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We argue that frequent sampling of the fraction of a priori non-symptomatic but infectious hu-
mans (either by random or cohort testing) significantly improves the management of the COVID-19
pandemic, when compared to intervention strategies relying on data from symptomatic cases only.
This is because such sampling measures the incidence of the disease, the key variable controlled by
restrictive measures, and thus anticipates the load on the healthcare system due to progression of
the disease. The frequent testing of non-symptomatic infectiousness will (i) significantly improve
the predictability of the pandemic, (ii) allow informed and optimized decisions on how to modify
restrictive measures, with shorter delay times than the present ones, and (iii) enable the real-time
assessment of the efficiency of new means to reduce transmission rates. These advantages are quan-
tified by considering a feedback and control model of mitigation where the feed-back is derived
from the evolution of the daily measured prevalence. While the basic model we propose aggregates
data for the entire population of a country such as Switzerland, we point out generalizations which
account for hot spots which are analogous to (Anderson) localized regions in the theory of diffusion
in random media.

I. INTRODUCTION

The COVID-19 pandemic has led to a worldwide shut-
down of a major part of our economic and social ac-
tivities. This political measure was strongly suggested
by epidemiologic studies assessing the cost in human
lives depending on different possible policies (doing noth-
ing, mitigation, suppression) [1–4]. Mitigation can be
achieved by combinations of different measures, includ-
ing physical distancing, contact tracing, restricting pub-
lic gatherings, and the closing of schools, but also the
testing for infections.

The quantitative impact of very frequent testing of the
entire population for infectiousness has been studied in
Refs. [5, 6]. We will estimate in Sec. III that to fully
suppress the COVID-19 pandemic by widespread testing
for infectiousness, one needs a capacity to test millions of
people per day in Switzerland. This should be compared
to the modest number of 7’000 tests per day performed
across Switzerland during April 2020. Here, we suggest
that, when the daily incidence of symptomatic COVID-
19 infections is of the order of one per 10’000, the daily
testing for (a priori non-symptomatic) infectiousness of
15’000 persons chosen randomly every day, or the weekly
screening of a cohort of the order of 100’000 persons (pref-
erentially essential workers with high exposure), delivers
important quantitative information on the rates of trans-
mission. This information allows the adjustment of re-
strictive measures with significantly shorter delay than
is possible presently. The higher the daily testing rate
the shorter the reaction time in the case of an undesired
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increase of incidence, and accordingly the lower the dam-
age to public health and the economy. We point out that
such testing is entirely realistic for small central Euro-
pean countries: in order to secure the country’s success
as a post-corona holiday destination, the government of
Austria has announced the weekly testing of nearly this
number in its hospitality sector. [7]

Figure 1 summarizes the key concept of the paper,
namely a feedback and control model for the pandemic.
The idea is to collect a time series of daily detected in-
fectious people (our primary indicator), either obtained
directly from testing a priori non-symptomatic people, or
from waste water analysis [8–10]. Its essential output is
the growth rate of the number of persons who became
infectious T days in the past. Hereby, the delay T can
in principle be very short, being strictly bounded from
below only by the latency time for COVID-19 provided
the daily testing rate is sufficiently large. This (delayed)
growth rate and the incidence are then regulated by mea-
sures such as those enforcing physical distance between
persons, their tolerable values being fixed by the capacity
of the health-care system. A feedback and control ap-
proach [12, 13], familiar from everyday implementations
such as thermostats regulating heaters and air condition-
ers, should allow policy makers to damp out oscillations
in disease incidence which could lead to peaks in stress
on the health-care system as well as the wider economy.

An important benefit of our feedback and control
scheme is that it allows a faster and safer reboot of the
economy than would be possible only with the feedback
from the time sequence of daily numbers of positively
tested symptomatic persons [14, 15], hospitalizations, or
deaths [4, 14]. Indeed, these secondary indicators mea-
sure the growth rate of the pandemic with a delay TD that
is necessarily bounded from below by a minimal time of
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order 8-12 days, whatever the testing rate for COVID-19,
as we shall explain. Hence, testing for the primary in-
dicator and increasing the non-symptomatic testing rate
can reduce the time delay T below the delay TD inher-
ent to the secondary indicators. Figure 2 illustrates the
resulting difference in the ability to control the disease.

Without the feedback and control informed by the
primary indicator, there is a larger lapse in time be-
tween policy changes and the observable changes in the
daily numbers of infectiousness measured by secondary
indicators. To relax restrictions safely when using sec-
ondary indicators, the prevalence (defined as the fraction
of presently infectious persons), must decrease to a level
i∗∗ (that is smaller than i∗ when using the primary indi-
cator) such that a subsequent undetected growth during
TD = 8-12 days will not move it above the critical fraction
ic manageable by the health-care system. Monitoring the
time evolution of the COVID-19 pandemic by only rely-
ing on secondary indicators is comparable to driving a car
from the back seat with knowledge only of the damage
caused by previous collisions. To minimize harm to the
occupants of the vehicle, driving very slowly is essential,
and oscillations from a straight course are likely to be
large. Making use of the shortened time delay T < TD
based on the primary indicator allows a reboot to be
attempted at higher levels of prevalence, i∗ > i∗∗, which
implies a shorter time in lockdown. In turn, if a long lock-
down has already resulted in a low level of prevalence, as
is currently the case in many European countries, a fast
reaction time allows to keep the case numbers low by
reacting quickly to a potential new onset of exponential
growth. In Fig. 3 we estimate quantitatively the benefits
of frequent non-symptomatic testing.

We point out before proceeding further that this is a
contribution from physicists that makes simplifying as-
sumptions inconsistent with details of medical and epi-
demiological reality to obtain some key estimates and
illustrate the basic principles of feedback and control
as applied to the current pandemics. When reduced to
practice, special attention will need to be paid to all as-
pects of the testing methodology, from the underlying
molecular engineering paradigm (e.g., PCR) and associ-
ated cost/performance trade offs, to population sample
selection consistent with societal norms and statistical
needs, and safe operation of testing sites that does not
risk further infections. Furthermore, in preparation for
the day when more is known about the immune response
to COVID-19 and possible vaccines, we plan to revise our
models for feedback derived from a reliable immunoassay
with well-specified performance parameters, such as lag
times with respect to infection.

The paper is organized as follows. We summarize our
key findings in Sec. II. In Sec. III, we discuss the use
of massive testing as a direct means to contain the pan-
demics, showing that it requires a 100-fold increase of the
current testing frequency. In Sec. IV, we define the main
challenge to be addressed: To measure the quantitative
effect of restrictive measures on the transmission rate.
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FIG. 1. Feedback and control loop that allows stabiliza-
tion of the pandemic. The key quantity measured by suffi-
ciently frequent non-symptomatic testing is the growth rate
k of infection numbers with a time delay (T ) shorter than
the one (TD) obtained by smptomatic testing. If k exceeds a
tolerable upper threshold κ+, restrictions are imposed. For
k below a lower threshold κ−, and if infection numbers are
below critical, restrictions are released. In the absence of a
substantial influx of infected people from outside the country,
and provided infection numbers are below a critical value, the
optimal target of the growth rate is k = 0, corresponding to
a marginally stable state, where the prevalence neither grows
nor decreases exponentially with time. If higher testing rates
are available, the measured observables and control strategies
can be geographically refined, particularly to avoid hotspots.

Section V explains the difference between using primary
or secondary indicators to monitor the time evolution of
the COVID-19 pandemic. Section VI constitutes the cen-
tral part of the paper, showing how data from sparse sam-
pling tests can be used to infer essentially instantaneous
growth rates, and their regional dependence. We define a
model of policy interventions informed by feed-back from
random testing and analyze it theoretically. The model
is also analyzed numerically in Sec. VII. In Sec. VIII,
we generalize the model for regionally refined analysis of
the epidemic growth pattern which becomes the preferred
choice if higher testing rates become available. We con-
clude with Sec. IX by summarizing our results and their
implication for a safe reboot after the current lockdown.
In the appendix, we present the algorithm used for our
numerical results.

