CLFV searches at PSI and future developments

Angela Papa Paul Scherrer Institute (Switzerland) and University of Pisa/INFN (Italy) FCCP, 29-31 August 2019 Anacapri, Italy

Content

- Introduction: Charged Lepton Flavour violations searches
- Status of the MEGII experiment
- Status of the Mu3e experiment
- The Most Intense DC Muon beams in the World: future prospects

Charged lepton flavour violation search: Motivation

Current upper limits on \mathcal{B}_i

					Γ_i
					$\mathcal{B}_i = \frac{1}{\Gamma_{tot}}$
0 10 ⁻⁵⁰	10 -40	10 -30	10-20	10-1310 -10	10 ⁰
<u>SM</u>			<u>Ne</u>	w Physics	

Complementary to "Energy Frontier"

cLFV searches with muons: Status and prospects

• In the near future impressive sensitivities:

	Current upper limit	Future sensitivity
$\mu ightarrow e \gamma$	4.2 x 10 ⁻¹³	~ 4 x 10 ⁻¹⁴
$\mu \rightarrow eee$	1.0 x 10 ⁻¹²	~1.0 x 10 ⁻¹⁶
$\mu N \to e N'$	7.0 x 10 ⁻¹³	few x 10 ⁻¹⁷

· Strong complementarities among channels: The only way to reveal the mechanism responsible for cLFV

cLFV: "Effective" lagrangian with the k-parameter

cLFV searches with muons: Status and prospects

In the hear future impressive sensit	ivities: Set at PSI	
	Current upper limit	Future sensitivity
$\mu ightarrow e\gamma$	4.2 x 10 ⁻¹³	~ 4 x 10 ⁻¹⁴
$\mu \rightarrow eee$	1.0 x 10 ⁻¹²	~1.0 x 10 ⁻¹⁶
$\mu N \to e N'$	7.0 x 10 ⁻¹³	few x 10 ⁻¹⁷

· Strong complementarities among channels: The only way to reveal the mechanism responsible for cLFV

Beam features vs experiment requirements

- Dedicated beam lines for high precision and high sensitive SM test/BSM probe at the world's highest beam intensities

Beam features vs experiment requirements

- Dedicated beam lines for high precision and high sensitive SM test/BSM probe at the world's highest beam intensities
- eam ~ 10⁸ 10¹⁰ µ/s DC C • DC beam for coincidence experiments
 - $\mu \rightarrow e \gamma$, $\mu \rightarrow e e e$

- DC or Pulsed?
 - ISECI?
 Pulse beam for noncoincidence experiments
 - μ-e conversion

The world's most intense continuous muon beam

- τ ideal probe for NP
 w. r. t. μ
 - Smaller GIM suppression
 - Stronger coupling
 - Many decays
- µ most sensitive probe
 - Huge statistics

- PSI delivers the most intense continuous low momentum muon beam in the world (**Intensity Frontiers**)
- MEG/MEG II/Mu3e beam requirements:
 - Intensity O(10⁸ muon/s), low momentum p = 29 MeV/c
 - Small straggling and good identification of the decay

590 MeV proton ring cyclotron **1.4 MW**

PSI landscape

The world's most intense continuous muon beam

• PSI High Intensity Proton Accelerator experimental areas

The MEGII and Mu3e beam lines

- MEGII and Mu3e (phase I) similar beam requirements:
 - Intensity O(10⁸ muon/s), low momentum p = 28 MeV/c
 - Small straggling and good identification of the decay region
- A dedicated compact muon beam line (CMBL) will serve Mu3e
- Proof-of-Principle: Delivered 8 x 10⁷ muon/s during 2016 test beam

The Mu3e CMBL

The MEGII BL

MEG: Signature, experimental setup and result

A. Baldini et al. (MEG Collaboration), Eur. Phys. J. C73 (2013) 2365

A. Baldini et al. (MEG Collaboration), Eur. Phys. J. C76 (2016) no. 8, 434

13

- The MEG experiment aims to search for $\mu^+ \rightarrow e^+ \gamma$ with a sensitivity of ~10⁻¹³ (previous upper limit BR($\mu^+ \rightarrow e^+ \gamma$) $\leq 1.2 \times 10^{-11}$ @90 C.L. by MEGA experiment)
- Five observables (E_g, E_e, t_{eg}, ϑ_{eg} , φ_{eg}) to characterize $\mu \rightarrow e\gamma$ events

