muonic number Lµ = 1,
and from the tauonic generation the tauonic number Lτ = 1. Their antiparticle
counterparts have the negative values of the flavor numbers. In the Standard Model,
the lepton flavor number is a conserved additive quantum number at the tree-level.
This means that the sum of the flavor numbers of each generation has to be the
same before and after the reaction. In Fig. 1.2, we can see two decays with their
corresponding Feynman diagrams, the one on the left being allowed in the SM and
the one on the right forbidden.

This, however, is not the complete story. Experiments in the late 1990s and
the early 2000s, such as SuperKamiokande, SNO, and KamLAND [1–3] have pro-
duced evidence of lepton flavor violation (LFV) in the neutrino sector through the
mechanism of the so-called neutrino oscillation, or mixing. These results point to
the existence of massive neutrinos, which, when accounted for in the extensions of
the SM, allow for a possible, yet incredibly suppressed LFV decay in the charged

2
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(a) Allowed (b) Forbidden

Figure 1.2: Allowed and forbidden decay in the Standard Model due to lepton flavor
conservation.

Figure 1.3: Highly suppressed neutrino-less decay
of a muon to two positrons and an electron in the
Standard Model.

lepton sector. For example, the branching ratio of a positive muon decaying into two
positrons and an electron (µ→ e+e+e−) would be of the order of BR ∼ 10−55 [4,5],
making it inaccessible to any form of experimental investigation (Fig. 1.3). The
reason for such a small branching ratio, even though the mixing angles in the neu-
trino matrix are measured to be large, lies in the fact that the neutrinos are much
lighter than leptons. Additionally, the differences between the squares of masses of
neutrinos are tiny compared to the W-boson mass [6].

Since the mechanism for and the size of LFV are unknown, this process opens
a door for investigating neutrino mass generation and physics beyond the Standard
Model. This is why theoretical physicists have introduced multiple new elemen-
tary particles in models such as Grand Unified models and Supersymmetric models
(SUSY) [7], Triplet Higgs Model [8], Extended Gauge Sector [9], or Leptoquarks [10].
All of these give a much higher chance for a lepton flavor violating decay to occur,
making it reasonable to look for it with the current and developing detector tech-
nology. An example of one such decay in the SUSY model is presented in Fig. 1.4.

As it is starting to become clear from the decays listed as examples above, one
of the prime ways to look for lepton flavor violation in the charged lepton sector
is to observe forbidden muon decays. The decision becomes clear when we realize

3
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Figure 1.4: µ→ eee decay in a SUSY model.

that electrons, as the first-generation particles, do not decay any further, whereas
the amount of taus that can be produced is several orders of magnitude smaller
than that of muons. This is the reason why the path of searching for lepton flavor
violation in muon decays has been taken by many experiments so far in different
experimental channels, e.g., µ→ 3e, µ→ eγ, µN → eN (Fig. 1.5). They have been
pushing the limits year after year, however, without success. Now, the time has
come for a new generation of experiments to make the scene and push the frontier
further.

Figure 1.5: Conducted and proposed experiments searching for lepton fla-
vor violation in muonic experimental channels. Solid markers stand for
currently running or concluded experiments, whereas the hollow markers
represent experiments under development. Adapted from [11].
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Chapter 2

The Mu3e Experiment

The Mu3e experiment is one of the few experiments currently being built that aim at
detecting a lepton flavor violating event or excluding a branching fraction of decay
to a certain level. As its name states, Mu3e will hunt for a µ→ eee decay, or more
specifically for a positive muon decaying into two positrons and an electron:

µ+ → e+e+e− .

In the case of the Mu3e experiment, single event sensitivity lies at a branching
fraction of 2×10−15 for Phase I and 10−16 for Phase II of the experiment. In order to
achieve the final goal, more than 1017 muons have to be stopped in the detector with
a muon stopping rate of around 2× 109 Hz and a background suppression to below
10−16. Luckily, Mu3e will be located at the Paul Scherrer Institute (PSI) in Villigen,
Switzerland, which houses the πE5 beamline, the highest intensity low-energy muon
beam in the world (in use for Phase I), as well as the future HiMB (high-intensity
muon beam) which is currently under study at PSI (planned for Phase II). In essence,
the PSI synchrotron serves as a proton accelerator which accelerates the proton beam
to 590 MeV. The beam impinges on a carbon target wheel, producing pions that
then decay to muons which are guided to the experiment where they are implanted
in a stopping target, and their decay products are observed. This results in a vast
amount of muon decays which need to be sieved, recognizing and eliminating the
background and finding the potential signal of a µ→ eee decay (Fig. 2.1).

2.1 Signal and background

Since the µ → eee decay is prompt, observation of two positrons and an electron
emanating from a single source at the same point in time is expected. Apart from
this condition, two more apply, namely:

• The sum of four-momenta has to be equal to the muon mass;

• The three-momenta of the electron and the positrons has to add up to zero in
the muon rest frame, which is equal to the lab rest frame, i.e.,

∑
~ptot =

∑
~Pi = 0 . (2.1)

5
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Figure 2.1: Representation of a µ→ eee decay.

As the decay happens at rest, the energies of the decay electron and positrons is in
the range 0-53 MeV and the decay products all lie in a plane.

When searching for a rare decay event such as this one, potential backgrounds
and their discrimination must be well understood. Two main background sources
influence the sensitivity of the detector at hand, irreducible backgrounds and acci-
dental backgrounds.

Irreducible backgrounds The dominating irreducible background effect arises
from the internal conversion process µ+ → e+e+e−νν with a branching fraction of
3.4× 10−5 (Fig. 2.2a). This process can be distinguished from the desired signal
only by relying on momentum and energy conservation to reconstruct the neutrinos,
which the detector cannot detect.

Accidental backgrounds The main contributor to the accidental background is
also the main decay channel of the positive muon - the Michel decay µ+ → e+νν. As
it does not contain any negatively charged particles as decay products, it can only
significantly contribute to the background if it coincides with additional processes
that provide negatively charged particles, such as Bhabha scattering, photon con-
version, or Compton scattering. An accidental combination of such processes can
lead to a decay topology similar to the one expected from the signal (Fig. 2.2b).
Luckily, these processes do not and cannot originate from the same point in space
and time, which means that with superb vertex and time resolution, the background
noise can be reduced, allowing the silent hum of the true signal to be found.

2.2 The Mu3e detector

The Mu3e detector set-up focuses on particle tracking, which allows for momentum
and vertex reconstruction, as well as timing measurements - all integral parts of the
µ→ eee decay detection and background suppression. The whole detector is located
in a 1 T solenoidal magnetic field and consists of various modules, which can be seen

6
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(a) Irreducible (b) Accidental

Figure 2.2: Dominant background processes in the Mu3e experiment.

Figure 2.3: Detector schematics: A longitudinal cross-section of the central and first
recurl stations - one on each side. Positrons are depicted in red and the electron in
blue.

in Fig. 2.3. After the muons reach the experiment, they are implanted inside a hol-
low double-cone target, after which they decay at rest. Their decay products spread
outwards and describe helical tracks as they are guided by the magnetic field. While
curling, they traverse layers of pixel sensors that track their position, and scintilla-
tion fibers and tiles, which are used for precise timing measurements. Because of the
detector geometry, at the end of their journey, they recurl back and hit the detector
once again, which significantly reduces the dominating effects of multiple Coulomb
scattering on the momentum resolution. The following paragraphs will be focusing
on detector parts mentioned above in slightly more detail.