II. SUMMARY OF KEY RESULTS

A. Reducing delay by non-symptomatic testing

To shorten the reaction time, we propose to use the
time series obtained from daily tests for infectiousness
in groups of persons who are a priori non-symptomatic.
This time series is our primary indicator, in contrast to
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FIG. 2. Dynamics of the pandemic with and without a
feedback and control scheme in place, as measured by the
prevalence i, i.e. the fraction of currently infected people
(logarithmic scale). After the limit of the health system, ic,
has been reached, a lockdown brings i down again. The ex-
ponential rate of decrease is expected to be very slow, unless
extreme measures are imposed. The release of measures upon
a reboot is likely to re-induce exponential growth, but with a
rate difficult to predict. Three possible outcomes are shown
in blue curves in the scenario without testing feedback, where
the effect of the new measures becomes visible only after a
delay of 10-14 days. In the worst case, i grows by a multi-
plicative factor of order 20 before the growth is detected. A
reboot can thus be risked only once i ≤ i∗∗ ≡ ic/20, implying
a very long time in lockdown after the initial peak. Due to
the long delay until policy changes show observable effects,
the fluctuations of i will be large. Random testing (the red
curve) has a major advantage. It measures i directly and de-
tects its growth rate within a few days, whereby the higher
the testing rate the faster the detection. Policy adjustments
can thus be made faster, with smaller oscillations of i. A safe
reboot is then possible earlier, at the level of i ≤ i∗ ≈ ic/4.

the secondary indicator that makes use of the time se-
ries obtained from testing for the daily numbers of per-
sons who are either symptomatic, hospitalized, or even
dead because of COVID-19. The sample to be tested
can be random or consist of a pre-selected group that is
tested regularly and systematically, e.g., on a weekly ba-
sis. The lower time line of Fig. 4, illustrates the method.
It builds on the fact that the latency time, after which
PCR tests return positive results following exposure, is
only about 2 days [16–20] Effects of an increased infection
rate can thus be seen even before the onset of symptoms.
This non-symptomatic testing allows to obtain direct and
model-independent information on Reff(t), (the number
of infections transmitted by a person who was infectious
at any time t no less than T days in the past). Let us as-
sume a daily incidence of COVID-19 is of the order of one
per 10’000. Then, by testing a few thousand people per
day, we find that over a testing time T shorter than the
minimal delay time TD for the symptomatic secondary
indicators, it becomes possible to detect a sudden dan-

FIG. 3. A shorter reaction time allows to take countermea-
sures earlier if Reff jumps above 1 after a release of restric-
tions. The results are plotted for interventions being taken
when a 85% confidence level is reached for Reff > 1. For a
95% confidence level one would need to test 2.6 times more
frequently. In (a) we plot the relative increase of prevalence
and incidence without non-symptomatic testing (assuming a
time delay TD = 12 associated with symptomatic case data),
and show how it is reduced as one tests non-symptomatically
for infectiousness, with increasing frequency. The expected
number nd = r i0 of positively tested people per day is pro-
portional to the number r of tests per day and the prevalence
i0 in the tested subgroup. The estimate of economic costs is
described in the main text. Panels (b-d) translate the avoided
increase of incidence into the number of saved lives per week
in Switzerland, assuming an initial incidence of 300 daily new
infections (both symptomatic and asymptomatic) and a mor-
tality of 0.5%.

gerous increase in Reff with reasonable confidence. This
shorter response time may potentially save tens of lives
per week at the national level, see Fig. 3(b-d), and re-
duce costs for the health care system as well as for the
economy, see Fig. 3(a). Moreover such monitoring pro-
vides greater stability and diminishes the danger of a
second wave of the epidemic. Also, by monitoring the
fraction of infected people with weak or no symptoms,
non-symptomatic testing allows to better determine some
of the parameters entering epidemiologic modeling.

B. Estimating the intervention time

We are going to estimate the time T after a release,
until which one will know with reasonable certainty that a
new state with exponential growth has been reached. We
then estimate how much damage can be prevented by the
more rapid intervention made possible with systematic,
but non-symptomatic testing.
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FIG. 4. Timing of case counting after a release, up to the
first time where a reliable estimate of the new reproduction
number Reff can be made. For symptomatic testing (upper
time line), the incubation time and the natural delays between
symptoms and testing incur a delay TD. This delay cannot
be less than 9 days, the value of TD for COVID-19 when the
observation window ∆T is chosen to be a single day. In the
case of non-symptomatic testing (lower time line), the window
of time T must be sufficiently large so as to accumulate enough
statistics, but with sufficiently frequent testing one still gains
precious time as compared to TD.

Assume that we test r people daily over a period T
after the release. We also assume that tests can distin-
guish persons that are both infected and still infectious.
This can be ensured, e.g., by following a large cohort of
people (e.g., medical or nursing staff) who are tested on
a weekly basis. We denote with i0 the initial prevalence
of acute infections in the population being sampled. The
expected number of positive tests per day is nd = i0 r.
In the first half (T/2) of the measuring period T , one
detects

N1 ≈ nd T/2 (1)

cases. In the second half we expect

N2 = N1 exp(k T/2) ≡ N1 (Reff)
T/8

(2)

cases, with k ≡ ln(Reff)/4 being the growth rate of infec-
tions. The relation between the rate k and the effective
reproduction number follows if one assumes a “genera-
tion time” of 4 days [21] until an infected person has
transmitted the disease to a next generation. Above, we
anticipated that T/2 will be larger than the short latency
time. If so, the simple exponential law (2) should hold
to a good approximation, until a further intervention is
taken.

We can tell with reasonable certainty that the growth
rate is positive once the difference

N2 −N1 = N1

(
(Reff)

T/8 − 1
)

(3a)

is larger by a factor α than its statistical uncertainty√
N1 +N2 ≈

√
2N1. The latter expression follows from

the law of large numbers. An intervention is thus taken

when

N1

(
(Reff)

T/8 − 1
)

= α
√

2N1. (3b)

For our plots we choose α = 1, corresponding to a con-
fidence level of 85% that Reff > 1, while for α = 1.6 it
reaches 95%. If we replace N1 by the right-hand side of
Eq. (1) on both sides of Eq. (3b), we find the relation

nd ≈
4

T

(
α

(Reff)T/8 − 1

)2

. (4)

If Reff is not too far from 1, we find the relations

nd(T, α,Reff) ≡
[

16α

ln(Reff)

]2

T−3, (5a)

or, equivalently,

T (nd, α,Reff) ≡
[

16α

ln(Reff)

]2/3

n
−1/3
d . (5b)

Non-symptomatic testing becomes beneficial as com-
pared to symptomatic testing as soon as nd exceeds the
right-hand side of Eq. (5a) evaluated with T replaced by
the delay time TD of symptomatic testing, or, equiva-
lently, if TD exceeds the right-hand side of Eq. (5b).

By the reaction time T , the prevalence and the infec-
tion numbers will have increased by the fraction

i(T )− i0
i0

= (Reff)
T/4 − 1 ≈

(
4α2 ln(Reff)

nd

)1/3

, (6)

which is to be compared to (Reff)
TD/4 − 1 for methods

based on fitting symptomatic case numbers, with an in-
herent delay TD. These two relative increases are shown
in Fig. 3(a) for TD = 12 days as a function of the effective
reproduction number Reff that prevails after the release
of restrictions. Sufficiently frequent non-symptomatic
tests result in a smaller relative increase of the preva-
lence. Therefore, less of the achievements of the preced-
ing lockdown will be undone at the shorter intervention
time T < TD. Since the reproduction number had low-
ered to RLD ≈ 0.7 during the final phase of the Swiss
lockdown [22, 23] and a loss of P ≈ 500 million CHF
in generated economic added value accrued during ev-
ery day of lockdown, we can associate an effective price
tag to the additional increase of the prevalence if no in-
tervention were taken until the later time TD > T . Per
day of exponential growth with Reff > 1, one undoes
the effect of a preceding lockdown effort that had cost
P ln(Reff)/ ln(1/RLD). This cost is indicated in Fig. 3(a).
Even more importantly, the increase in prevalence im-
plies an increase of daily incidence and thus, ultimately,
of the death rate. With an estimated low rate of daily
n ∼ 300 new infections (reported and unreported) in
Switzerland and assuming a COVID-19 mortality rate
of m = 0.5%, the diminished increase of incidence (i.e.,
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Eq. (6) saves nm [i(TD) − i(T )]/i0 lives per day in the
country. The actual numbers are plotted in Fig. 3(b-d)
for different delays TD. They demonstrate that frequent
non-symptomatic testing can save a significant number of
lives by enabling a more rapid response to an increasing
prevalence due to a release of restrictions.

From the results shown in Fig. 3 one readily reads off
that the expected number of detected new infections per
day, nd, should be of order 10, and preferably even big-
ger, to enable an effective monitoring. This implies a
relatively large number r of daily tests, r = nd/i0, es-
pecially if the prevalence i0 is as low as it is currently
in many countries in Europe. However, if a sufficiently
large group of people, such as medical staff or key work-
ers with high exposure, can be recruited for regular non-
symptomatic testing, their test data could be used for the
fast feedback system. Moreover, if the prevalence slowly
rises again non-symptomatic testing will require accord-
ingly less effort. By autumn (2020), when a second wave
of the pandemic becomes more likely, it could act as an
early warning system and as a tool for efficient mitigatioh
which is worthy of implementation.

III. MASSIVE TESTING

If the massive rate of 1.5 million tests per day becomes
available in Switzerland, it will be possible to test any
Swiss resident every 5 to 6 days. If the infected peo-
ple that have been detected are kept in strict quarantine
(such that they will not infect anybody anymore with
high probability), such massive testing could be sufficient
to prevent an exponential growth in the number of infec-
tions without the need of draconian physical distancing
measures. We now explain qualitatively our approach
to reach this conclusion (Ref. [5] gives a more detailed
quantitative analysis).