The MEGII experiment

The MEG experiment vs the MEGII experiment

The MEG experiment vs the MEGII experiment

Where we will be

MEGII

MEGII: The upgraded LXe calorimeter

- Increased uniformity/resolutions
- Increased pile-up rejection capability
- Increased acceptance and detection efficiency
- Assembly: Completed
- Detector filled with LXe
- Purification: Ongoing
- Monitoring and calibrations with sources: Started

	MEG	MEGII
u [mm]	5	2.4
v [mm]	5	2.2
w [mm]	6	3.1
E [w<2cm]	2.4%	1.1%
E [w>2cm]	1.7%	1.0%
t [ps]	67	60

MEGII: The upgraded LXe calorimeter

- Final aim: To confirm with data that the expected detector performances will be achieved and maintained over the time
- Xe Light Yield and purity
- Photosensor behaviour (gain, PDE/ QE) at high beam intensity
- Evaluation of the gamma kinematical variables with the whole TDAQ: Energy (O(4000 channels)), Time and Positions. Low level noise crucial (i.e. coherent contribution)
- Current study: Based on a limited amount of channels

- Improved hit resolution: $\sigma_r \sim < 120$ um (210 um)
- High granularity/Increased number of hits per track/cluster timing technique
- Less material (helium: isobutane = 90:10, 1.6x10⁻³ X_0)
- High transparency towards the TC
- Assembly: Completed!

	MEG	MEGII
p [keV]	306	100
heta [mrad]	9.4	6.3
ϕ [mrad]	8.7	5.0
ϵ [%]*	40	70

(*) It includes also the matching with the Timing Counter

CDCH working point search

- During 2018 run we collected important data with CDCH integrated into the MEG II experimental apparatus for the first time
 - We experienced electrostatic instabilities @ +3.8 mm (2018 run configuration) of wires elongation
- We decided to reopen CDCH to perform several HV tests @ different lengths/wires elongation with the aim to find the final stable working point configuration
 - 1. @ +4.8 mm (+1 mm)
 - 2. @ +5.6 mm (+1.8 mm)
- We set the new CDCH lengths together with the PSI survey group
 - $\approx 20 \ \mu m$ accuracy
 - CDCH temporarily sealed with CF + Al tape
 - Nitrogen flushing

- 216 FE cards mounted on the US side for the HV test
- Each HV channel can drive 1 layer in 1 sector: 2 FE cards = 16 cells

Ready for the RUN2019 !

- > Working point
 - 12/384 cells (8 for L9 + 4 for L8) don't reach it (3 %)
 - 11/12 cells (6 for L9 + 4 for L8) have permanent shorts

CDCH @ +5.6 mm elongation fulfils the MEGII requirements

MEGII: the pixelized Timing Counter

- Higher granularity: 2 x 256 of BC422 scintillator plates (120 x 40 (or 50) x 5 mm³) readout by AdvanSiD SiPM ASD-NUM3S-P-50-High-Gain
- Improved timing resolution: from 70 ps to 35 ps (multi-hits)
- Less multiple scattering and pile-up
- Assembly: Completed
- Expected detector performances confirmed with data

MEGII: the pixelized Timing Counter

Ready for the MEGII physics run !