The pixel detector The pixel detector consists of two cylindrical double layers,
i.e., the inner and outer pixel layers, which at their core consist of a multitude of sili-
con pixel sensors, or more specifically High Voltage Monolithic Active Pixel Sensors,
so-called HV-MAPS (Fig. 2.4). HV-MAPS were excellent candidates for the Mu3e
detector, as they integrate sensor and readout functionalities in the same device, al-
lowing them to be thinned to just 50 µm, thus significantly reducing the material
budget and with it the amount of Coulomb scattering present. Moreover, individual
pixels are 80 × 80 µm which is much smaller than the contribution multiple scat-

7
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Figure 2.4: High-Voltage Monolithic Active Pixel Sensor (HV-
MAPS) - key segment of the tracking detector.

(a) Cross section of Scintillating Fibres (Sci-
Fi)

(b) Scintillating tiles module

Figure 2.5: Main parts of the time-of-flight detector.

tering has on the momentum resolution. In the context of the Mu3e experiment,
pixel sensors are implemented in the form of MuPix chips which contain 256 × 250
sensors each. Intelligent design (4 individual layers) and positioning with respect to
the target (one double-layer very close, and one further away, but not too far) allow
for both redundancy during track-fitting (four points for fitting a curve instead of
the usual three) as well as best possible vertex and track resolution for both lower
and higher momentum particles [6].

The Time-of-Flight (ToF) detector In order to precisely measure the arrival
time of particles, which helps with matching the hits detected in the silicon de-
tectors, a two-part cylindrical time-of-flight detector is being constructed. The first
part will consist of scintillating fibers (Sci-Fi) whose expected time resolution is
of several 100 ps and the detection efficiency around 100% (Fig. 2.5a). The Sci-Fi
detector will be placed in the central station on the inside of the outer pixel layer,
which will help reject pile-up events and allow for charge measurements of recurling
tracks. The second part of the ToF system will consist of scintillating tiles, which
will be placed in the recurl stations on the inside of the recurl pixel layer (Fig. 2.5b).
It aims at a resolution below 100 ps and an efficiency close to 100%, which will allow
for identification of a coincidence signal from electrons and positrons and the sup-
pression of combinatorial background. Both the scintillation fibres and scintillation
tiles will be read out by sillicon photomultipliers (SiPM) [6].

8
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Figure 2.6: CAD rendering of the detector cage (white) and the detector
inside of it.

The detector cage All of the detector parts are later integrated and mounted on
a removable frame called the detector cage, whose diameter is 852 mm. It consists
of two main ring frames on each side, made of pairs of glass-fiber reinforced polymer
wheels, as well as aluminum struts connecting the two wheels and forming the
cylinder structure (Fig. 2.6). Gliders on the wider struts help insert and extract the
cage in and out of the magnet. Additionally, the cage carries the infrastructure such
as crates for the power converters and the front-end FPGA boards, and provides
support for all the cabling and piping. The cage with the detector can be seen in
Fig. 2.6 [6].

In order to precisely reconstruct particle tracks and deduce their momenta and
origin, it is vital to have individual detector elements (described in the paragraphs
above) aligned as accurately as possible. The following chapters will be focusing on
the misalignment effects, general detector alignment, and specific alignment tech-
niques together with their benefits and drawbacks.

9





Chapter 3

Detector Alignment

The construction of a tracking detector is a highly demanding task. Research and
development aside, the very process of machining, gluing, and assembling different
detector elements, is paramount for a high precision experiment such as Mu3e. This
is why knowledge of the quality and quantity of misalignment, together with the
ideas that would lead to resolving them, has to be investigated.

3.1 Misalignment

An optimal scenario for the detector would be if all the detector elements ended up
where they should and stayed in their place during the whole run of the experiment.
However, this most certainly cannot be the case not only because of the limited
mechanical assembly precision but also because of the environmental factors such
as thermal expansion and gravitational effects.

Simulations using the misalignment software Mu3eMisal have been used to
investigate different misalignment modes and their effects on track reconstruction.
These have shown, that the misalignment originating from multiple factors during
the construction, assembly, magnet ramping, and during the on-time of the detector,
requires an alignment algorithm [12]. This algorithm would have to be able to correct
for the position, orientation, and potential deformation of all the detector elements,
as well as the general movements of whole detector parts relative to each other.
This procedure needs to be carried out since the algorithms in charge of track and
vertex reconstruction require knowledge of all of the variables above for all the active
detector parts in order to perform track reconstruction with the largest possible
precision.

3.2 Track-based alignment

One of the proposed alignment strategies is the so-called track-based alignment with
the help of the Millipede II software [13]. The procedure for the barrel-like,
multiple-layer detector is as follows. After individual particle tracks are observed
and fitted with a model, residuals - differences between the measured hit and its
corresponding prediction obtained from the fit - can be defined and calculated:

rij = mij − f(qj,p) . (3.1)
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Here, mij stands for one measurement and f , which depends on local track param-
eters qj and global parameters p, represents the track model, with i and j running
over all hits in the track, and all tracks in the model, respectively. A graphical
representation of all the variables can be seen in Figure 3.1. After the residuals have
been defined, we can go one step further by summing over i and j, and define the
χ2 function

χ2(qj,p) =
tracks∑
j

hits∑
i

(
rij
σij

)2

, (3.2)

where σij denotes the uncertainty of the measurement and rij are the residuals
defined in the previous step. The next and final stage is the point where the Mil-
lipede II software steps in and solves the minimisation problem of χ2 in a single
step obtaining an optimal combination of track and global parameters [12].

Figure 3.1: Schematics of a particle traversing three sensor planes. In magenta,
a coordinate system representing one set of global parameters, in red and light
red, the measured hit position and the predicted hit position, respectively, and
in green, the local track parameters. The residual is represented as a black
arrow [12].

3.3 Weak modes

The track-based alignment technique, however useful, has its drawbacks. One of
them is the fact that there exist specific tracker deformation modes which do not
influence the χ2 (Equation 3.2), so-called weak modes. Weak modes can be visualized
in an example of elliptical tracker barrel deformations (Figure 3.2). In this case, the
true track will have a worse χ2 than before the deformation; however, another track
can be reconstructed with the same χ2 as the original one, which is precisely the
main characteristic of the weak mode.

Multiple weak modes might occur during the course of the experiment, some of
which are merely expected from the geometry of the detector and some of which
have already been observed in the simulation. In Figure 3.3 an incomplete list of
weak modes which might appear has been presented.

12



Detector Alignment Goran Stanić

Figure 3.2: Weak mode in the case of elliptical deformations. The original track
is depicted in blue, measured hits are the red circles and on the very right, after
the deformation, a new track with the same χ2 as the original one is represented
in purple [12].

Figure 3.3: Different possible weak modes [12].

13
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Figure 3.4: Muon tracks during the elliptical deformation. In this case, the χ2

function is different before and after deformation (blue and purple) [12].

There are, however, several techniques that can be used to suppress weak modes
in the Mu3e experiment. One of them utilizes tracks from cosmic muons, which,
because of their very different topology from the expected tracks coming from muon
decays in the target, offer insight into detector deformations by connecting detector
parts that would otherwise not be connected (Figure 3.4). The same advantage
comes from using reconstructed tracks from Mott scattering, as they have strong
forward momentum.