The required testing rate can be estimated as follows.
Let ∆T denote the average time until an infected person
infects somebody else. The reproduction number R falls
below 1 (and thus below the threshold for exponential
growth) if non-diagnosed people are tested at time inter-
vals of no more than 2∆T . Thus, the required number
of tests over the time 2∆T , the full testing rate τ−1

full, is

τ−1
full =

NCH

2∆T
, (7a)

where

NCH = 8′500′000 (7b)

is the number of inhabitants of Switzerland [24]. Without
social restrictions, it is estimated that [25]

∆T ≈ 3 days, (8a)

such that

τ−1
full = 1.4× 106/days, (8b)

i.e., about 1.4 million tests per day would be required
to control the pandemics by testing only. If additional
restrictions such as physical distancing etc., are imposed,
∆T increases by a modest factor and one can get by with
indirectly proportionally fewer tests per day. Neverthe-
less, on the order of 1 million tests per day is a minimal
requirement for massive testing to contain the pandemics
without further measures.

However, even while the Swiss capabilities are still far
from reaching 1 million tests per day, testing for infec-
tions offers two important benefits in addition to identi-
fying people that need to be quarantined. First, properly
randomized testing allows to monitor and study the ef-
ficiency of measures that keep the reproduction number
R below 1. This ensures that the growth rate k of case
numbers and new infections is negative, k < 0. Sec-
ond, frequent testing, even if applied to randomly se-
lected people, helps suppress the reproduction number
Reff and thus allows policy to be less restrictive in terms
of other measures, such as physical distancing.

To quantify the latter benefit, observe that the effect
of massive testing on the growth rate k is proportional to
the testing rate [5]. Let us assume that without testing
or social measures one has a growth rate k0. Then, if the
testing rate τ−1

full is sufficient to completely suppress the
exponential growth in the absence of other measures, a
smaller testing rate τ−1 decreases the growth rate k0 by
(τ−1/τ−1

full) × k0. The remaining reduction of k to zero
must then be achieved by a combination of restrictive
social measures and contact tracing.

It is possible to refine the argument above to take ac-
count of the possibility of a spectrum of tests with partic-
ular cost/performance trade offs, i.e., a cheaper test with
more false negatives could be used for random testing,
whereas those displaying symptoms would be subjected
to a “gold standard” (PCR) assay of viral genetic mate-
rial.

IV. QUANTIFYING THE EFFECTIVENESS OF
RESTRICTIONS

A central challenge for establishing reliable predictions
for the time evolution of a pandemic is the quantifica-
tion of the effect of social restrictions on the transmis-
sion rate [3]. Policymakers and epidemiologists urgently
need to know by how much specific restrictive measures
reduce the growth rate k. Without that knowledge, it
is essentially impossible to take an informed decision on
how to optimally combine such measures to achieve a
(marginally) stable situation, defined by the condition of
a vanishing growth rate

k = 0. (9)

Indeed, marginal stability is optimal for two reasons.
First, it is sustainable in the sense that the burden on
the health system does not grow with time. Second, it is
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the least economically and socially restrictive state com-
patible with the stability requirement.

In Secs. V and VI, we suggest how marginal stabil-
ity can be achieved, while simultaneously measuring the
effects of a particular set of restrictions.

V. TIME DELAYS: PRIMARY VERSUS
SECONDARY INDICATORS

The time evolution of the COVID-19 pandemic has
been monitored in Europe between March and June 2020
by estimating the time-dependent reproduction number
Reff(t) from the growth rate of confirmed cases over a
time window of the generation time of 4 days for COVID-
19. An inherent delay time that we denote with TD when
estimating Reff(t) arises as a consequence of (i) the in-
cubation time of about Tinc ≈ 5 days from the infection
until the first symptoms show up, (ii) the time window
∆T ranging from 1 to 4 days over which case numbers are
averaged to even out fluctuations throughout the week or
uncertainties about the onset of symptoms, and (iii) the
time delay Ts→t until symptomatic people get tested, see
Fig. 4. Even by using forecasting methods to extrapolate
from the number of tests with short delays Ts→t to the
total expected reports of symptom onsets for a given day,
the data accrued for the last T ′s→t ≈ 3 days is usually too
incomplete to be incorporated in the analysis. Accord-
ingly, a TD ranging from 9 days to 12 days [21] of delay is
unavoidable when using symptomatic testing (secondary
indicator) to determine Reff(t) . This is a significant dis-
advantage when restrictions are released, since one needs
to know the resulting new value of Reff(t) as rapidly as
possible, so as to take countermeasures in case the release
has caused Reff(t) to surpass 1, the condition for a stable
pandemic.

We claim that an alternative testing can be used so
as to keep the dynamics of the pandemics under control
as per the feedback loop of Fig. 1. The idea is either
to test on a daily basis a new set of random, a priori
non-symptomatic people or to choose a cohort of people
and test them regularly for infectiousness [26] thereby
obtaining a value for Reff(t) with a shorter time delay
than when relying on symptomatic testing.

A. Random versus cohort testing

Note that the non-symptomatic testing aims at the
early identification of new cases of people who have re-
cently been infected and are still infectious. Standard
PCR tests, however, only can tell whether a person has
viral material in their body, which is often the case long
after symptoms have been resolved [27]. This constitutes
a challenge for random testing, where one would have to
use additional information (such as viral load, presence
of antibodies or specific genetic sequences indicative of
active virus) to diagnose infectiousness. Cohort testing

with a testing interval of the order of an infectious pe-
riod (ca. one week), resolves this problem, since the first
time a person tests positive, it is highly likely that he
or she is still infectious. It has the additional advantage
that one may concentrate the non-symptomatic testing
preferentially on essential workers with high exposure,
where precautionary testing is useful anyway. Moreover
the prevalence and incidence in such a cohort is likely
to be higher than the average in the population, which
reduces the effort needed to detect a dangerous growth
dynamics. Note that even if the prevalence and incidence
is higher in such a biased cohort, their (relative) growth
rate can be expected to be representative of that of the
average population. A caveat of cohort testing is, how-
ever, that survey participation itself as well as the regular
feedback to cohort members about their infectiousness
may bias their social behavior.

VI. NATIONAL MODELING AND
INTERVENTION

We analyze primary, non-symptomatic testing first for
the case where we treat the country as a single entity
with a population N . This will allow us to understand
how testing frequency affects key characteristics of policy
strategies.

A. Model assumptions

We consider a model with the following idealizing as-
sumptions:

(1) In the case that random testing is used, we assume
that a test can actually diagnose infectiousness.
Further we assume that an unbiased representative
sample of the population is tested.

(2) The rate of false positive tests is much less than the
expected frequency of detection of infections.

(3) Tests show whether a person is acutely infected in
a short time (on the order of one day).

(4) Policy measures can be applied rapidly, and their
effect is immediate. Time delays due to the adap-
tation of human behavior to new rules is neglected.

(5) The population is homogeneous as far as inter-
actions between its members are concerned, e.g.,
there are no (semi)-isolated subpopulations. We
do not account for large deviations in infectious-
ness that may lead to superspreading events [28].

As is well known to epidemiologists and the medical pro-
fession, the assumptions (1-4) clearly are violated to vary-
ing degrees in reality, but they can be taken into account
by refinements of our model, whose operating principles
and basic behavior will remain qualitatively the same.
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On the other hand, violations of assumption (5) can lead
to new and dangerous effects, namely hotspots related to
Anderson localization [29], which we discuss in Sec. VIII.

Let U be the actual number of currently infectious but
not yet positively tested persons. (As in Ref. [5], we
assume that positively tested people do not spread the
disease since they will be quarantined.) The spreading
of infections is assumed to be governed by the inhomo-
geneous, linear growth equation(

dU

dt

)
(t) = k(t)U(t) + Φ(t), (10)

where k(t) is the instantaneous growth rate and Φ(t) ac-
counts for infections arising from people crossing the na-
tional border. For simplicity, we set this influx to zero
in this paper, in which case k(t) = U̇(t)/U(t) with the

short-hand notation U̇(t) for the time derivative on the
left-hand side of (10).

An equation of the form (10) is usually part of a more
refined epidemiological model of the SIR (susceptible-
infected-recovered) type [30–32] that accounts explicitly
for the recovery or death of infected persons. For our pur-
pose, the effect of these is subsummarized in an overall
time-dependence of the rate k(t). For example, it evolves
as the number of immune people grows, restrictive mea-
sures change, mobility is affected, new tracking systems
are implemented, hospitals reach their capacity, testing is
increased, etc. Nevertheless, over a short period of time
where such conditions remain constant, and the fraction
of immune people does not change significantly, we can
assume the effective growth rate k(t) to be piecewise con-
stant in time [33]. We will exploit this below. The above
evolution equation is the simplest model for infection dy-
namics, as it has no temporal memory and contains the
fewest parameters. Generalizations such as SEIR mod-
els with a finite latency time (neglected here since it is
rather short for COVID-19) [18–20], or discrete evolution
models, that are non-local in time, could be considered
in further work.

