# High Voltage Monolithic Active Pixel Sensors

(HV-MAPS)

#### André Schöning University Heidelberg (PI)

NuFact 2021, Cagliari, 6.-11. September 2021

### **Hybrid Pixel Sensors**





### Monolithic Active Pixel Sensors (MAPS)

- silicon pixel sensors allow for very high particle rates (in contrast to gaseous tacking devices)
- monolithic sensors allow for the construction of ultra-light tracking detectors
- MAPS are interesting for particle physics experiments at "low energy" (sub-GeV regime)

# MAPS are usually produced in an industrial **CMOS** process. Benefits:

- standardised design and simulation tools
- profits from process miniaturisation
- high level of integration possible
   → system on a chip or "smart sensor"



### **Charge Collection in MAPS**



### **HV-MAPS Charge Collection**



"depleted MAPS"

### High Voltage - Monolithic Active Pixel Sensors (HV-MAPS)

#### Commercial HV-CMOS process

- foundries: AMS or TSI
- design rules for up to 120V
- triple and **quad well** possible
- reticle sizes of about 4-5 cm<sup>2</sup>
- standard substrate 10-20  $\Omega$  cm (can be changed)



#### Main Features

- depletion thickness determined by substrate resistivity and bias voltage:  $d \propto \sqrt{\rho} \cdot V$
- HV-MAPS concept allows for **high fill-factors** (all pixel electronics is inside the diode and floats)
- digital CMOS (PMOS) circuits can be placed over the active depletion region by isolating the PMOS transistors from the charge collecting pn-diode with an iso-p-well
- noise is typically 80 -100 e
- MIP signal is ~800 e<sup>-</sup> per 10 μm depletion

### **Depletion and Bias Voltage Relation**



Low resistivity substrates provide high charge collection fields and small depletion

 $\rightarrow$  allows for thin sensors

### **High Rate & Continuous Readout**



MuPix series is the first monolithic pixel sensor with continuous sampling and readout!

### **High Rate Characterisation Studies (MuPix)**

Single hit efficiency measured in the highly focused e<sup>-</sup> beam at MAMI (Mainz)

- E<sub>e</sub> = 875 MeV
- Beam spot size  $\sigma \sim 0.5 \text{ mm}$



### Neutron Irradiated ATLASpix1 (HVMAPS) sensor



- fluence of 10<sup>15</sup> neq/cm<sup>2</sup> corresponds to ATLAS @ High Luminosity LHC at radius of ~R=30cm
- similar results for proton irradiation [https://pos.sissa.it/373/024/pdf]
- → 180nm HV-CMOS process is very radiation hard ( $\rightarrow$  trapping in the bulk is negligible)

A. Schöning, Heidelberg (PI)

NuFact 2021 Workshop, 8. Sept. 2022

### **First HV-MAPS Summary**

 180nm HV-CMOS process has a <u>high integration level</u> (smart sensor), is relatively "cheap" and allows to construct <u>large scale pixel detectors</u> (>1m<sup>2</sup>) at reasonable price

• sensors can be <u>thinned</u> to 50  $\mu$ m (or even less) and are therefore suitable for particles physics experiments at <u>low energy</u>

 HV-MAPS have intrinsically an excellent timing resolution, provide <u>high</u> speed readout, are very <u>radiation tolerant</u> and ideal for <u>high rate</u> applications

• HV-MAPS can also be used for <u>beam monitoring</u>

# Mu3e Experiment @ PSI

 $\rightarrow$  Alexandr Kozlinskiy (Mu3e Overview)

 $\rightarrow$  Marius Köppel (Integration Run, poster)



### **Accidental Backgrounds**

=> scale with muon rate

Overlays of two ordinary µ<sup>+</sup> decays with a (fake) electron (e<sup>-</sup>)

• Electrons from: Bhabha scattering, photon conversion, mis-reconstruction



**Need excellent:** 

- Vertex resolution
- Timing resolution
- Kinematic reconstruction



example for Bhabha pileup

# Mu3e Design (Phase I)

tracking of electrons (positrons) in low momentum range: p<sub>a</sub> ≤ 53 MeV/c



- 4 layers of HVMAPS (MuPix) in central part
- 2 layers of HV-MAPS (MuPix) upstream and downstream (recurl stations)
- pixel size 80  $\mu$ m x 80  $\mu$ m  $\rightarrow$  resolution  $\sigma \sim$  23  $\mu$ m

A. Schöning, Heidelberg (PI)

NuFact 2021 Workshop, 8. Sept. 2022

### Mu3e Design (Phase I)



### **Mupix Design & Specifications**





#### Specification from TDR

| sensor dimensions $[mm^2]$           | $\leq 21 \times 23$    |
|--------------------------------------|------------------------|
| sensor size (active) $[mm^2]$        | $\approx 20 \times 20$ |
| thickness [µm]                       | $\leq 50$              |
| spatial resolution $\mu m$           | $\leq 30$              |
| time resolution [ns]                 | $\leq 20$              |
| hit efficiency [%]                   | $\geq 99$              |
| #LVDS links (inner layers)           | 1 (3)                  |
| bandwidth per link [Gbit/s]          | $\geq 1.25$            |
| power density of sensors $[mW/cm^2]$ | $\leq 350$             |
| operation temperature range [°C]     | 0 to $70$              |