Except for the above-mentioned techniques, in order to include even more infor-
mation into the χ2 function and the Millipede II software, and eliminate as many
weak modes as possible, independent high precision position measurements of de-
tector segments using cameras can be performed, which is exactly the main topic of
this work. In the following chapters, the construction of a camera alignment system,
its basic principles, as well as results obtained will be presented.

14



Chapter 4

Camera Alignment System

As discussed in previous chapters, proper alignment is crucial in high precision ex-
periments such as Mu3e, where the results highly depend on how precisely particle
tracks can be reconstructed and, therefore, to what precision the momenta and en-
ergies of particles can be estimated. To aid in this endeavor, a camera alignment
system was constructed as part of this thesis. The core idea behind the system
lies in the clever positioning of cameras around the detector cage, seen in Fig. 2.6,
which could, by observing the detector and each other, infer the absolute position
of detector elements in space. Within this chapter, basic principles of the position
calculation, together with a method for detector-specific measurements will be ex-
plained, and the camera system that was used will be introduced.

4.1 Basic principles

At the center of position calculations lies a very well-known equation from the field
of geometric optics, namely the magnification formula. In the case when an optical
system with a lens is observing an object (Fig. 4.1), this formula connects the actual
size of the observed object with its size on the image plane and the distance between
it and the lens:

dI
dreal

= M =
f

f − L . (4.1)

Here, dI and dreal represent the size of the image of the object and the real size of
the object, respectively, M stands for the magnitude of magnification, f is the focal

Figure 4.1: Geometric optics. Variables match those in the Eq. (4.1).
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Figure 4.2: Schematics of the basic camera set-up with camera modules (IR-
camera and two LEDs) on the detector cage and pairs of LEDs attached on
the detector. It is important to notice that the cross-sectional view of the
set-up is depicted.

length and L the distance between the camera lens and the object. Eq. (4.1) allows
us to do the following. If the size of the observed object and the focal length of
the camera lens are known, the distance between the camera and the object can be
easily calculated:

L = f

(
1− dreal

dI

)
. (4.2)

Having this in mind, we can imagine the following scenario. By placing camera
modules, which contain a camera and a pair of LEDs (purple), around the detector,
and pairs of LEDs (red) on the detector (Fig. 4.2), multiple distances could be
calculated, which would allow for precise determination of detector position in space.
In this case, the distance between the pairs of LEDs would represent the size of
the observed object mentioned in Eq. (4.2). A more detailed description of the
procedure will follow in Chapter 6. Next, by placing the bottom and the top-left
camera module along the y-axis of a 2D coordinate system, with the bottom camera
module in the center of the coordinate system, as in Fig. 4.3, the following equations
can be written down

x =
c

2
+
c(r20 − r21)

2D2
+ 2

b− d
D2

δ, (4.3)

y =
b+ d

2
+

(d− b)(r20 − r21)
2D2

+ 2
c

D2
δ, (4.4)
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Figure 4.3: Schematics of the basic camera set-up with the corresponding
coordinate system.

where δ = 1
4

√
(D + r0 + r1)(D + r0 − r1)(D − r0 + r1)(−D + r0 + r1), with all of

the variables matching those in Fig. 4.3. As a consequence, Eq. (4.3) and Eq. (4.4)
allow us to determine the position of one of the points on the detector. If one repeats
the method for multiple points it will result in a precise determination of detector
shape and position in space.

4.2 Camera modules

When constructing a camera module for alignment purposes in an experiment such
as Mu3e, there are several limitations one should keep an eye on, e.g., size and
weight because of spatial constraints, or the fact that the module should not disrupt
any active components of the detector. The fact that the free space around the
detector and on the detector cage is relatively narrow and that the ToF modules
contain scintillating materials which respond to visible light, a decision was made
to have the first iteration of the camera alignment system equipped with two main
components:

• Raspberry Pi v2 NoIR cameras

• Camera modules

The Raspberry Pi cameras are capable of detecting infrared light, and the camera
module will be equipped with a pair of infrared LEDs on each side of an infrared

17
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(a) Raspberry Pi v2 NoIR camera (b) Camera module

Figure 4.4: Main part of the camera alignment system - the Raspberry Pi NoIR
camera, and a depiction of a camera module with the camera in the middle and two
IR-LEDs on each side.

camera (Fig. 4.4). The LEDs will represent an object recorded by other cameras,
whose size will help infer the distances between them. The basic characteristics of
the IR camera are shown in Table 4.1.

One of the more important findings regarding the Raspberry Pi cameras was the
fact that the factory focal length (f = 3.04 mm) does not match the measured focal
length and also fluctuates slightly from one camera to the next. This situation is
not optimal as it is paramount to know the camera’s focal length to high precision
if the distances are to be calculated appropriately. Therefore, a camera calibration
procedure is necessary before the cameras are mounted and the measurements had
begun. The procedure does not require any special equipment, and all that is needed
is to know the distance between the camera and a recorded object, together with
the object’s actual and image sizes (see Eq. (4.2)). Calculations have shown that
the optimal scenario for determining the proper focal length of the camera is to

Table 4.1: Hardware specifications of the Raspberry Pi v2 NoIR camera.

Specs Pi NoIR v2

Size 25 × 24 × 9 mm

Weight 3 g

Still resolution 8 Megapixels

Sensor Sony IMX219

Sensor resolution 3280 × 2464 pixels

Sensor image area 3.68 × 2.76 mm (4.6 mm diagonal)

Pixel size 1.12 × 1.12 µm

Focal length 3.04 mm

Horizontal field of view 62.2 deg

Vertical field of view 48.8 deg

Price $25
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Figure 4.5: Heating up and cooling down of the camera and the surrounding
PCB.

have it placed around 700 mm away from a 250 mm long object and to know the
distances with a 5 µm precision (a caliper would suffice). An object of such a size
would correspond to around 950px on the image plane, and if the size of the object
in pixels is known to a precision of 0.033px (see Section 7.1.2), this will yield an
error of the focal length of about 0.14 µm. Such precision is sufficient for all the
calculations that include the focal length as a variable.

Another element of the puzzle one should keep an eye on is the heating up of the
camera sensor and the PCB (Printed Circuit Board) it is attached to. The effect
of the warm-up and the cool-down has been measured by attaching a temperature
sensor on the PCB next to the camera, and it can be seen in Fig. 4.5. The conclusion
is that the camera quickly heats up and then levels out at a certain point, with
the same behavior occurring when the cool-down begins. However, when trying
to capture a scene with an object in it (e.g., LED) while the camera heats up, the
coordinates of the object change unpredictably (see Fig. 4.6). A correlation between
the temperature change and the distortion of the camera sensor could not be clearly
defined. This is why additional measurements had been done where it was shown
that the camera is the most stable and unperturbed by temperature changes a few
seconds after it has been turned on. As a result, it was decided to implement a
recording procedure where the camera is turned on, left to heat up for 3 s, the photo
is taken, and finally, the camera is left to cool down for around 30 s. After that, the
recording procedure can be repeated.