B. Modeling intervention strategies

For t < 0, we assume a situation that is under control,
with a negative growth rate

k(t < 0) ≡ k0 < 0, (11a)

as is the case in Switzerland after the lockdown in March,
with k0 ≈ −0.07 day−1, according to the estimates of
Ref. [4]. Such a stable state needs to be reached before
a reboot of the economy can be considered. At t = 0
restrictive measures are first relaxed, resulting in an in-
crease of the growth rate k from k0 to k1, which we as-
sume positive,

k(t = 0) = k1 > 0. (11b)

Hence, compensating countermeasures are required at
later times to avoid another exponential growth of the
pandemic.

We now want to monitor the performance of policy
strategies that relax or re-impose restrictions, step by
step. The goal for an optimal policy is to reach a
marginally stable state (9) (i.e., with k = 0) as smoothly,
safely, and rapidly as possible. In other words, marginal
stability is to be reached with the least possible damage
to health, economy, and society. This expected outcome
is to be optimized while controlling the risk of rare fluc-
tuations.

To model the performance of policy strategies, we ne-
glect the contributions to the time evolution of k(t) due
to the increasing immunity or the evolution in the age
distribution of infected people. We also neglect periodic
temporal fluctuations of k(t) (e.g., due to alternation be-
tween workdays and weekends), which can be addressed
in further elaborations. Instead, we assume that k(t)
changes only in response to policy measures which are
taken at specific times when certain criteria are met, as
defined by a policy strategy. An intervention is made
when the sampled testing data indicates that with high
likelihood, k(t) exceeds some upper threshold

κ+ ≥ 0. (11c)

Likewise, a different intervention is made should k(t) be
detected to fall below some negative threshold

κ− ≤ 0. (11d)

Note that if there is substantial infection influx Φ(t)
across the national borders, one may want to choose the
threshold κ+ to be negative, to avoid a too large response
to the influx. From now on we neglect the influx of in-
fections, and consider a homogeneous growth equation.

To reach decisions on policy measures, data is acquired
by daily testing of random sets of people for infections, or
by periodic cohort testing. We assume that the tests are
carried out at a limited rate r (number of tests per day).
Let i(t,∆t) be the fraction of positive infections detected
among the r∆t� 1 tests carried out in the time interval
[t, t+ ∆t]. By the law of large numbers, it is a Gaussian
random variable with mean

〈i(t,∆t)〉 =
U(t)

N
, U(t) ≡

t+∆t∫
t

dt′

∆t
U(t′) (11e)

and standard deviation

〈[i(t,∆t)]2〉1/2c =

√
〈i(t)〉
r∆t

=

√
U(t)

N r∆t
. (11f)

The current value of k(t) is estimated as kfit(t) by fit-
ting these test data to an exponential, where only data
since the last policy change should be used. The fitting
also yields the statistical uncertainty (standard devia-
tion), which we call δk(t).
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If the instability threshold is surpassed by a certain
level, i.e., if

kfit(t)− κ+ > αδk(t) (11g)

a new restrictive intervention is taken. If instead

κ− − kfit(t) > αδk(t) (11h)

a new relaxing intervention is taken. Here, α is a key
parameter defining the policy strategy. It determines the
confidence level

p ≡ [1 + erf(α)]/2 (11i)

that policymakers require, before deciding to declare that
a stability threshold has indeed been crossed. This strat-
egy will result in a series of intervention times

0 ≡ t1 < t2 < t3 · · · (11j)

starting with the initial step to reboot at t1 = 0. In the
time window [tι, tι+1], the growth rate k(t) is constant
and takes the value

k(ι) = k(ι−1) −∆k(ι), ι = 1, 2, · · · (11k)

where a policy choice with ∆k(ι) > 0 (corresponding to a
restrictive measure) is made to bring back k(t) below the
upper threshold κ+, while a policy choice with ∆k(ι) < 0
is made to bring back k(t) above the lower threshold κ−.

The difficulty for policymakers is that so far the quan-
titative effect of an intervention is not known. We model
this uncertainty by assuming ∆k(ι) to be random to a
certain degree.

If at time t, kfit(t) crosses the upper threshold κ+ with
confidence level p, we set tι = t and a restrictive measure
is taken, i.e., ∆k(ι) is chosen positive. We take the as-
sociated decrement ∆k(ι) to be uniformly distributed on
the interval [

b∆k
(ι)
opt,+,

1

b
∆k

(ι)
opt,+

]
, (11l)

where the optimum choice ∆k
(ι)
opt,+ is defined by

∆k
(ι)
opt,+ ≡ kfit (tι)− κ+ > 0. (11m)

The parameter b < 1 describes the uncertainty about the
effects of the measures taken by policymakers. While the
policymakers aim to reset the growth factor k to κ+, the
result of the measure taken may range from having an
effect that is too small by a factor of b to overshooting

by a factor of 1/b. A measure with effect ∆k(ι) = ∆k
(ι)
opt,+

would be optimal according to the best current estimate.
The larger 1−b, the larger the uncertainty. Unless stated
otherwise, we assume b = 0.5.

If instead kfit(t) crosses the lower threshold κ− with
confidence level p at time t, we set tι = t and a relaxing

measure is taken, i.e., ∆k(ι) is chosen negative. Again,
∆k(ι) is uniformly distributed on the interval[

−1

b
∆k

(ι)
opt,−,−b∆k

(ι)
opt,−

]
(11n)

with the optimum choice ∆k
(ι)
opt,− defined by

∆k
(ι)
opt,− ≡ κ− − kfit (tι) > 0. (11o)

The process described above is stochastic for two rea-
sons. First, the sampling comes with the usual uncer-
tainties in the law of large numbers. Second, the effect of
policy measures is not known beforehand (even though
it may be learnt in the course of time, which we do not
include here). It should be clear that the faster the test-
ing the more rapidly one can respond to a super-critical
situation.

A significant simplification of the model occurs when
the two thresholds are chosen to vanish,

κ± = 0, (12a)

in which case

k(ι) = k(ι−1) −∆k(ι), ι = 1, 2, · · · , (12b)

with |∆k(ι)| uniformly distributed on the interval[
b |kfit(tι)|,

1

b
|kfit(tι)|

]
. (12c)

In this case the system will usually tend to a critical
steady state with k(t→∞)→ 0, as we will show explic-
itly below. In this case the policy strategy can simply be
rephrased as follows. As soon as one has sufficient con-
fidence that k has a definite sign, one intervenes, trying
to bring k back to zero. The only parameter defining the
strategy is α.

C. Testing and fitting procedure

Let us now detail the fitting procedure and analyze the
typical time scales involved between subsequent policy
interventions when choosing the thresholds (12). After
a policy change at time tι, data is acquired over a time
window ∆t. We then proceed with the following steps to
estimate the time tι+1 at which the next policy change
must be implemented.
Step 1: Measurement We split the time window

∆Tι ≡ [tι, tι + ∆t] (13a)

of length ∆t after the policy change into the time interval

∆Tι,1 ≡
[
tι, tι +

∆t

2

]
(13b)
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and the time interval

∆Tι,2 ≡
[
tι +

∆t

2
, tι + ∆t

]
. (13c)

Testing delivers the number of currently infected people

Nι,1(∆t) = r∆t i

(
tι,

∆t

2

)
(13d)

for the time interval (13b) and

Nι,2(∆t) = r∆t i

(
tι +

∆t

2
,

∆t

2

)
(13e)

for the time interval (13c), where we recall that r denotes
the number of people tested per unit time. Given those
two measurements over the time window ∆t/2, we obtain
the estimate

kfit
ι (∆t) =

2

∆t
ln

(
Nι,2(∆t)

Nι,1(∆t)

)
(13f)

with the standard deviation

δk(∆t) =
2

∆t

√
1

Nι,1(∆t)
+

1

Nι,2(∆t)
, (13g)

as follows from the statistical uncertainty
√
Nι,γ(∆t)

of the sampled numbers Nι,γ(∆t) and standard error
propagation. The above recipe can be replaced by a
more sophisticated Levenberg-Marquardt fitting proce-
dure, which yields more accurate estimates for k(t) with
a smaller uncertainty δk(t). We have confirmed that this
uniformly improves the performance of the mitigation
strategy.

