

A Very Large HV-MAPS Tracking Telescope

David Maximilian Immig DPG 2021. 17.03.2021

Why do we do, what we do

Telescope usage:

- study of several HV-MAPS prototypes
- ightarrow test beam campaigns at several facilities like DESY, PSI, MAMI
- modular and compact design

Requirements:

- high rate capabilities
- good timing and spatial resolution
- ultra-low material budget
- long lifetime \rightarrow radiation hardness

High-Voltage Monolithic Active Pixel Sensor

[I. Peric, P. Fischer et al., NIM A 582 (2007) 876]

Monolithic design:

- active matrix & readout in one entity
- in-pixel eletronics

Commercially available processes:

- HV-CMOS processes up to 120 V
- AMS 180 nm & TSI 180 nm

Characteristics:

- low-ohmic substrate (10-200 Ω cm)
- deep n-well diode is reversely biased
- $\rightarrow \, \sim \! 10 \text{--} 30 \, \mu \text{m}$ depletion zone allows fast charge collection via drift
 - chips can be thinned to 50 μm

Telescope Concept

- 4-8 layers + 2 scintillating tiles for time reference
- ullet reference layers and DUT can be of different sensor types ightarrow 14 HV-MAPS prototypes

Mother PCB:

- interface for insertable PCBs of different sensor prototypes
- connection via SCSI-III to FPGA

SCSI/HSMC adapter cards:

 interface between mother PCB/ time reference data to FPGA

Readout: From Sensor to Disc

[L. Huth doi:10.11588/heidok.00025785] (modified)

MuPix10 Specification

- full scale sensor produced by TSI
- \rightarrow 20 & 200 Ω cm substrate
- \rightarrow 50, 100 & 650 μ m thinned wafers
 - continuous readout
 - powering via regulator possible
 - threshold and baseline levels generated on-chip

Matrix [pixel]	256×250
Pixel size [μm²]	80×80
Active area [mm ²]	20.48×20.0
ToA + ToT [bits]	11 + 5
Tuning+Masking [bits]	2x3+1
LVDS links	3+1

Readout Structure: MuPix10

VSSA Regulator: Powering of the CSA (New)

- linear series regulator with differential amplifier for level adjustments
- → configurable by the reference value vss_ref
- ⇒ MuPix10 operational via 1 supply voltage (+HV)

[H. Augustin arXiv:2012.05868]

ToT Sampling: Maintain Data Chronology & RO-Speed (New)

- 1. hit is registered and its readout is withhold
- 2. current source (adjustable by 6 bit DAC: VPTimerDel) charges a capacitance
- 3. discriminating element enables RO if rising voltage crosses threshold (ToT is sampled now at the latest)

Minimise Signal Line Crosstalk (New)

- \bullet neighbouring lines form parallel plate capacitor \to scales with adjacent length
- ⇒ a signal can create cross talk pulses
- 2 metal layers (each 125 lines/column)

- 1. reduce neighbouring line length (1/4 of maximal length)
- 2. distinguish cross talk hits with recognisable patterns
- off diagonal correlation \rightarrow cross talk
- \Rightarrow Estimated crosstalk probability $< \! 1.5 \, \%$

Preliminary Performance Results MuPix10

- 1 supply voltage (usage of VSSA regulator) + HV
- w/o threshold tuning or pixel masking

Preliminary Performance Results MuPix10

Efficiency	> 99 %
Noise Rate	$< 2\mathrm{Hz/Pixel}$
Power Consumption	$< 200 \mathrm{mW/cm^2}$
Time resolution RAW	25.7 ns
Time Resolution corrected	13.3 ns

- the measured time resolution on test beam is worse than expected
- ightarrow MuPix8: time resolution raw $\mathcal{O}(11\,\mathrm{ns})$ time resolution corrected $\mathcal{O}(7\,\mathrm{ns})$ [J. Hammerich, Master Thesis]

Update from the Lab: We can do better ...

- test outputs for internal voltages levels at different points on the chip
- \rightarrow negligible voltage drops within power grid: $\mathcal{O}(1-4\,\text{mV})$
- \rightarrow significant voltage drop from bond pads to power grid: $\mathcal{O}(200\,\text{mV})$

Update from the Lab: We can do better ...

- test outputs for internal voltages levels at different points on the chip
- → negligible voltage drops within power grid: $\mathcal{O}(1-4\,\mathrm{mV})$
- → significant voltage drop from bond pads to power grid: $\mathcal{O}(200 \,\mathrm{mV})$
- ⇒ adaption significantly improves time resolution

Take-Away Message

- currently 2 (MuPix10 & ATLASPix3) types of sensors with a size of about 2×2 cm² for telescope usage
- \rightarrow T64.9: D. Kim "Timing Study and Optimization of ATLASPix3 a full-scale HV-MAPS Prototype"
- ightarrow the high modularity allows to serve 14 different sensors so far
- MuPix10 study from the lab requires further investigations¹ on test beam

	Efficiency	Noise Rate	TR RAW	TR corrected	Power Con.
MuPix10	> 99 %	$< 2\mathrm{Hz/Pixel}$	$\leq 13.4\mathrm{ns}^1$	$\leq 7.5\mathrm{ns}^1$	$< 200\mathrm{mW/cm^2}$

What else is going on:

ATLASPix3.1 submitted, submission of MuPix11 within first half 2021

[&]quot;The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)". (NIMA, Volume 922, 1 April 2019, Pages 265-286)

MuPix10 Signal Line Delay & Time Walk

MuPix10 Threshold Tuning

- globally applied threshold to 2 comparators
- 3 bit DAC/comparator for threshold tuning + 1 bit to "mute" pixel

[H. Augustin arXiv:2012.05868]

MuPix10 Threshold Tuning

- globally applied threshold to 2 comparators
- 3 bit DAC/comparator for threshold tuning + 1 bit to "mute" pixel
- threshold dispersion minimized from 11 mV (240 e⁻) to 4.8 mV (79 e⁻)
- ightarrow effect to be studied on future test beam

[H. Augustin arXiv:2012.05868]

Line Crosstalk MuPix8