## **Mupix10 Performance (Preliminary)**



- threshold of 100 mV corresponds to about 1500 electrons
- efficiency increases with HV (depletion zone)

$$d \propto \sqrt{U\rho}$$

### **MuPix Two-Comparator Design**



### **Timewalk Correction (MuPix10)**



### **Time Resolution (MuPix10)**

- contribution to overall time resolution from pixel-to-pixel variations if sensor is not tuned
- time resolution of single pixels ~ 6ns:



• further improvements possible by tuning each of the 64000 pixels individually (3-bit tune-DAQs)

### **Mu3e Pixel Tracking Detector**



A. Schöning, Heidelberg (PI)

#### NuFact 2021 Workshop, 8. Sept. 2022

### **Pixel Tracking Detector Prototype**

standard PCBs (for testing) instead of High Density Interconnects (HDI)

photo taken in June 2021 integration run at PSI

### **Comparison of Tracking Detectors**

#### **Pixel detectors**

| TRACKING DETECTOR                   | STAR PXL | Belle II PXD | ALICE ITS II | Mu3e PTD |
|-------------------------------------|----------|--------------|--------------|----------|
| radiation length per layer in $X_0$ | 0.5%     | 0.2-0.5%     | 0.3-0.8%     | 0.11%    |

### **Comparison of Tracking Detectors**

#### **Pixel detectors**

| TRACKING DETECTOR                   | STAR PXL | Belle II PXD | ALICE ITS II | Mu3e PTD |
|-------------------------------------|----------|--------------|--------------|----------|
| radiation length per layer in $X_0$ | 0.5%     | 0.2-0.5%     | 0.3-0.8%     | 0.11%    |

#### SINDRUM (1988) – Mu3e comparison

| Parameter                             |                     | SINDRUM          | Mu3e    |
|---------------------------------------|---------------------|------------------|---------|
| rel. momentum resolution $\sigma_p/p$ | ( $p=$ 50 MeV/c)    | 5.1%             | 0.8%    |
| rel. momentum resolution $\sigma_p/p$ | ( $p=20{ m MeV/c})$ | 3.6%             | 0.5%    |
| polar angle $\sigma_{\theta}$         | ( $p=20{ m MeV/c})$ | 28 mrad          | 24 mrad |
| vertex resolution $\sigma_{dca}$      |                     | $pprox 1{ m mm}$ | 280 µm  |
| radiation length per layer in $X_0$   |                     | 0.08% - 0.17%    | 0.11%   |

MPWC (gas) silicon pixel

### Beam Position Monitoring with HV-MAPS for Particle Therapy

#### **Heidelberg Ion Beam Therapy Center (HIT)**

- ions: p, <sup>4</sup>He, <sup>12</sup>C, <sup>16</sup>O
- particle rates up to  $4 \cdot 10^{10}$  per spill (5 sec)
- beam spot  $\sigma = 4 10$ mm
- beam energy up to 430 MeV/u







### HitPix (Counter Chip) (A.Weber, thesis HD/KIT)



### HitPix & HitPixIso Results (A.Weber, thesis HD/KIT)

#### Hit testbeam (2021)

- ion type =  ${}^{12}C$
- energy = 400 MeV/s
- rate =  $2 \cdot 10^6$  ions per second

# Both chip designs work perfectly and give consistent results!



#### NuFact 2021 Workshop, 8. Sept. 2022

### **Other HV-MAPS Activities for Particle Tracking**

### Low Energy

#### Sensors:

- **PandaPix**  $\rightarrow$  large dynamic ranged for dEdx
- TelePix → high resolution timing reference layer for beam telescope at DESY

### **High Energy**

ATLASpix → proposal for high luminosity ATLAS outer pixel layer (dismissed) → CEPC
 CLICPix → high resolution pixel layer for CLIC
 MightyPix → LHCb tracker upgrade for high rate

#### Projects:

- P2 experiment @MESA (Weinberg angle)
  - → tracking of scattered 150 MeV electrons
- $\mu$ SR @PSI: muon resonance spectroscopy for solid state physics applications
  - → tracking of Michel electrons

Mu3e phase II and MEG III at new high intensity muon beamline (HIMB) @PSI→ talk by Andreas Knecht

 $\rightarrow$  about 20x higher muon stopping rates  $\rightarrow$  next slides

### HV-MAPS for Mu3e Phase II at HIMB (PSI)

Design concept similar to phase I, but with longer muon stopping target and pixel modules:



## HV-MAPS for Mu3e Phase II at HIMB (PSI)

Design concept similar to phase I, but with longer muon stopping target and pixel modules:



#### 1. Development of new MuPix20 sensor:

- improved timing resolution of ~1ns (~4ns already achieved with ATLASpix3)
- improved readout → **daisy chaining** of sensors
- smaller pixel size for vertex layers about  $50\ \mu m\ x\ 50\ \mu m$

#### 2. Development of new SiGe pixel/pad sensor with sub-nanosecond resolution (PicoPix):

- **130 nm SiGe BiCMOS** process provides fast bipolar transistors
- time resolution of ~100 ps has been demonstrated for this process (L. Paolozzi et al, Geneva, 2021)

#### Goal is to reduce accidental background at ~20x increased muon stop rates

### HV-MAPS for MEG III at HIMB (PSI)

MEG III @ HIMB could possibly reach a sensitivity  $BR(\mu \rightarrow e\gamma) < 10^{-14}$ Sensitivity given by:  $B_{acc} \propto R_{\mu} \sigma(p_e) \sigma(E_{\gamma})^2$  $\sigma(\Theta_{ey})^2$ search for back-to-back topology e Example layout: HV-MAPS inner vertex layer 24 cm µ-beam 4 cm HV-MAPS active stopping target few  $\cdot$  10<sup>9</sup> µ/s (assumption) HV-MAPS inner vertex layer 2 x 12 sensors a 2x2 cm<sup>2</sup> → total stopping area ~100 cm<sup>2</sup> Idea: measure vertex precisey using an active stopping target (HV-MAPS) design A design B active active passive 30 mu 60 mu passive passive active

NuFact 2021 Workshop, 8. Sept. 2022

 $\rightarrow$  to be studied!

not detected

### Summary

#### High Voltage Monolithic Active Pixel Sensors represent an interesting technology

- small sensor thickness
- excellent performance
- good timing resolution
- fast readout
- radiation tolerant

#### Very active field!

- 180nm HV-CMOS process is baseline for several projects (Mu3e, MightyPix @LHCb, P2 @MESA)
- several engineering runs per year (2021: HitPix & others, Telepix & MightyPix, Mupix11)

#### Future

- Expect further improvements concerning time and spatial resolution, and scalability
- 130nm SiGe process  $\rightarrow$  sub-nanosecond timing
- active muon stopping target?

#### **HV-MAPS are Ideal for particle tracking at low energy and high rate!**

### Backup

### **Paul-Scherrer Institut (Schweiz)**



High intensity Proton Accelerator (HiPA)  $\rightarrow$  2.4 mA protons at 590 MeV (1.5 MW)

#### Muon Beam:

- World's most intense continuous muon beam
- Low momentum muons ~28 MeV/c
- PiE5 beamline shared between **MEGII** and **Mu3e**
- > expect 1.4·10<sup>8</sup> µ<sup>+</sup>/s at 2.4 mA
- > about half is stopped on µ-stopping target

### → Mu3e Phase I

#### **PiE5: Compact Muon Beamline for Mu3e**



A. Schöning, Heidelberg (PI)

#### NuFact 2021 Workshop, 8. Sept. 2022

### Irreducible Background $\mu^+ \rightarrow e^+e^- vv$ and Multiple Scattering



• Background scales with energy resolution:

sensitivity  $\propto \sigma(E)^6$ 

• energy (momentum) resolution solely depends on multiple scattering:

 $\sigma(p) \propto \Theta_{MS}^{1-2}$ 

• momentum resolution scales with material thickness:

$$\Theta_{MS} \sim rac{1}{P} \sqrt{X/X_0}$$

• in summary:

sensitivity  $\propto (X/X_0)^{3-6}$ 

### 30% reduction of material results in at least a factor 3 increase in sensitivity

### **Tracking Resolution + Multiple Scattering**



• Muon decay (m=105.6 MeV):

- → electrons in low momentum range p < 53 MeV/c
- Multiple scattering is dominant!

 Need thin, fast and high resolution tracking detectors operated at high rate (>> 10<sup>9</sup> particles/s @ phase II)

$$\Theta_{MS} \sim rac{1}{P} \sqrt{X/X_0}$$

### **Momentum Resolution (Simulation)**



### **Timewalk in MuPix10**





- timewalk effects from the long routing lines (analog signal) are large and row dependent
- correction possible with measured ToT
- hit time resolution after correction
  - → 5-6 ns (prel.)

### Mupix10: Pixel Tuning of Comparator Threshold



significant dispersion reduction



0.2

RMS (untuned) = 15 mV

4000

(240 e)

0.22 0.24 0.26 Threshold [V]

A. Schöning, Heidelberg (PI)

600

400 200

0.08

0.1

0.12 0.14 0.16 0.18

### **Depletion and Sensor Thickness**



Measured leakage currents with MuPix10 and ~300  $\Omega$ ·cm substrate

•

maximum HV depends

on full depletion limit