Step 2: Condition for new policy intervention A new
policy intervention is taken once the magnitude |kfit

ι (∆t)|
with kfit

ι (∆t) given by Eq. (13f) exceeds α δk(∆t) with
δk(∆t) given by Eq. (13g). Here, α controls the accuracy
to which the actual k has been estimated at the time of
the next intervention. The condition

|kfit
ι (∆t)| = α δk(∆t), (14a)

for a new policy intervention thus becomes∣∣∣∣∣ln
(
Nι,2(∆t)

Nι,1(∆t)

)∣∣∣∣∣ = α

√
1

Nι,1(∆t)
+

1

Nι,2(∆t)
. (14b)

Step 3: Comparison with modeling We call
i(t) = U(t)/N the the prevalence of infectious peo-
ple (in the entire population) that have not yet been
detected. According to (10) with Φ = 0, it follows a sim-
ple exponential time evolution between two successive
policy interventions,

i(tι + t′) = i(tι) exp(kι t
′), (15)

valid on the interval tι < t′ < tι+1. The expected number
of newly detected infected people in the time interval
(13b) is

〈Nι,1(∆t)〉 = r

∆t/2∫
0

dt′ i(tι + t′)

= r i(tι)
ekι ∆t/2 − 1

kι
. (16a)

Similarly, the predicted number of infected people in the
time interval (13c) is

〈Nι,2(∆t)〉 = r

∆t∫
∆t/2

dt′ i(tι + t′)

= r i(tι)
ekι ∆t/2

(
ekι ∆t/2 − 1

)
kι

. (16b)

Step 4: Estimated time for a new policy intervention
We now approximate Nι,1 and Nι,2 by replacing them
with their expectation value Eqs. (16a) and (16b), re-
spectively, and anticipating the limit

kι ∆t/2� 1. (17a)

We further anticipate that for safe strategies the fraction
of currently infected people i(t) does not vary strongly
over time. More precisely, it hovers around the value i∗

defined in Eqs. (19b) and (20d) (see Fig. 2). We thus
insert

Nι,1 ≈ Nι,2 ≈ r i(tι) ∆t/2 ≈ r i∗∆t/2 (17b)

into Eq. (14b) and solve for ∆t. The solution is the time
until the next intervention

∆tι ≡ tι+1 − tι =
(4α)2/3

(k2
ι r i

∗)1/3
, (17c)

from which we deduce the relative increase

i(tι+1)

i(tι)
≡ exp (kι ∆tι)

= exp

(
sgn(kι) (4α)2/3

(
|kι|
r i∗

)1/3
) (17d)

of the fraction of currently infected people over the time
window. This relative increase is close to 1 if the argu-
ment of the exponential on the right-hand side is small.

We will show below that the characteristics

∆t1 =
(4α)2/3

(k2
1 r i

∗)1/3
, (18a)

and

i(t2)

i(t1)
= exp

(
(4α)2/3

(
k1

r i∗

)1/3
)

(18b)
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of the first time interval [t1, t2] set the relevant scales
for the entire process. From Eqs. (17c) and (17d), we
infer the following important result. The higher the test-
ing frequency r, the smaller the typical variations in the
fraction of currently infected people, and thus in the case
numbers. The band width of fluctuations decreases as
r−1/3 with the testing rate.

1. Critical prevalence

As one should expect, it is always the average rate to
detect a currently infected person, r i∗, which enters into
the expressions (17c) and (17d). The higher the preva-
lence i∗, the more reliable is the sampling, the shorter is
the time to converge toward the marginal state (9), and
the smaller are the fluctuations of the fraction of infected
people.

If i∗ is too low the statistical fluctuations become too
large and little statistically meaningful information can
be obtained. On the other hand, if the fraction of in-
fections drops to much lower values, then policy can be
considered to have been successful and can be maintained
until further tests show otherwise.

We seek an upper bound for a manageable i∗. Here we
consider the parameters of Switzerland. However, they
can easily be adapted to any other country. We assume
that a fraction pCH

ICU of infected people in Switzerland
needs to be in intensive care [34]. Here, we will use the
value pCH

ICU = 0.05. Let ρICU be the number of ICU beds
per inhabitant that shall be allocated to COVID-19 pa-
tients. The Swiss national average is about [35]

ρCH
ICU ≈

1200

8′500′000
≈ 1.4× 10−4. (19a)

For the pandemics not to overwhelm the health system,
one thus needs to maintain the prevalence safely below

i(t) ≤ ic =
ρCH

ICU

pCH
ICU

= 0.0028, (19b)

together with similar constraints related to the capacity
for hospitalizations, medical care personnel and equip-
ment for specialized treatments. We take the constraint
from intensive care units to obtain an order of magnitude
for the upper limit admissible for i. A study dated April
10 2020 based on random testing reports that the frac-
tion of people infected with the virus in early April lied
within the confidence interval [0.0012, 0.0076] in Austria
(whereby half of the infected people in the sample were
previously undetected) [36]. The estimates in Ref. [4]
suggest that the fraction of acutely infected people was
even close to 0.01 before the lock-down of March 16 2020
in Switzerland. This indicates that our threshold esti-
mate (19b) is conservative. If the actual threshold (which
depends on the country, the structure of its population,
and its health-care infrastructure) is higher, the testing
frequency required to reach a defined accuracy decreases
in proportion.

The objective is to mitigate the pandemic so that val-
ues of the order of ic or below are achieved. Before that
level is reached restrictions cannot be relaxed. It may
prove difficult to push the fraction of infected people sig-
nificantly below ic, since the recent experience in most
European countries suggests that it takes a lot of effort
to keep growth rates k well below 0. The main aim would
then be to reach at least stabilization of the number of
currently infected people (k = 0).

For the following we thus assume that the prevalence i
will stagnate around a value i∗ of the order of ic. We will
discuss below what ratio i∗/ic can be considered safe.

D. Required testing rate

We seek the testing rate needed for a strategy with
satisfactory outcome. We assume that after the reboot
at t1 = 0, the initial growth rate may turn out to be
fairly high, say of the order of the unmitigated growth
rate. In many European countries a doubling of cases
was observed every three days before restrictive measures
were introduced. This corresponds to a growth rate of

k0 =
ln(2)

3 days
≈ 0.23 day−1. (20a)

We assume an initial growth rate of

k1 = 0.1 day−1 (20b)

just after the reboot, which corresponds to an effective
reproduction number of Reff = exp(4 k1) ≈ 1.49. For the
simulation of a long-term strategy we choose the rather
high confidence parameter

α = 3. (20c)

In Sec. VII, we will find that this choice strikes a
good balance between several performance criteria in the
longer term (see Fig. 6). In contrast, when the focus is on
preventing damage on short time scales after a release,
as discussed in Sec. II, a smaller value α ≈ 1 is more ap-
propriate. We further assume that the rate of infections
initially stagnates at a level of (for Switzerland)

i∗ =
ic
4
≈ 0.0007. (20d)

We estimate that this prevalence level is presumably
smaller by a factor of 2-4 than the level that one ex-
pects under the incidence conditions for which Germany
recommends to take restrictive interventions again [37].

A minimal requirement is that the first relative in-
crease of

i(t2)

i(t1)
=
i(t2)

i(0)
(20e)

does not exceed a factor of ic/i
∗ = 4. From Eq. (18b),

we thus obtain the minimal number of daily tests

r ≥ rmin ≡
(4α)2

(ln 4)3

k1

i∗
≈ 7′700 day−1 (21)
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for the assumed parameters, including the rather large
value of α = 3 and k1. Note in particular the inverse pro-
portionality to the parameter i∗, for which Eq. (20d) is a
conservative estimate. Using this value yields an estimate
of the order of magnitude required for Switzerland. In
Sec. VII we simulate a full mitigation strategy and con-
firm that with additional capacity for just about 15’000
non-symptomatic infection tests per day a nation-wide,
safe reboot can be envisioned under such conditions.

We close with two observations. First, this mini-
mal testing frequency is just twice the testing frequency
presently available for suspected infections and medical
staff in Switzerland. Second, while the latter tests re-
quire a high sensitivity with as few false negatives as
possible, non-symptomatic testing, whose purpose is sta-
tistical analysis, can very well be carried out with tests
of lower quality in that respect. Indeed, an increase in
false negatives acts as a systematic error in the estimate
of the infected fraction of people, which, however, drops
out in the determination of its growth rate [38], as long
as the prevalence i is not close to 1. However, the suc-
cess of random testing does rely on a very low probability
(� i∗) of false positives (as is the case of current PCR
tests). Otherwise the signal from true positives would
rapidly be overwhelmed by the noise from false positives.

E. Further intervention steps after the reboot

After the reboot at time t1 = 0 further interventions
will be necessary, as we assume that the reboot will have
resulted in a positive growth rate k1. In subsequent in-
terventions, the policymakers try to take measures that
aim at reducing the growth rate to zero. Even if they
had perfect knowledge of the current growth rate k(t),
they would not succeed immediately since they do not
know the precise quantitative effect of the measures they
will take. Nevertheless, had they complete knowledge
of k(t), our model assumes that they would be able to
gauge their intervention such that the actual effect on
k(t) differs at most by a factor between b and 1/b from
the targeted value, which would reduce k(t) to 0. This
and the assumption b ≥ 0.5 implies that, if α is large, so
that k(t) is known with relatively high precision at the
time of intervention, the growth rate k2 is smaller than k1

in magnitude with high probability (tending rapidly to 1
as α→∞) [39]. The smaller α however, the more likely
it becomes, that k(t) is overestimated, and an exagger-
ated corrective measure is taken, which may destabilize
the system in the longer term. In this context, we observe
that the ratio

0 < ρι ≡
|kι|
|kι−1|

<∞ (22)

is a random variable with a distribution that is indepen-
dent of ι in our model. To proceed, we assume that α is
sufficiently large, such that the probability that ρι < 1 is
indeed high.