MEGII: The Radiative Decay Counter

 Added a new auxiliary detector for background rejection purpose. Impact into the experiment: Improved sensitivity by 20%

MEG: The calibration methods

 Multiple calibration and monitoring methods: detector resolution and stability are the key points in the search for rare events over the background

 e^+

Proc	Cess	Energy (MeV)	Frequency
CEX reaction	$p(\pi^-,\pi^0)n,\pi^0 \to \gamma\gamma$	55, 83	annually
	$^{7}\mathrm{Li}(p,\gamma_{17.6})^{8}\mathrm{Be}$	17.6	weekly
C-W accelerator	$^{11}B(p,\gamma_{11.6})^{12}C$	4.4&11.6	weekly
Neutron Generator	$^{58}\mathrm{Ni}(n,\gamma_9)^{59}\mathrm{Ni}$	9	daily
Mott Positrons	$p(e^+, e^+)p$	53	annually

MEGII: new calibration methods and upgrades

- CEX reaction: $p(\pi^-, \pi^0)n, \pi^0 \rightarrow \gamma \gamma$
- 1MV Cockcroft-Walton accelerator
- Pulsed D-D Neutron generator
- NEW: Mott scattered positron beam to fully exploit the new spectrometer
- NEW: SciFi beam monitoring. Not invasive, ID particle identification, vacuum compatible, working in magnetic field, online beam monitor (beam rate and profile)
- NEW: Luminophore (CsI(TI) on Lavsan/Mylar equivalent) to measure the beam properties at the Cobra center

MEGII: The new electronic - DAQ and Trigger

- DAQ and Trigger
 - ~9000 channels (5 GSPS)
 - Bias voltage, preamplifiers and shaping included for SiPMs
- 256 channels (1 crate) abundant tested during the 2016 pre-engineering run; >1000 channels available for the 2017 and 2018 pre-engineering run
- Trigger electronics and several trigger algorithms included and successfully delivered for the test beams/engineering runs

Mu3e: The $\mu^+ \rightarrow e^+ e^+ e^-$ search

- The Mu3e experiment aims to search for µ⁺ → e⁺ e⁺ e⁻ with a sensitivity of ~10⁻¹⁵ (Phase I) up to down ~10⁻¹⁶ (Phase II). Previous upper limit BR(µ⁺ → e⁺ e⁺ e⁻) ≤ 1 x 10⁻¹² @90 C.L. by SINDRUM experiment)
- Observables (E_e, t_e, vertex) to characterize $\mu \rightarrow$ eee events

Mu3e: Requirements

Signal

- ^{1.} $\mu \rightarrow eee$
- Rare decay search: Intense muon beam O(10*8 muon/s) for phase I
- High occupancy: High detector granularity
- Three charged particles in the final state: allowing for high detector performances vs the case of having neutral particle

Background

- 1. $\mu \rightarrow eee\nu\nu$
- Missing energy: Excellent momentum resolution

2. $\mu \to e \nu \nu$, $\mu \to e \nu \nu$, e^+e^-

 Coincidence and vertex: High timing and position resolutions

The Mu3e experiment: Schematic 3D

The Mu3e experiment: R&D completed. Prototyping phase

The MEGII and Mu3e experimental area: Pictures

New Mu3e extra platforms

Overview piE5 area

The MEGII and Mu3e beam lines

- MEGII and Mu3e (phase I) similar beam requirements:
 - Intensity O(10⁸ muon/s), low momentum p = 28 MeV/c
 - · Small straggling and good identification of the decay region
- A dedicated compact muon beam line (CMBL) will serve Mu3e
- Proof-of-Principle: Delivered 8 x 10⁷ muon/s during 2016 test beam

The Mu3e CMBL

The MEGII BL

Target and magnet: Status

- Target: Mylar double hollow cone (L = 100 mm, R = 19 mm), Stopping efficiency: ~ 83%, Vertex separation ability (tracking) < 200 um
- Magnet from Cryogenic. Delivering Time at PSI: This year
- Field Intensity: 1T; Field description: $dB/B \le 10^{-4}$; Field stability: $dB/B(100 d) \le 10^{-4}$
- Dimensions: L < 3.2 m, W < 2.0 m, H < 3.5 m

BField Simulation

The pixel tracker: Overview

- Central tracker: Four layers; Re-curl tracker: Two layers
- Minimum material budget: Tracking in the scattering dominated regime
- Momentum resolution: < 0.5 MeV/c over a large phase space; Geometrical acceptance: ~ 70%; X/X₀ per layer: ~ 0.011%