Additionally, during the Mu3e Integration Run 2021 at PSI, one Pi NoIR camera
was placed in the same room as the detector, approximately 1 m from the exper-
iment, and was continuously taking pictures while the beam was on, for ∼ 60 h.
The camera shows no effects of radiation - no dead, stuck or hot pixels - which is
encouraging but requires a more serious stress test where it will be mounted on the
cage and inserted inside the magnet.
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Figure 4.6: Investigation of the dependence between temperature and object
(LED) position on the image. The single figure on the top represents the tem-
perature range along which the test was done. Below are two different test runs.
Figures on the left represent the x-coordinate of the LED, whereas the figures
on the right depict changes in the y-coordinate. It is evident that as the cam-
era heats up, the position of the LED fluctuates in two different ways for two
different runs. Therefore, a clear correlation could not be drawn.
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4.3 Object recognition

In trying to pinpoint the exact location of LEDs attached to camera modules, a need
arises to develop an object recognition tool, as well as a tool capable of determining
the distance between the LEDs. There are several steps involved. Firstly, a region
of interest (ROI) in the image containing the bright spot that is the LED has to be
selected. Secondly, the coordinates (in pixels) of the center of gravity of the LED
need to be calculated. Moreover, the distance between two LEDs placed on the
module has to be calculated, which in essence, gives us the final piece of Eq. (4.2).

Let us individually analyze the previously mentioned steps. In this work, the
ROI was determined by taking a photograph of the scene and manually selecting
the bounding box. The following images used the same ROI over and over again.
Suppose that the individual detector elements and the detector cage do not move
substantially during the course of the experiment. In that case, ROIs for LEDs can
potentially be set only once at the beginning of the experiment and then slightly
adjusted if the need arises. Scanning the whole image, discriminating the LEDs
from the noise, and drawing bounding boxes for each camera shot would be much
more error-prone.

Once the ROI is set, the center of gravity of the LED can be calculated. This is
done with the help of a Python-based computer vision package OpenCV. First of
all, the noise in the ROI is subtracted using a thresholding method provided by the
package, which allows the center of gravity to be calculated using image moments.
In its essence, determining the center of gravity boils down to the following two
equations:

xc =

∑
i xiIi∑
i Ii

and yc =

∑
i yiIi∑
i Ii

. (4.5)

Here, Ii is the intensity of a pixel and it is calculated as (IR + IG + IB)i/3 where R,
G and B stand for red, green and blue contributions to the pixel intensity, xi and
yi represent x- and y-coordinates in pixels, respectively, and the index i runs over
all pixels in the ROI. This procedure allows us to calculate positions of LEDs in the
image to a sub-pixel precision.

Finally, once both the LEDs on the camera module have had coordinates asso-
ciated with them, the distance between them in pixels can be determined. If the
distance on the PCB between them is known, the distance between the camera tak-
ing the photo and the camera module, which is the object of the image, can be
determined.
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Chapter 5

Simulation

The alignment system at hand is one where there are multiple cameras involved in
the set-up. Calculating their position and the position of a detector depends on what
the cameras see and how well they can resolve different details in the image. Before
the system is set up, simulating different scenarios is preferable in order to determine
whether an idea is implementable and, if so, to have certain expectations considering
the system’s behavior. As we are dealing with photographs and projections, utilizing
a ray-tracing algorithm proves itself to be very useful. The following sections will
give a short guide to the ins and outs of such a technique and present the obtained
results.

5.1 Ray-tracing

Ray-tracing is a rendering technique often used in generating video game graphics,
which can realistically simulate a 3D scene. To do so, a 3D space, encompassing
objects of the scene, light sources, a point-like camera, and a projection screen, has
to be simulated (Fig. 5.1).

Figure 5.1: Basic simulation scene.
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In the following lines, an idea of the ray-tracing algorithm is presented as pseudo-
code.

Algorithm 1: Ray-tracing algorithm

Result: 2D projection of a 3D scene
for each pixel p(x, y, z) of the screen: do

associate a black color to p;
if ray from the camera going towards p intersects any object of the scene
then

calculate intersection point to nearest object;
if no object between intersection point and light then

calculate color of intersection point;
associate color to pixel p;

end

end

end

In the case of a ray-tracing algorithm, one might notice that the ray does not
exactly follow the natural path from the light source, bouncing off an object and
hitting the camera sensor. Instead, only the rays that are sure to hit the sensor
(screen in our case) are taken into account, and their paths are traced backwards
to objects of the scene and the light source in the end. This is done in order to
reduce the computational load, which occurs when the light illuminates the whole
3D space, now and then finding an object on which it will scatter and potentially
hit the sensor. The number of rays would be too much to handle, which is why the
process is essentially reversed.

The fascinating fact about the ray-tracing technique is that it does not require
much more than a few basic Python packages and some knowledge of linear al-
gebra. The only non-intuitive segment, which will be explained in more detail, is
the coloring of the objects in the scene (pixels on the screen). The model which
was used to color the pixels is called the Blinn-Phong model. According to it, all
materials/objects have four properties - ambient color, diffuse color, specular color,
and shininess - which are represented with red, green, and blue values ranging from
0 to 1. Given the properties of individual objects, the color which is ascribed to a
pixel representing a part of an object is calculated in the following way

Ip = ka ia + kd id LN + ks is

(
N · L+ V

‖L+ V ‖

)α
4
, (5.1)

where a, d and s stand for ambient, diffuse and specular, respectively. Constants
denoted with k are the properties of the object, the ones denoted with i are the
properties of the light source, and α is the shininess of the object. N, L and V
are the unit normal vector to the surface of the object at the intersection point,
direction unit vector from the intersection point to the light source, and direction
unit vector from the intersection point towards the camera, respectively.1

Once the code is interpreted and the ray scans the screen looking for objects,

1The ideas for and the execution of the simulation came from https://medium.com/swlh/

ray-tracing-from-scratch-in-python-41670e6a96f9.
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(a)

(b)

Figure 5.2: Rendered image of the detector and the camera set-up.

the image shown in Fig. 5.2b is obtained. With the help of Fig. 5.2a, one can see
that the algorithm rendered the image from the point of view of the bottom camera
pointing upwards. The detector is depicted as a cylinder, as expected, and there are
two camera modules, one on each side, positioned in such a way that the IR-LEDs
(white) are placed at the top and the bottom of each camera (purple).

In Fig. 5.3, we can see a slightly different view of the set-up, since the image was
rendered from the camera in the upper-right corner according to Fig. 5.2a. This
means that the LEDs placed on the detector (red) are now visible, together with
a camera module in the upper-left corner of the set-up scheme (right side of the
image). These two views represent the true power of a ray-tracing algorithm by
letting us pan around a 3D space and make projections of the same scene from
different angles.

Once the image is rendered, the procedure of calculating the distance between
the camera modules using geometric optics can be executed. This, in turn, yields
one iteration of a simulation and produces a result that tells us how far away is the
calculation of the distance from a set distance. The procedure is then repeated for
multiple distances and hundreds of tiny movements in transverse and longitudinal
directions. Such a routine gives an insight into the overall behavior of the system.
Its results can be seen in the following section.

5.2 Simulation results

The main goal of the simulation was to determine the expectations of camera reso-
lution both in the longitudinal direction and in the transverse plane, as well as the
cumulative precision in 3D space, i.e., what kind of sensitivity towards movements
could potentially be detected.