The second policy intervention occurs after a time
that can be predicted along the same lines that lead to
Eq. (17c). One finds

∆t2 ≈ ∆t1

(
|k2|
|k1|

)−2/3

, (23)

where ∆t1 is given by Eq. (18a). Since, the growth rate
k3 is likely to be smaller than k2 in magnitude, the third
intervention takes place after yet a longer time span, etc.
If we neglect that the fitted value kfit

ι (t) differs slightly
from kι (a difference that is negligible when α� 1), our
model ensures that kι/kι−1 is uniformly distributed in
[−1/b + 1, 1 − b]. After the ι-th intervention the growth
rate is down in magnitude to

|kι| = |k0|
ι∏

ι′=1

ρι′ . (24)

To reach a low final growth rate kfinal, a typical number
nint(kfinal) of interventions are required after the reboot,
where

nint(kfinal) ≈
ln
|kfinal|
|k1|

〈ln ρι〉
= C(b) ln

|k1|
|kfinal|

, (25)

where the constant C(b) = −1/〈ln ρι〉 depends on the
policy uncertainty parameter b.

The time to reach this low rate is dominated by the
last time interval which yields the estimate

T (kfinal) ∼ ∆tnint(kfinal)
≈
(
|k1|
|kfinal|

)2/3

∆t1 . (26)

Thus, the system converges to the critical state where
k = 0, but never quite reaches it. At late times T , the
residual growth rate behaves as kfinal ∼ T−3/2.

Note, however, that as soon as the expected time inter-
val ∆tι exceeds the time delay TD associated with symp-
tomatic testing, one can use the latter to estimate the
remaining small growth rate kι, since it is based on larger
case numbers and therefore more accurate. Beyond that
point, our model, which only assumes non-symptomatic
test results as input, merely provides a lower bound on
the performance of the mitigation strategy.

F. Choosing an optimal intervention strategy

The parameter α encodes the confidence which poli-
cymakers need about the present state before they take
a decision. Here we discuss various measures that allow
choosing an optimal value for α.

As α decreases starting from large values, the time for
interventions decreases, being proportional to α2/3 ac-
cording to Eq. (18a). Likewise the fluctuations of infec-
tion numbers will initially decrease. However, the loga-
rithmic average −〈ln ρι〉 in the denominator of Eq. (25)
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will also decrease, and thus the necessary number of inter-
ventions increases. Moreover, when α falls below 1, inter-
ventions become more and more ill-informed and erratic.
It is not even obvious anymore that the marginally stable
state is still approached asymptotically. From these two
limiting considerations, we expect

α = O(1) (27)

to be an optimal choice for α.
Let us now discuss a few quantitative measures of the

performance of various strategies, which will allow pol-
icymakers to make an optimal choice of confidence pa-
rameter for the definition of a mitigation strategy. An
optimal strategy might allow α to vary with time, e.g.,
to take a smaller value of α at the beginning, to prevent
potentially large damage, and then increase α later on.

1. Time scale to approach the marginal state

The time to reach a certain level of quiescence (low
growth rates, infrequent interventions) is given by the
time (26), and thus by the expectation value of ∆t1.

2. Political cost

As a measure for the political cost, CP, we may con-
sider the number of interventions that have to be taken
to reach quiescence. As we saw in Eq. (25), it scales
inversely with the logarithmic average of the ratios of
growth rates, ρ, i.e.,

CP ∝ (〈− ln ρι〉)
−1
. (28)

3. Health cost

If restrictions are over-relaxed, the infection numbers
will grow with time. The maximal fraction of currently
infected people must never be allowed to rise above the
manageable threshold of ic. If one continuously monitors
the prevalence by non-symptomatic testing, and given
that from the time before the reboot one knows condi-
tions under which the system can be stabilized, the latter
could always be re-imposed at a time sufficient to pre-
vent reaching the level of ic. Beyond this consideration
one may want to keep the expected maximal increase of
infection numbers low, which we take as a measure of
health costs CH,

CH ≡ max
t

{
i(t)

i(0)

}
. (29)

Note that as defined, CH is a stochastic number. Its mean
and tail distribution (for large R) will be of particular
importance.

4. Economic and social cost

Imposing restrictions such that k < 0 imply restric-
tions beyond what is absolutely necessary to maintain
stability. If we assume that the economic cost CE is pro-
portional to the excess negative growth rate, −k (and
a potential gain proportional to k), one possible mea-
sure for the economic cost is the summation over time of
−k(t),

CE ∝ −
∞∫

0

dt k(t), (30)

which converges, since k(t) decays as a sufficiently fast
power law. Hereto, CE is a stochastic variable that de-
pends on the testing history and the policy measures
taken. However, its mean and standard deviation could
be used as indicators of economic performance.

VII. SIMULATION OF MITIGATION
STRATEGY BY RANDOM TESTING

We introduced in Sec. VI a feedback and control strat-
egy to tune to a marginal state with vanishing growth
rate k = 0 after an initial reboot. Interventions were
only taken based on the measurement of the growth rate.
However, in practice, a more refined strategy will be
needed. In case the infection rate drops significantly be-
low i∗, one might (depending on netting out political
and economic pressures, something which the authors of
this paper are not doing here) benefit from a positive
growth rate k. We thus assume that if i(t)/i∗ falls below
some threshold ilow = 0.2, we intervene by relaxing some
measures, that we assume to increase k by an amount
uniformly distributed in [0, k1], but without letting k ex-
ceed the maximal value of khigh = 0.23. Likewise, one

should intervene when the fraction i(t) grows too large.
We do so when i(t)/i∗ exceeds ihigh = 3. In such a situ-
ation we impose restrictions resulting in a decrease of k
by a quantity uniformly drawn from [khigh/2, khigh]. The
precise algorithm is given in the Supplementary Informa-
tion.

Figure 5 shows how our algorithm implements policy
releases and restrictions in response to test data. The ini-
tial infected fraction and growth rate are i(0) = ic/4 =
0.0007 and k1 = 0.1, respectively, with a sampling in-
terval of one day. We choose α = 3 and a number
of r = 15′000 tests per day. Figure 5(a) displays the
fraction of undetected infectious people, U(t)/N , as a
function of time, derived using our simple exponential
growth model, which is characterized by a single growth
rate that changes stochastically at interventions [Eq. (10)
without the source term]. In the absence of intervention,
the infected population would grow rapidly representing
uncontrolled runaway of a second wave. At each time
step (day) the currently infected fraction of the popula-
tion is sampled. The result is assumed to be normally



13

FIG. 5. Our algorithm implements policy releases and re-
strictions aiming at maintaining a vanishing growth rate. It
intervenes whenever the estimated slope of the prevalence is
found to be non-zero, here with confidence level α = 3. We
plot the model prevalence U(t)/N and the prevalence i(t) as
measured by testing as a function of days in panel (a). The
model growth rate k(t) (solid line) and the estimated growth
rate kest at times of intervention are shown in panel (b) for
the parameters i(0) = 0.0012, k1 = 0.1, and a test rate of
r = 15′000 day−1. The dashed blue line corresponds to a his-
tory of interventions where we assumed that the effect of pol-
icy interventions is better known (described by an uncertainty
parameter b = 0.9, instead of b = 0.5), so that convergence is
much faster.

distributed with mean and standard deviation given by
Eqs. (11e) and (11f) to obtain i(t). The former are repre-
sented by small circles, the latter by vertical error bars in
Fig. 5. If i/i∗ lies outside the range [ilow, ihigh], we inter-

vene as described above. Otherwise, on each day kfit(t)
and its standard deviation are estimated using the data
since the last intervention. With this, at each time step,
Eqs. (11m) to (11o) decide whether or not to intervene.
In Fig. 5, each red circle represents an intervention and
therefore either a decrease or increase of the growth rate
constant of our model.

Figure 5 shows the evolution of the fraction of cur-
rently infectious people (the prevalence). After an initial

FIG. 6. Performance of the mitigation strategy as a function
of the confidence parameter α, for a number r = 15′000 tests
per day and an initial growth rate k1 = 0.1. We plot the time
scale ∆t1 (a), and the health (b), economic (c) and political
(as measured by numbers of interventions to achieve a steady
state) (d) costs [Eqs. (28)–(30)] as measures of performance.
The circles are the mean values, the vertical lines indicate the
standard deviations of the respective quantities.

growth with rate k1 subsequent interventions reduce the
growth rate down to low levels within a few weeks. At
the same time the fraction of infectious people stabilizes
at a scale similar to i∗. For the given parameter-set this
is a general trend independent of realization. Figure 5(b)
displays the instantaneous value of the model rate con-
stant and also the estimated value together with its fit-
ting uncertainty. The estimate follows the model value
reasonably well. One sees that the interventions occur
when the uncertainty in k is sufficiently small.

A. Simulation results

We now assume that we have the capacity for r =
15′000 per day, and assess the performance of our strat-
egy as a function of the confidence parameter α in Fig.
6. Values of α ≤ 2 lead to rapid, but at the same time
not very accurate interventions, as is reflected by their
rapidly growing number. For larger values of α, the time
scale to reach a steady state increases while the economic
and health costs remain more or less stable. A reasonable
compromise between minimizing the number of interven-
tions, and shortening the time to reach a steady state
suggests a choice of α ≈ 2.5− 3.5.