The pixel tracker: The MuPix prototypes

- Based on HV- MAP: Pixel dimension: 80 x 80 μ m², Thickness: 50 μ m, Time resolution: < 20 ns, Active area chip: 20 x 20 mm², Efficiency: > 99 %, Power consumption : < 350 mW/cm²
- MuPix 7: The first small-scale prototype which includes all Mu3e functionalities

Ivan Peric, Nucl.Instrum.Meth. A582 (2007) 876-885

Prototype	Active Area [mm²]	MuF
MuPix1	1.77	
MuPix2	1.77	
MuPix3	9.42	
MuPix4	9.42	
MuPix6	10.55	
MuPix7	10.55	

/luPix7

Extensively tested along beams

The pixel tracker: Current and future plan

- After an extensive test beam campaign, achieved milestones
 - A fully functional HV-MAPS chip, 3x3 mm^{2,} Operation at high rates: 300 kHz at PSI; up to 1 MHz at SPS
 - Crosstalk on setup under control, on chip seen. Mitigation plan exists (MuPix8), Routinely operated systems of up to 8 chips in test beams reliably
 - Data processing of one telescope at full rate on GPU demonstrated
- Next steps
 - MuPix 8, the first large area prototype: from O(10) mm² to 160 mm² : Ready and extensively tested!
 - MuPix 9, small test chip for: Slow Control, voltage regulators and other test circuits. This year test beam campaign
 - MuPix 10, the final version for Mu3e: 380 mm²

MuPix8

H. Augustin wt al. Nucl. Instr. Meth., A936 681 (2019) H. Augustin et al. arXiv:1905.09309

MuPix 8: First Results

- Extensive beam test performed during 2018
- Some preliminary results

The timing detectors: Fibers and tiles

- Precise timing measurement: Critical to reduce the accidental BGs
 - Scintillating fibers (SciFi) O(1 ns), full detection efficiency (>99%)
 - Scintillating tiles O(100 ps), full detection efficiency (>99%)

The timing detectors: Fibers and tiles

- Precise timing measurement: Critical to reduce the accidental BGs
 - Scintillating fibers (SciFi) O(1 ns), full detection efficiency (>99%)
 - Scintillating tiles O(100 ps), full detection efficiency (>99%)

The timing detectors: Impact

- Precise timing measurement: Critical to reduce the accidental BGs
 - Scintillating fibers (SciFi) O(1 ns), full detection efficiency (>99%)
 - Scintillating tiles O(100 ps), full detection efficiency (>99%)

The Fiber detector (SciFi): Overview

Parts

- cylindrical at ~ 6 cm (radius);
- length of 28-30 cm;
- 3 layers of round or square
- multi-clad 250 µm fibres
- fibres grouped onto SiPM array .
- MuSTiC readout

Constraints

- high detection efficiency $\epsilon > 95\%$
- time resolution $\sigma < 1$ ns
- < 900 µm total thickness
 - $< 0.4 \% X_0$
- rate up to 250 KHz/fibre
- very tight space for cables, electronics and cooling

SciFi prototypes: Results

- Studied a variety of fibres (SCSF 78 MJ, clear; SCSF 78 MJ, with 20% TiO2; NOL 11, clear; NOL 11, with 20% TiO2; SCSF 81 MJ, with 20% TiO2; BCF12 clear; BCF12, with 100 nm Al deposit)
- Confirmed full detection efficiency (> 96 % @ 0.5 thr in Nphe) and timing performances for multi-layer configurations (square and round fibres) with several prototypes: individual and array readout with standalone and prototyping (STiC) DAQ

SciFi prototypes: Results

- Studied a variety of fibres (SCSF 78 MJ, clear; SCSF 78 MJ, with 20% TiO2; NOL 11, clear; NOL 11, with 20% TiO2; SCSF 81 MJ, with 20% TiO2; BCF12 clear; BCF12, with 100 nm Al deposit)
- Confirmed full detection efficiency (> 96 % @ 0.5 thr in Nphe) and timing performances for multi-layer • configurations (square and round fibres) with several prototypes: individual and array readout with standalone and prototyping (STiC) DAQ