At the beginning of each simulation run, a camera module which was the object
of investigation would be placed at a specified distance from the camera which was
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Figure 5.3: Rendered image of the detector and the camera set-up
from a different angle.

taking the photo2 and then moved backwards in 5 µm steps. After each rendering,
an algorithm responsible for finding the centroid of the LEDs would be run and
the formula derived from geometric optics (Section 4.1, Eq. (4.1)) would be used to
calculate the distance from one camera module to another. The simulation regarding
the test of the longitudinal resolution was run four times, at four different distances
which are expected to be present in the real experiment - 400 mm, 500 mm, 600 mm
and 700 mm. The same was done in the transverse plane - more specifically, only in
one of the transverse directions, namely the x-axis, for distances of 50 mm, 100 mm,
150 mm and 200 mm from the center of the field of view of the picture-taking camera.
This was done because both the resolution in the x- (left-right) and in the y-direction
(up-down) should be comparatively similar inasmuch as the pixels of the screen have
a square shape and the focal length in both directions is the same. It should also
be noted that the transverse simulations were conducted with the camera module
positioned at the maximal longitudinal distance of 700 mm. By doing this the worst-
case scenario was taken into account, since, as the modules move towards each other,
the transverse resolution can only increase - it is easier to resolve movement.

Finally, the general precision of the system in three dimensions was tested, how-
ever, in a slightly different fashion. The camera module, which was the object
of investigation, was randomly positioned in space after each “picture” was taken,
thereby allowing for the whole 3D space to be covered and giving slightly more
intuition on the general possibilities of the camera modules.

The results of the longitudinal test at 400 mm can be seen in Fig. 5.4, whereas
the rest of the results are listed in Table 5.1 together with their corresponding mean
values and standard deviations.

2Taking a photo means going through the procedure of once scanning the space of objects through
the pixels of the screen and rendering an image.
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Figure 5.4: Simulation results for a test of the longitudinal resolution with
an initial position at the distance of 400 mm and 5 µm step movements.

z Initial distance [mm] Mean [µm] Standard deviation [µm]

1 400 -0.8 9.2
2 500 4.0 13.4
3 600 4.8 7.7
4 700 -3.8 18.6

Table 5.1: Results of the simulation for a test of the longitudinal resolution
with different initial positions.

As far as the results of the test of transverse movements go, they are displayed
in Fig. 5.5, whereas the rest of the results, similar as before, are listed in Table 5.2.

As was previously mentioned, another way of analyzing the data coming from
the simulations was randomly picking positions of the camera module in 3D space
and calculating the error of the distance calculation between the camera taking
the picture and the one which is being randomly positioned. For each snapshot,
projection to the z-axis, together with the distances in the x- and the y-axis from
the center of the screen, was determined. After that, the total distance D was

x Initial distance [mm] Mean [µm] Standard deviation [µm]

1 50 0.05 1.7
2 100 0.06 1.8
3 150 0.09 1.7
4 200 0.22 1.8

Table 5.2: Results of the simulation for a test of the transverse resolution
with different initial positions.
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Figure 5.5: Simulation results for a test of the transverse resolution with
an initial position in the z-axis at the distance of 700 mm, in the x-axis at
150 mm, and 5 µm step movements towards the right side of the screen.

calculated using the following equation

D =
√
x2 + y2 + z2 . (5.2)

Values in the direction of the x-axis were ranging from 0 to 250 mm, of the y-axis
from 0 to 10 mm, and of the z-axis from 400 to 700 mm. Following the previous step,
an error between the true distance and the calculated one would be determined. This
method resulted in plots presented in Fig. 5.6 and Fig. 5.7. The projection onto the
x-axis (Fig. 5.7) points to an increase of the distance error as the values of the
projection onto the z-axis increase.

The results of the simulation give a clear indication that if a camera alignment
system is to be constructed in a fashion similar to the one described and investigated
in this chapter, it can be expected that it performs in reality as it was intended
to, at the resolution similar to, or below the required one (80 µm). Analyses of
the mean and the standard deviation of residuals in each simulation configuration
also indicate that no internal biases or systematic errors contribute to the results;
instead, the visible fluctuations are purely statistical and depend on the picture
(screen) resolution.
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Figure 5.6: Simulation depicting a random scan of the 3D space. The color
map refers to the absolute value of the error of the calculated distance D
compared to the true one in µm.
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Figure 5.7: Simulation depicting a random scan of the 3D space, projected
onto the x-axis. The color map is the same as in Fig. 5.6.
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Chapter 6

Experimental Set-up

The following chapter will give an overview of different experimental set-ups, and
the ideas behind them will be introduced. The primary purpose of the conducted
experiments was to systematically approach the problem of camera alignment and
address the difficulties that might arise along the way in constructing such a sys-
tem. In the final phase, a set-up resembling the optimal solution for the actual
implementation in Mu3e was developed and tested.

6.1 Camera resolution

For the purpose of comparing the results acquired from the simulations with the
real-world system, a set-up was constructed using the MakerBeam kit3 representing
the detector cage, a Raspberry Pi NoIR v2 camera, LEDs, and a holder which could
be moved in micrometer steps using a micrometer screw. The photos of the set-up
for testing the longitudinal and transverse resolution can be seen in Fig. 6.1 and
Fig. 6.2.

As can be seen in the photos, the LEDs were emitting red color, which would,
in essence, go against the demands of the Mu3e experiment. Nevertheless, such a
decision was made so that the experiments could be run without completely dark-
ening the room the set-up was in. Testing of the camera resolution does depend
on the color of the LED; however, the wavelength of the red and the infrared light
differ by a fraction of a micrometer and should be well below the resolution of the
camera that is being investigated. Therefore, the choice did not render any signifi-
cant hindrance to the results. Additionally, when testing the transverse resolution,
one LED was sufficient, whereas when testing the longitudinal resolution, two were
necessary to be able to infer the change in the distance between the camera and the
LED-holder.

6.2 Camera module rotation

A significant difficulty in accurately calculating distances between cameras and ob-
jects (LEDs) stems from the fact that a camera module, which has two LEDs at-
tached to each side of it, is susceptible to rotation around its attachment point to

3MakerBeam B.V. https://www.makerbeam.com
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Figure 6.1: Experimental set-up for testing the trans-
verse resolution of the camera. The camera can be seen
in the middle on the very left side of the image. The
holder with the LED attached to it and the micrometer
screw on its right side are also visible.

Figure 6.2: Experimental set-up for testing the lon-
gitudinal resolution of the camera. The set-up is the
same as before with the exception of two LEDs being
attached to the holder instead of just one.
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Figure 6.3: Depiction of the rotation problem. Top: A camera module
and the axis of rotation. Bottom: Different situations in which the camera
module is facing the picture-taking camera at different angles. Realistic
scenario is the middle one where the camera module is slightly slanted
and the LEDs describe an ellipse.

the aluminum struts of the detector cage (see Fig. 2.6) - the attachment point usu-
ally being at the very middle of the camera module. Such a movement distorts the
distance between the LEDs, making it appear smaller and thus producing a false
result for the distance between the camera taking the photo and the rotating camera
module on the detector cage.

Luckily, the line the LEDs describe as they rotate around the attachment point
is not a straight one; that is to say, camera modules are attached at an angle with
respect to all the other ones, allowing one to determine the actual distance between
the LEDs even in the situation where the apparent distance might be deceiving.
The previously discussed scenario is portrayed in Fig. 6.3 and explained in more
detail in the caption. In reality, the camera module will be at an angle between 0°
and 90°. This fact allows us to transform the apparent ellipse the LEDs describe
(second scenario in Fig. 6.3), into a circle (first scenario in Fig. 6.3). The circle can
then be taken advantage of, as the circle’s diameter represents the actual distance
between the LEDs. The formula for the transformation is derived from the sketch
in Fig. 6.4 in the following way:

xc =
xell

sinα
, yc = yell and dLED = 2

√
x2c + y2c (6.1)

leading to

dLED = 2

√(
xell

sinα

)2

+ y2ell . (6.2)

Here, xell and yell represent the coordinates of one of the LEDs with respect to
the center of rotation, calculated as the center of gravity between the two LEDs,
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Figure 6.4: Sketch of the rotation problem used for the derivation of Eq. (6.2)

whereas α stands for the angle at which the module is slanted when observed from
the camera that is trying to determine the distance (bottom row in Fig. 6.3).