It is intuitive that the higher the number r of tests per
day is, the better the mitigation strategy will perform.
The characteristic time to reach a final steady state de-
creases as r−1/3, see Eq. (18a). Other measures for per-
formance improve monotonically upon increasing r. This
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is confirmed and quantified in Fig. 7, where we show how
the political, health, and economic cost decreases with
increasing test rate.

FIG. 7. Performance of the mitigation strategy as a function
of the number of tests r per day, for a fixed value of α = 3
and an initial growth rate k1 = 0.1. We plot the time scale
∆t1 (a), and the health (b), economic (c) and political (as
measured by numbers of interventions to achieve a steady
state (d) costs [Eqs. (28)–(30)] as measures of performance.
The circles are the mean values, the vertical lines indicate the
standard deviations of the respective quantities. The large
uncertainties in the economic costs, e.g., are a consequence of
the relatively large uncertainty in the effect of interventions
(b = 0.5). If the latter is better known, the standard deviation
of the cost functions will decrease accordingly.

1. Time delay to detect catastrophic growth rates

After a reboot it is likely that the growth rate k1 jumps
back to positive values, as we have always assumed so
far. The time it takes until one can distinguish a genuine
growth from intrinsic fluctuations due to the finite num-
ber of people sampled depends on the growth rate k1, see
Eq. (18a).

In the worst case where the reboot brings back the
unmitigated value k0, one will know within 3-4 days with
reasonable confidence that the growth rate is well above
zero. This is shown in Fig. 8. In such a catastrophic
situation, an early intervention can be taken, while the
number of infections has at most tripled at worst. Note
that this reaction time is 3-4 times faster than without
non-symptomatic testing.

FIG. 8. Time after which a significant positive growth rate
is confirmed in the worst case scenario for which the growth
rate jumps to k1 = 0.23 after reboot. An intervention will
be triggered in 3-4 days, since in the case that such a strong
growth must be suspected, one should apply a small confi-
dence parameter α ≈ 1. Results are shown for r = 15′000
and r = 20′000 tests a day. The circles are the mean values,
the vertical lines indicate the standard deviations for the first
intervention time.

VIII. REGIONALLY REFINED REBOOT AND
MITIGATION STRATEGIES

We have argued that a daily testing rate r of the order
of 10’000 tests per day is sufficient to obtain statistical in-
formation on the growth rate k as applied to Switzerland
as a whole. This assumes tacitly that the simple growth
equation (10) describes the dynamics of infections in the
whole country well. That this is not necessarily a good
description can be conjectured from data on the rates
with which numbers of confirmed infections in the vari-
ous cantons (states of Switzerland) evolved close to the
peak of the first wave, and during the lockdown. These
data showed a non-negligible spread suggesting that a
spatially resolved approach is preferable, if possible.

If the testing capacity is limited by rates of order rmin,
the approach can still be used. But caution should be
taken to account for spatial fluctuations corresponding to
hot spots. One should preferentially test in areas that are
likely to show the largest local growth rates so as not to
miss locally super-critical growth rates by averaging over
the entire country. If however, higher testing frequencies
become available, new and better options come into play.

A. Partitioning the country for statistical analysis

Valuable information can be gained by analyzing the
test data not only for Switzerland as a whole, but by
distinguishing different regions.
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It might even prove useful not to lift restrictions ho-
mogeneously throughout the country, but instead to vary
the set of restrictions to be released, or to adapt their
rigor. By way of example, consider that after the spring
or summer break schools start in different calendar weeks
in different cantons. This regional difference could be ex-
ploited to probe the relative effect of re-opening schools
on the local growth rates k. However, obviously, it might
prove politically difficult to go beyond such “naturally”
occurring differences, as it is a complex matter to decide
what region releases which measures first. A further is-
sue is that the effects might be unclear at the borders
between regions with different restrictions. There may
also be complications with commuters that cross regional
borders. Finally, there may be undesired behavioral ef-
fects, if regionally varying measures are declared as an
“experiment”. Such issues demand careful consideration
if regionally varying policies are applied.

Even if policy measures should eventually not be taken
in a region-specific manner, it is very useful to study
a regionally refined model of epidemic dynamics. In-
deed a host of literature exists that studies epidemiolog-
ical models on lattices and analyzes the spatial hetero-
geneities [40, 41]. In certain circumstances, those have
been argued to become even extremely strong [42]. In
the present paper, we will content ourselves with a few
general remarks concerning such refinements. We reserve
a more thorough study of regionally refined testing and
mitigation strategies to subsequent studies.

Let us thus group the population of Switzerland into
G sets. The most natural clustering is according to the
place where people live, cities or counties [43]. The more
we partition the country, the more spatially refined the
acquired data will be, and the better tailored mitigation
strategies could potentially become. However, this comes
at a price. Namely, for a limited national testing rate
rtot, an increased partitioning means that the statistical
uncertainty to measure local growth rates in each region
will increase. This limitation would not apply, however,
to statistical testing based on sewage water analysis. [9–
11] The latter would become a promising tool once it can
be shown to be a sufficiently reliable and stable indica-
tor of the prevalence of infectious people within the area
covered by the waste water plant.

The minimal test rate rmin such as the estimate of
Eq. (21) still holds, but now for each region, which can
only test at a rate r = rtot/G. To refine Switzerland
into G regions we thus have the constraint that the total
testing capacity exceed Grmin. If testing at a high daily
rate rtot indeed becomes available, the statistical analysis
should be refined to G ≈ rtot/rmin to make the best use
of available data.

B. Spatially resolved growth model

Each of the population groups m ∈ {1, · · · , G} is as-
sumed to have roughly the same size, containing

Nm ≈
NCH

G
(31)

people, Um of whom are currently infectious, but yet un-
detected. The spreading of infections is again assumed to
follow a linear growth equation (where we neglect influx
from across the borders from the outset)

(
dUm
dt

)
(t) =

G∑
n=1

Kmn(t)Un(t), m = 1, · · · , G.

(32)
Here, the growth kernelK(t) is an a priori non-symmetric
G×G matrix with matrix elements Kmn(t). The matrix
K(t) has G (generically distinct, complex valued) eigen-
values λn, n = 1, · · · , G. The largest growth rate is given
by

κ(t) ≡ max
1≤n≤G

{Reλn(t)} . (33)

For the sake of stability criteria, κ(t) now essentially
takes the role of k(t) in the model with a single region,
G = 1. We note that the number of infections grows
exponentially if κ(t) > 0, and decreases if κ(t) < 0.

As in the case of a single region, we assume K(t) to
be piece wise constant in time, and to change only upon
taking policy interventions.

In the simplest approximation, one assumes no contact
between geographically distinct groups, that is, the off-
diagonal matrix elements are set to zero [Km 6=n(t) = 0]
and the eigenvalues become equal to elements of the di-
agonal: km(t) ≡ Kmm(t). As current cantonal data sug-
gests, the local growth rate km(t) depends on the region,
and thus km(t) 6= kn(t). It is natural to expect that km(t)
correlates with the population density, the fraction of the
population that commutes, the age distribution, etc.

If on top of the heterogeneity of growth rates one adds
finite but weak inter-regional couplings Km 6=n(t) > 0

(mostly between nearest neighbor regions), one may still
expect the eigenvectors of K(t) to be rather localized (a
phenomenon well known as Anderson localization [29] in
the context of waves propagating in strongly disordered
media). By this, one means that the eigenvectors have
a lot of weight on few regions only, and little weight ev-
erywhere else. That such a phenomenon might occur
in the growth pattern of real epidemics is suggested by
the significant regional differences in growth rates that
we have mentioned above. In such a situation it would
seem preferable to adapt restrictive measures to local-
ized regions with strong overlap on unstable eigenvectors
of K(t), while minimizing their socio-economic impact in
other regions with lower km(t).
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C. Mitigation strategies with regionally refined
analysis

As mentioned above, in the case with several distinct
regions, G > 1, an intervention becomes necessary when
the largest eigenvalue κ(t) of K(t) crosses an upper or
a lower threshold (with a level of confidence α again to
be specified). If the associated eigenvector is delocalized
over all regions, one will most likely respond with a global
policy measure. However, it may as well happen that the
eigenvector corresponding to κ(t) is well-localized. In this
case one can distinguish two strategies for intervention:

(a) Global strategy One always applies a single pol-
icy change to the whole country. This is politically
simple to implement, but might incur unnecessary
economic cost in regions that are not currently un-
stable.

(b) Local strategy One applies a policy change only
in regions which have significant weight on the un-
stable eigenvectors. This means that one only ad-
justs the corresponding diagonal matrix elements
of K(t) and those off-diagonals that share an index
with the unstable region.

Likewise, regions that have im < i∗ and have negli-
gible overlap with eigenvectors whose eigenvalues have
real parts above κ−, could relax some restrictions before
others do.

Fitting test data to a regionally refined model will al-
low us to estimate the off-diagonal terms Kmn(t), which
are so far poorly characterized parameters. However, the
Kmn(t) contain valuable information. For instance, if a
hot spot emerges [that is, a region overlapping strongly
with a localized eigenvector with positive Reλn(t)], this
part of the matrix will inform which connections are the
most likely to infect neighboring regions. They can then
be addressed by appropriate policy measures and will be
monitored subsequently, with the aim to contain the hot
spot and keep it well localized.