The Tile detector: Overview

Parts

- cylindrical at ~ 6 cm (radius)
- length of 36.4 cm
- 56 x 56 tiles of 6.5 x 6.5 x 5 mm³
- 3 x 3 mm² single SiPM per tile
- Mixed mode ASIC: MuTRiG

Requirements

- high detection efficiency $\varepsilon > 95\%$
- time resolution $\sigma < 100 \text{ ps}$
- rate up to 50 KHz per tile/channel

The Tile detector: Overview

Parts

- cylindrical at ~ 6 cm (radius)
- length of 36.4 cm
- 56 x 56 tiles of 6.5 x 6.5 x 5 mm³
- 3 x 3 mm² single SiPM per tile
- Mixed mode ASIC: MuTRiG

Requirements

- high detection efficiency $\varepsilon > 95\%$
- time resolution $\sigma < 100 \text{ ps}$
- rate up to 50 KHz per tile/channel

Tile Prototype: Results

- Mu3e requirements fulfilled: Full detection efficiency (> 99 %) and timing resolution O (60) ps
- 4 x 4 channel BC408
- 7.5 x 8.5 x 5.0 mm³
- Hamamatsu S10362-33-050C (3 x 3 mm²)
- readout with STiC2

MuTRiG

- Mixed mode, ~ 50 ps timestamps, high impedance, optional differential
- Commissioning started!

- Aim: O(10¹⁰ muon/s); Surface (positive) muon beam (p = 28 MeV/c); DC beam
- Strategy:
 - Target optimization
 - Beam line optimization
- Time schedule: O(2025)

- Back to standard target to exploit possible improvements towards
 high intensity beams:
 - Target geometry and alternate materials
 - Search for high pion yield materials -> higher muon yield

 $\begin{array}{l} \text{relative } \mu^+ \text{yield} & \propto \pi^+ \text{stop density} \cdot \mu^+ \text{Range} \cdot \text{length} \\ & \propto n \cdot \sigma_{\pi^+} \cdot SP_{\pi^+} \cdot \frac{1}{SP_{\mu^+}} \cdot \frac{\rho_C(6/12)_C}{\rho_x(Z/A)_x} \\ & \propto \overline{Z^{1/3}} \cdot \overline{Z} \cdot \frac{1}{Z} \cdot \frac{1}{Z} \\ & \propto \frac{1}{Z^{2/3}} \end{array}$

Ρ

 Back to standard target to exploit possible improvements towards high intensity beams:

Target geometry and alternate materials

•

Search for high pion yield materials -> higher muon yield

50% of muon beam intensity gain, would corresponds to effectively raising the proton beam power at PSI by **650 kW**, equivalent to a beam power of almost **2 MW** without the additional complications such ad increased energy and radiation deposition into the target and its surroundings

- Aim: O(10¹⁰ muon/s); Surface (positive) muon beam (p = 28 MeV/c); DC beam
- Time schedule: O(2025)
- Put into perspective the beam line optimisation the equivalent beam power would be of the order of several tens of MW