To test the problem of rotation, a part of the set-up was rearranged so that the
angle α at which the LEDs face the camera that is taking the picture is well-known,
as this will also be the case when the modules get attached to the detector cage. As
can be seen in Fig. 6.5, the sides of the angle α (yellow) are formed in such a way
that the one side is parallel to the horizontal aluminum profile, whereas the other
side is perpendicular to the shorter aluminum piece (blue) - the piece around which
the LED-holder rotates.

The course of this part of the experiment was conducted in a way that the
holder with the LEDs was photographed multiple times in a variety of inclinations
- straight, with the top LED moving towards the camera, and with the top LED
moving away from the camera. The different scenarios are depicted in Fig. 6.6.

6.3 The complete system

Once the resolution of the cameras has been tested, and the rotation problem ad-
dressed, the next step was to try and construct a version of the complete system
that could describe its advantages and drawbacks.

For this purpose, an experiment resembling the one in Fig. 4.2 was set up. With
three camera modules and multiple pairs of LEDs, with their holders placed on the
central aluminum profile which substituted the Mu3e tracking detector, it aimed to
reconstruct the conditions one might expect in the real experiment. This time, the
experimental procedure was conducted in a completely darkened room; however, for
practical reasons, the LEDs were once again emitting visible light. The experimental
set-up can be seen in Fig. 6.7 and Fig. 6.8.

As was discussed in Chapter 3, the real-world detector can undergo elliptical
deformations, and the elliptical shape of an object can be reconstructed with a
minimum of five points. For this reason, two additional pairs of LEDs were added
to the existing three on the aluminum profile. The LEDs were slightly moved around
between different sets of shots with the aim of providing a proof of concept that the
deformations of the detector truly can be precisely measured.
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Figure 6.5: Experimental set-up for testing the rotation of
the camera module together with a visual representation
of the angle α.

Figure 6.6: Three representative rotational positions of the module (holder
with the LEDs).
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Figure 6.7: Experimental set-up for testing the complete system as
seen from the side.

Figure 6.8: Expanded view of the experimental set-up with all of
the camera modules and LEDs in view.
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The following chapter will be dealing with the particulars of experimental set-
ups, the obtained results, and their interpretations for all of the above-discussed
frameworks in the order of mention.
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Chapter 7

Results and Discussion

7.1 Camera resolution

In this part of the experiment, both the longitudinal and the transverse resolution
of the camera were tested with the LED holder placed at around 400 mm from
the camera. This distance was sufficient as it was not important where exactly the
camera resolution was measured. The results which were obtained in pixels could
later be translated into more intuitive units such as micrometers, and give insight
into the precision of the camera at multiple different distances from it.

7.1.1 Transverse resolution

The measurements for testing the transverse resolution were as following. The move-
ments between different holder positions were made in 20 µm steps, the precision of
the micrometer screw was 10 µm, and each measurement of the LED position was
repeated 10 times. The errors attributed to the measurements were calculated as
standard errors of the mean

SEM =

√∑N
i=1(yi − y)2

N (N − 1)
=

σ√
N
, (7.1)

where yi represents individual measurements of the coordinate of the LED, y their
mean value, and N the number of measurements. SEM was taken as a metric as
it gives a better understanding of the relationship between different means. The
results can be seen in Fig. 7.1, and it is important to notice that the horizontal
errors represent the precision of the micrometer screw, whereas the vertical ones
stand for the SEM which was previously discussed. The linear fit (red line) was
made with the help of the Python package SciPy and the ODR method - short
for Orthogonal Distance Regression. The sign of the slope of the fit is not important
in this context as it only represents the general movement of the holder (LED) in
the image - in this case from right to left. Once the data were fitted, the residuals
were calculated as

ri = yi − f(xi) , (7.2)

where yi stands for the mean value of the coordinate of the LED, and f(xi) represents
the value of the fitted linear function at xi. Thereafter their mean and standard
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Figure 7.1: Test results of the transverse resolution of the camera.

deviation could be determined. This procedure resulted in a standard deviation of
σ = 0.022 px and a mean of µ = −0.001 px.

7.1.2 Longitudinal resolution

A similar procedure was followed in the case of the longitudinal resolution, with
the exception of the orientation and incrementation of the LED-holder, which was
rotated by 90° and moved in 50 µm steps.

The results can be seen in Fig. 7.2 and the interpretation of the plot follows
the same reasoning as in the previous case. This time however, the linear fit has a
positive slope which means that, in this experiment, the holder was moved towards
the camera (the apparent distance between the two LEDs increased). The standard
deviation was calculated to be σ = 0.033 px and the mean µ = −0.012 px.

Moreover, the points exhibit a wave-like behavior around the fit. The behavior
is also visible in the survey of the transverse resolution, but it is not as pronounced.
The phenomenon can be attributed to the discreteness of the camera sensor. Namely,
as the objects move across the image plane, they do not do so smoothly but rather in
minute discrete jumps from one pixel to the next. The fact that the center of gravity
of the LEDs is calculated reduces the effect, but it does not eliminate it completely.
Similar behavior can be seen in the investigation of the target monitoring system
by the group from the MEG II experiment, however, with no detailed explanation
or review of the occurrence [14].

7.1.3 Discussion

The results can be interpreted by using the values of the standard deviation that
came from the experiments, for the calculations of the error propagation (see Ap-
pendix A for the complete derivation). This then lets us estimate the expected error
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Figure 7.2: Test results of the longitudinal resolution of the camera. The
SME can not be seen because it is too small compared to the precision of
the micrometer screw.

at multiple different distances from the camera in a three-dimensional manner. Stan-
dard deviations for x- and y-direction were chosen to be the same (see Section 5.2),
the error of the focal length had a value of 0.14 µm (see Section 4.2) and the dis-
tance between the LEDs was chosen to be 100 mm - a reasonable size in terms of
detector cage demands. 1000 points were selected at random in a 3D-space with
bounds corresponding to those in a real-world scenario (x ∈ [−300 mm, 300 mm],
y ∈ [−100 mm, 100 mm], z ∈ [200 mm, 800 mm]). The resulting scatter plot of the
expected errors when determining the distance can be seen in Fig. 7.3, where the
color range represents the expected range of errors in the experiment.

As one could assume, the resulting errors are slightly larger then those presented
in Section 5.2. This discrepancy is most probably owed to the fact that the standard
errors in simulations are essentially non-existent - each measurement can be repeated
multiple times with exactly the same results. Moreover, the dissimilarity of the
result uniformity coming from the experiment and the simulation is visible and it
can be attributed to a slightly different course of action that led to them. In the
simulation, coordinates of each point were calculated and then compared to a true
value, whereas the plot in Fig. 7.3 was generated with the help of the method of
error propagation.