This model allows us to calculate again economic, po-
litical, and health impact of various strategies. It is im-
portant to assess how the global and the local strategy
perform in comparison. Obviously this will depend on the
variability between the local growth rates km(t), which is
currently not well known, but will become a measurable
quantity in the future. At that point one will be able
to decide whether to select the politically simpler route
(a) or the heterogeneous route (b) which is likely to be
economically favorable.

IX. SUMMARY AND CONCLUSION

We have analyzed a feedback and control model for
managing a pandemic such as that caused by COVID-
19. The crucial output parameters are the infection

growth rates in the general population (or in a pre-
selected cohort) and spatially localized sub-populations.
When planning for an upcoming reboot of the economy,
it is essential to assess and mitigate the risks of relaxing
some of the restrictions that have brought the COVID-19
epidemic under control. In particular, the policy strat-
egy chosen must suppress a potential second exponen-
tial wave when the economy is rebooted, and so avoid
a perpetual stop-and-go oscillation between relaxation
and lockdown. Feedback and control models are designed
with precisely this goal in mind.

Having testing for non-symptomatic but infectious
cases in place, the risk of a second wave can be kept
to a minimum upon relaxation of restrictions or as the
winter season approaches. Additional testing capacity
of r = 15′000 day−1 tests (on top of the current tests
for medical purposes) carried out – either with randomly
selected people or a large cohort, preferentially of ex-
posed key workers, for whom preventive testing is ben-
eficial anyway – would allow us to follow the course of
the pandemics almost in real time, with shorter time de-
lays, and without the danger of increasing the prevalence
by more than a modest factor of 3-4, if our intervention
strategy is followed.

We recall that our estimate of r assumed a certain level
of prevalence, i∗, see Eq. (19b), which is higher than cur-
rent levels in many European countries, but smaller than
the alarm threshold at which Germany recommends to
resume wide-spread interventions. It is even significantly
smaller than the manageable prevalence in Switzerland.
At those higher prevalences, the required testing rates
would even be several times smaller than the estimates
we gave.

If testing rates r significantly higher than rmin become
available, a regionally refined analysis of the growth dy-
namics can be carried out, with G ≈ r/rmin regions that
can be distinguished.

In the worst case scenario, where releasing certain
measures immediately make the country jump back to
the unmitigated growth rate of k0 = 0.23 day−1, non-
symptomatic testing would detect this within 3-4 days
from the change coming into effect. This is to be con-
trasted with the delay of 8-12 days required for symp-
tomatic individuals to emerge in statistically significant
numbers. After such a time delay, a prevalence increase
by a factor of order 10 may have already occurred. Daily
testing for non-symptomatic but infectious cases can sig-
nificantly diminish such an increase. Thereby the signif-
icant reduction of the time delay is absolutely crucial.
Note that without daily polling of infections and with-
out knowledge about the quantitative effect of restric-
tion measures, a reboot of the economy is more risky. It
thus requires a longer time under lockdown conditions to
bring down the prevalence to a level where a reboot will
be safe even with a longer reaction time.
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Appendix A: Algorithm to simulate mitigation of
reboot

1. Definitions

• t = 1, 2, · · · : Time in days (integer).

• nint: Number of interventions (including the reboot
at t = 1).

• tint(j): First day on which the j’th rate kj applies.
On day tint(1) ≡ 1 the initial reboot step is taken.

• ∆t(j) = tint(j + 1) − tint(j): Time span between
interventions j and j + 1.

• tfirst: First day on which the current rate k = k(t)
is applied.

• i(t): Fraction of infected people on day t.

• k(t): Growth rate on day t.

• r: Number of tests per day.

• CH: Health cost.

• CE: Economic cost.

• kmin = 0.005: Minimal growth rate targeted.

• ilow = 0.2: Lower threshold for i/i∗. If i/i∗ < ilow,
a relaxing intervention is made, irrespective of the
estimate of k.

• ihigh = 3: Upper threshold for i/i∗. If i/i∗ > ihigh,
an intervention is made even if k is still smaller
than α δk.

• klow = −0.1: Minimal possible decreasing rate con-
sidered.

• khigh = 0.23: Maximal possible increasing rate con-
sidered.

• Tmin = 3: Minimal time to wait since the last in-
tervention, for interventions based on the level of
i(t).

• b: Parameter defining the possible range of changes
∆k due to measures taken after estimating k.
|∆k/kest| ∈ [b, 1/b]. Usually we set b = 0.5.

• α: Confidence parameter.

• N(t): Cardinality of random sample of infected
people on day t. The number N(t) is obtained
by sampling from a Gaussian distribution of mean
i(t) r and standard deviation

√
i(t) r and rounding

the obtained real number to the next non-negative
integer.

2. Initialization

• tfirst = tint(1) = 1.

• nint = 1.

• CH = 1.

• CE = 0.

• k(1) = k1 = 0.1. (Initial growth rate)

• i(1) = i∗. Common choice i∗ = ic/4 = 0.0007.

• Draw N(1).

• k(2) = k(1). (No intervention at the end of day 1)

• Set t = 2.

3. Daily routine for day t

Define i(t) = i(t− 1) ek (t−1),
Define CH = max{CH, i(t)/i

∗},
Define CE = CE − k(t).
Draw N(t).
Determine what will be k(t+ 1), by assessing whether or
not to intervene:
If t = tfirst, then k(t+ 1) = k(t). (No intervention)
Else Distinguish three intervention cases:

1. If i(t)/i∗ < ilow and t− tfirst ≥ Tmin, then
k(t+ 1) = min{k(t) + x k1, khigh}
with x = Unif[0, 1].

2. ElseIf i(t)/i∗ > ihigh and t− tfirst ≥ Tmin, then

k(t+ 1) = max{k(t)− (1 + x)/2 khigh, klow}
with x = Unif[0, 1].

3. ElseIf ilow < i(t)/i∗ < ihigh, then

• set ∆t ≡ t− tfirst + 1

• Compute kest(tfirst,∆t), and δkest(tfirst,∆t)
using Sec. A 4.

If |kest| > kmin

AND
[kest > αδkest OR kest < −α δkest],
set
k(t+ 1) = k(t)− x kest

with x = Unif[b, 1/b].

If k(t+ 1) > khigh, put k(t+ 1) = khigh.

If k(t+ 1) < klow, put k(t+ 1) = klow.
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4. Else k(t+ 1) = k(t)

t = t+ 1.

If an intervention was taken above:

• Put nint = nint + 1.

• Define tint(nint) = t+ 1.

• Define ∆t(nint − 1) = tint(nint)− tint(nint − 1).

• Set tfirst = t+ 1.

If |kest| < kmin AND k(t) < kmin AND t − tfirst > 10,
then EXIT.

Else Return to daily routine for next day.

4. Estimate of k(t,∆t)

Computing kest(tfirst,∆t) and δkest(tfirst,∆t):

If ∆t is even:

Define

N1 =
∆t/2−1∑
m=0

N(tfirst +m),

N2 =
∆t/2−1∑
m=0

N(tfirst + ∆t/2 +m).

• If N1N2 > 0, then

kest = 2
∆t ln

(
N2

N1

)
,

δkest = 2
∆t

√
1
N2

+ 1
N1

.

• Else return
kest = 0,
δkest = 1000.

If ∆t is odd:

Define

N ′1 =
(∆t−1)/2−1∑

m=0
N(tfirst +m),

Nm = N(tfirst + (∆t− 1)/2),

N ′2 =
(∆t−1)/2−1∑

m=0
N(tfirst + (∆t+ 1)/2 +m),

N1 = N ′1 +Nm,

N2 = N ′2 +Nm.

• If N1N2 > 0, then

kest = 2
(∆t−1) ln

(
N ′

2+Nm
N ′

1+Nm

)
,

δkest = 2
(∆t−1)

√
N ′

2

N2
2

+
N ′

1

N2
1

+Nm

(
1
N2
− 1

N1

)2

.

• Else return
kest = 0,
δkest = 1000.

5. Observables

Time to first intervention: ∆t(1)
Health cost: CH
Political cost: nint

Economic cost CE
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[13] Karl Johan Åström and Richard M. Murray, “Feedback
Systems: An Introduction for Scientists and Engineers,”,
Princeton University Press (2008).

[14] Scire Jérémieab, Nadeau Sarahab, Vaughan Tim-
othy, Brupbacher Gavinc, Fuchs Simond, Sommer
Jürge, Koch Katrin, Misteli Retof, Mundorff Lukasf,
Gtz Thomasf, Eichenberger Tobiasf, Quinto Carlosgh,
Savic Miodragei, Meienberg Andreak, Burkard Thilok,
Mayr Michaelk, Meier Christoph, Widmer Andreask,
Kuehl Richardk, Egli Adriank, Hirsch Hans, Bas-
setti Stefanok, Nickel Christian, Rentsch Katharina,
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