On a final note, even though the dominant factor in determining the 3D distance
error comes down to the error of the projection of the distance in the z-direction
(longitudinal error), the other two errors, namely the one in the x- and the one in
the y-direction (transverse errors), should not be neglected. The reason becomes
clear when the error of the calculated three-dimensional distance is plotted against
the projection of the distance in the z-direction. The plot in Fig. 7.4 has a two-
fold interpretation. Not only does it give insight into the relationship between the
errors in the z-direction and the total errors, but it also shows that there is a range
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Figure 7.3: Results of the 3D error analysis. The color map represents the
expected error for distance measurements in µm.
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Figure 7.4: Results of the 3D error analysis in the z-projection. The band
which the errors describe indicates that the exact position of all of the
coordinates is important for precise error determination.
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of error values, as large as 15 µm, for each z-distance from the camera, which in
fact describes the influence the errors in the x- and y-direction have. Therefore,
when the measurements are done and the positions of the camera modules or the
LEDs are being determined, it is important to take into consideration not only the
total calculated distance in three dimensions, but also how big of a role each of the
coordinates played in the calculation.

7.2 Camera module rotation

The problem of rotation was investigated in order to provide a proof of principle for
the conceptual solution discussed in Section 6.2. The experiment was conducted for
a single angle of attack (α from Section 6.2) and multiple inclination angles of the
camera module. Fig. 7.5 shows the path the LEDs trace as they rotate around the at-
tachment point. Each point, once again, represents an average of 10 measurements.
Additionally, the coordinates of the center of rotation depicted in the plot are also
calculated as the average value of all the centers of rotation, which moved about
slightly as the experiment was conducted. Error bars have been omitted because of
the impossibility to represent them visually. In comparison to the movements that
were tested, they were negligible.

The second approach to the analysis was to show if the formulas and ideas de-
veloped in Section 6.2 actually pan out. In order to do so, for all the inclination
angles in Fig. 7.5, an apparent and a true distance between the LEDs was calcu-
lated and consequently, using those values, apparent and true distances between the
camera taking the photo and the module with the LEDs were determined. Instead
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Figure 7.5: Results of the experiment regarding the camera module rotation.
The plot shows the positions of LEDs at different inclinations.
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Figure 7.6: Results of the experiment regarding the camera module rota-
tion. The plot depicts the proof of principle for the method developed in
Section 6.2.

of plotting the distances against the inclination angle, a decision was made to place
the x-coordinates of the upper LED on the abscissa. This procedure led to Fig. 7.6,
where it can be seen that the correction algorithm works and manages to bring
the apparent distances back to their true values. The curve that the red points
describe has a correct sign - the more the module rotates, the smaller the apparent
distance between the LEDs becomes, which makes one believe the module itself is
further away than it really is. The reason for a slight slope of the line the blue
points describe, and the general non-smoothness of points can be ascribed to the
fact that the LEDs that were used have a certain depth to them. This makes them
appear differently on the image as the module rotates, which consequently changes
the center of gravity of the LED that is being calculated for each shot. Once the
development of the system progresses, the LEDs will get much smaller and be firmly
attached to a PCB, which should smooth out and level out the trends.

7.3 The complete system

Last but not least, the final part of the experiment will be discussed. Similarly to
the rotation problem, it was conducted as a proof of principle - an indication that a
continuation of the development of the camera alignment system could be a fruitful
endeavour.

As was discussed in Section 6.3, at first, 3 pairs of LEDs were placed in the
middle of the frame so as to simulate LEDs placed on the detector. The procedure
for calculating the position of the LEDs and the shape of the tracker was as follows:
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Figure 7.7: Results of the experiment with 3 pairs of LEDs
standing in for the detector.

• Focal length of the cameras was determined as described in Section 4.2.

• Camera modules and LEDs were placed on the MakerBeam frame in a similar
fashion as in Fig. 4.2.

• All of the variables needed for Eq. (4.3) and Eq. (4.4) were determined with
the help of Eq. (4.1) and by arranging the camera modules as depicted in
Fig. 4.3. The known variables were the distances between the LEDs on the
camera module, and the distance between the LEDs arranged in pairs on the
detector.

• Once the coordinates of the pairs of LEDs that represent the detector were
determined, a fit for the detector cage and the tracker could be made using
Least Squares Method - LSM in Python.

This led to a first confirmation that the ideas discussed in previous chapters could be
realized. The resulting plot of the coordinates of different set-up elements, together
with the fitted cage and detector, is shown in Fig. 7.7, and the live scenario can
be seen in Fig. 7.8. It should be noted that the rate at which the measurements
and calculations for a single arrangement of cameras and LEDs can be conducted
predominantly depends on the rate at which the camera shots can be taken. If the
procedure discussed in Section 4.2 is implemented, and each shot is taken 10 times,
one can expect to have the coordinates of the tracker LEDs every ∼ 330 s = 5.5 min.4

Since the step-by-step derivation of the error propagation for the points on the
tracker was too cumbersome and error-prone, a more reasonable path towards the

43 s warm-up and 30 s cool-down, 10 times each
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Figure 7.8: The experimental set-up with 3 pairs of LEDs attached
to the middle aluminum frame (red dots) and three camera modules
(blue dots).
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Position σx [µm] σy [µm]

Leftmost 151 51
Middle 129 69

Rightmost 120 55

Table 7.1: Error values for the 3 points on the tracker (red) in Fig. 7.7.

solution was found by using Wolfram Mathematica5. Standard deviations for
different variables used in coordinate determination were calculated by propagating
the uncertainty of variables that played a role in their calculation. This was followed
by Mathematica calculating the errors of the x- and the y-coordinate for all three
points on the tracker. The error values for three points describing the detector
are given in Table 7.1. These indicate that the reconstruction of the shape of the
detector with an 80 µm precision (size of the MuPix sensor) could be achieved with
slight improvements to the set-up (discussed in Chapter 8). It should be noted that
not only is there room for refinement in the design and execution of the experiment,
but that the results that were achieved were done so with the first version of the
frame, and with LEDs crudely attached to an aluminum profile instead of a PCB.

This however was not the end as it was noticed that 3 points are generally not
enough to fit an ellipse to them, which is something that is needed if the elliptical
deformations of the tracker are to be investigated. Consequently, two additional
pairs of LEDs were attached to the central aluminium profile, which gave a total
of 5 points for ellipse fitting. By once again reconstructing the scenario depicted in
Fig. 4.3, the following plots (Fig. 7.9 and Fig. 7.10) were generated for two slightly
different camera module positions, as well as a slight rearrangement of central pairs
of LEDs. The ellipse fitting was once again achieved with the LSM.

The experiment at hand served a slightly different purpose than the previous one.
It was not designed in the interest of estimating the errors but rather to capture
disturbances and movements in the set-up. As it might not be obvious to the naked
eye that the system managed to capture all of the changes and fluctuations between
the two set-ups, an additional plot depicting their overlap was made (Fig. 7.11).

As a final note, it should be mentioned that the results presented in this section
indicate a potential path forward with the camera alignment system. The resolution
survey, as the most important part of the investigation, gives a clear indication
that achieving a precision of the distance measurement of around 80 µm, which is
the size of an individual MuPix pixel, can be achieved. This however does not
directly translate into the precision of determining the coordinates of the detector
(see Table 7.1), which is why future improvements in the precision are needed. The
summary of this work, along with an envisioned future course, is presented in the
next and final section.

5For the purpose of this thesis, Mathematica 9.0 by Wolfram Research, Inc. was used.
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Figure 7.9: Results of the experiment with 5 pairs of LEDs
standing in for the detector, allowing for the fitting of the
ellipse, which helps in determining the elliptical deforma-
tion of the detector.

Figure 7.10: Results of the experiment with 5 pairs of
LEDs standing in for the detector. All of the elements were
slightly moved around compared to Fig. 7.9.
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Figure 7.11: Overlap of the plots shown in Fig. 7.9 and Fig. 7.10.
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Chapter 8

Conclusion and Outlook

Conclusion The Mu3e experiment is mainly a tracking detector and, as such,
requires a high level of precision and accuracy, especially when it comes to spatial
resolution. Reconstructing particle tracks together with their energies and momenta
is of utmost importance when investigating physics beyond the Standard Model -
the charged lepton flavor violation. This can, however, only be achieved with an
excellent alignment strategy since numerous factors, which need to be corrected for,
contribute to detector misalignment. A somewhat standard procedure, the track-
based alignment, does not cover the so-called weak modes, so it needs to be amended
with an external survey system. The development of a camera alignment system
that aids in detector alignment and consequently in particle reconstruction was the
main scope of this thesis.

It was established that the Raspberry Pi NoIR v2 cameras, together with infrared
LEDs, can be used in a pitch-black environment to reconstruct the shape of the
detector cage and the tracking detector. The resolution of the cameras is sufficient
to achieve a precision of 80 µm (size of the individual MuPix sensor) at distances
that are expected for Mu3e (Fig. 7.3). However, the combination of multiple results
in order to infer the shape and position of the tracking detector requires further
improvement (Table 7.1).

The problem of camera module rotation was also addressed, showing that the
correction method developed in Section 6.2 can be implemented. This way, the
errors that can crop up from the camera module’s rotation around the struts of the
detector cage can be alleviated.

Finally, a set-up that resembles the experiment’s configuration has been devel-
oped by using the MakerBeam kit for the frame and the mock detector. It has
revealed that the calculations discussed in Section 4.1 can, in fact, be applied and
yield satisfactory results. The final section of the thesis, Section 7.3, has essentially
confirmed the proof of concept developed in chapters prior to it.

Outlook As far as the future path of development for this project is concerned,
several steps could lead to the improvement of results and stability of the system as
a whole:

• The camera modules require the IR cameras and the LEDs to be attached to
a single PCB. This way, the distance between the LEDs can be known to very
high precision, and they themselves could be much smaller. This would then
reduce the overall error of distance and position calculation.
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• The cameras ought to be tested once again for radiation hardness in one of
the upcoming beamtimes at the PSI; however, this time closer to the beam -
preferentially inside the magnet.

• Communication between Raspberry Pis inside the detector and the outside
world needs to be addressed. Ethernet connection has to be excluded because
of the magnetic properties of the connector, which leaves optical fibers as a
possible solution.

• A bigger version of the frame, closer to the size of the actual detector cage,
ought to be constructed to reproduce the actual experimental conditions as
faithfully as possible.

• Finally, a cylinder the radius and shape of the detector could be constructed,
which would also improve the set-up’s stability and reproducibility of the re-
sults. This would allow for the measurements that were conducted in Sec-
tion 7.3 not only to be compared relative to each other but also to have the
results compared to a predetermined and well-measured position of the LEDs
on the cylinder, together with the position of the camera modules on the frame.
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Appendix A

Error propagation

In the following, the derivation that led to the results depicted in Fig. 7.3 will be
presented.

The process starts by choosing a reasonable distance between the two LEDs on a
camera module in pixels, dIz ∈ [300 px, 1300 px]. We assume that the focal length of
the camera f has an error of σf = 0.14 µm, and that the true distance between the
LEDs dreal has an error of σdreal = 5 µm. This gives us all that we need to calculate
the z-projection of the distance from the camera to the LEDs using Eq. (4.2)

Lz = f

(
dreal
dIz ·m

+ 1

)
, (A.1)

where m stands for a constant representing the size of an individual pixel on the
camera sensor, which in this case amounts to 1.12 µm (see Table 4.1 for reference).
Next, the error of the z-projection is calculated as

σLz =

√(
∂Lz
∂f
· σf
)2

+

(
∂Lz
∂dreal

· σdreal
)2

+

(
∂Lz
∂dIz

· σdIz
)2

, (A.2)

where the error of the distance between the LEDs was taken to be σ = 0.033 px
(see Section 7.1.2). In this, as well as in all the other equations that contain partial
derivatives, the diff function of the Python package called SymPy was used.

Coming after, the x- and the y-projection can be calculated. This is done by
rearranging Eq. (4.2) to get

Lx =
(Lz − f) ·m · dIx

f
(A.3)

in case of the x-projection, and

Ly =
(Lz − f) ·m · dIy

f
(A.4)

in case of the y-projection. The same procedure as before followed for deriving the
errors, which yielded

σLx =

√(
∂Lx
∂f
· σf
)2

+

(
∂Lx
∂Lz
· σLz

)2

+

(
∂Lx
∂dIx

· σdIx
)2

(A.5)
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for the x-projection, and

σLy =

√√√√(∂Ly
∂f
· σf
)2

+

(
∂Ly
∂Lz
· σLz

)2

+

(
∂Ly
∂dIy

· σdIy

)2

(A.6)

for the y-projection. This time, the value chosen for the errors of the distance
between the LEDs was σx = σy = 0.022 px.

Finally, the distance from the camera to the LEDs can be calculated with

D =
√
L2
x + L2

y + L2
z , (A.7)

and the error can be derived by

σD =

√√√√( ∂D
∂Lx

· σLx

)2

+

(
∂D

∂Ly
· σLy

)2

+

(
∂D

∂Lz
· σLz

)2

(A.8)

where the values of errors are used from the formulas derived above. The error σD
is the one that determines the color of a point in the plot in Fig. 7.3.
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[4] Hernández-Tomé, G., López Castro, G. and Roig, P., “Erratum to: Flavor
violating leptonic decays of τ and µ leptons in the Standard Model with massive
neutrinos”, Eur. Phys. J. C, 80(5) 438, 2020.

[5] Blackstone, Patrick, Fael, Matteo and Passemar, Emilie, “τ → µµµ at rate of
one out of 1014 tau decays?”, Eur. Phys. J. C, 80(6) 506, 2020.

[6] Mu3e Collaboration, “Technical design of the phase I Mu3e experiment”, NIM
A, page 165679, 2021.

[7] Y. Okada, K. Okumura and Y. Shimizu, “µ → eγ and µ → 3e processes with
polarized muons and supersymmetric grand unified theories”, Phys.Rev., D61
094001, 2000, (arXiv:hep-ph/9906446).

[8] M. Kakizaki, Y. Ogura and F. Shima, “Lepton flavor violation in the triplet
Higgs model”, Phys.Lett., B566 210–216, 2003, (arXiv:hep-ph/0304254).

[9] J. Bernabeu, E. Nardi and D. Tommasini, “µ − e conversion in nuclei and Z ′

physics”, Nucl. Phys., B409 69–86, 1993, (arXiv:hep-ph/9306251).

[10] Bastian Diaz, Martin Schmaltz and Yi-Ming Zhong, “The leptoquark hunter’s
guide: pair production”, Journal of High Energy Physics, 2017(10), Oct 2017.

[11] W. J. Marciano, T. Mori and J. M. Roney, “Charged Lepton Flavor Violation
Experiments”, Ann.Rev.Nucl.Part.Sci., 58 315–341, 2008.

[12] U. Hartenstein, Track Based Alignment for the Mu3e Pixel Detector, PhD the-
sis, Mainz University, 2019.

[13] V. Blobel, “Software alignment for tracking detectors”, Nucl. Instrum. Meth.,
A566 5–13, 2006.

55
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