Slanted target: Prototype test this year

- Expect 30-60 % enhancement
- Measurements foreseen in three directions in 2019

DC and Pulsed muon beams - present and future

Laboratory	Beam Line	DC rate (μ/sec)	Pulsed rate (μ /sec)
PSI (CH) (590 MeV, 1.3 MW)	$\mu E4, \pi E5$ HiMB at EH	$2 \div 4 \times 10^8 \ (\mu^+) \\ \mathcal{O}(10^{10}) \ (\mu^+) \ (>2018)$	
J-PARC (Japan) (3 GeV, 210 kW) (8 GeV, 56 kW)	MUSE D-Line MUSE U-Line COMET		$ \begin{array}{c} 3 \times 10^7 (\mu^+) \\ 6.4 \times 10^7 (\mu^+) \\ 1 \times 10^{11} (\mu^-) (2020) \end{array} $
FNAL (USA) (8 GeV, 25 kW)	Mu2e		$5 \times 10^{10} (\mu^{-}) (2020)$
TRIUMF (Canada) (500 MeV, 75 kW)	M13, M15, M20	$1.8 \div 2 \times 10^6 (\mu^+)$	
RAL-ISIS (UK) (800 MeV, 160 kW)	EC/RIKEN-RAL		$7 imes 10^4(\mu^-)\ 6 imes 10^5(\mu^+)$
KEK (Tsukuba, Japan) (500 MeV, 25 kW)	Dai Omega		$4 \times 10^5 (\mu^+)(2020)$
RCNP (Osaka, Japan) (400 MeV, 400 W)	MuSIC	$10^{4}(\mu^{-}) \div 10^{5}(\mu^{+}) 10^{7}(\mu^{-}) \div 10^{8}(\mu^{+})(>2018)$	
JINR (Dubna, Russia) (660 MeV, 1.6 kW)	Phasotron	$10^5(\mu^+)$	
RISP (Korea) (600 MeV, 0.6 MW)	RAON	$2 \times 10^8 (\mu^+) (> 2020)$	
CSNS (China) (1.6 6eV, 4 kW)	HEPEA	$1 \times 10^8 (\mu^+) (> 2020)$	

DC and Pulsed muon beams - present and future

Outlooks

- Astonishing sensitivities in muon cLFV channels are foreseen for the incoming future
- cLFV remains one of the most exciting place where to search for new physics
- Submitted inputs to the European Strategy Committee

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

Thanks for your attention!

Back-up

HV test @ +1.8 mm

Layer	S0	S1	S2	S3	S4	S 5	S6	S7	S8	S9	S10	S11
9 (1500 V)	1500	1500	1500	1500	1500	1430	1500	1500	1500	1500	1500	1500
8 (1510 V)	1510	1510	1510	1500	1510	1510	1510	1510	1510	1510	1510	1510
7 (1520 V)	1520	1520	1520	1520	1520	1520	1520	1520	1520	1520	1520	1520
6 (1530 V)	1530	1530	1530	1530	1530	1530	1530	1530	1530	1530	1530	1530
5 (1540 V)	1540	1540	1540	1540	1540	1540	1540	1540	1540	1540	1540	1540
4 (1550 V)	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550
3 (1560 V)	1560	1560	1560	1560	1560	1560	1560	1560	1560	1560	1560	1560
2 (1570 V)	1570	1570	1570	1570	1570	1570	1570	1570	1570	1570	1570	1570
1 (1580 V)	1580	1580	1580	1580	1580	1580	1580	1580	1580	1580	1580	1580

1500 200 11 0 1450 10 100 2 9 1400 0 3 8 1350 -1004 5 6 1300 -2001250 -300 -200 -100300 100 200 0 [mm]

CDCH @ +5.6 mm elongation fulfils the MEGII requirements

RESULTS

Safety HV values

- 27/384 cells (20 for L9 + 7 for L8) don't reach it (7 %)
- 8/27 cells (6 for L9 + 2 for L8) almost reach it
 - \circ 5 ÷ 20 V discrepancy

> Working point

- 12/384 cells (8 for L9 + 4 for L8) don't reach it (3 %)
- 11/12 cells (6 for L9 + 4 for L8) have permanent shorts

HV test cell-by-cell L9+L8 @+1.8 mm (US endplate)

MuSIC at Research Center for Nuclear Physics (RCNP), Osaka University

Aim: O(10⁸ muon/s); Surface (positive) muon beam (p = 28 MeV/c); DC beam

cLFV search landscape

cLFV best upper limits

Process	Upper limit	Reference	Comment
μ+ -> e+ γ	4.2 x 10 ⁻¹³	arXiV:1605.05081	MEG
µ+ -> e+ e+ e-	1.0 x 10 ⁻¹²	Nucl. Phy. B299 (1988) 1	SINDRUM
µ⁻ N -> e⁻ N	7.0 x 10 ⁻¹³	Eur. Phy. J. c 47 (2006) 337	SINDRUM II
τ -> e γ	3.3 x 10 ⁻⁸	PRL 104 (2010) 021802	Babar
τ -> μ γ	4.4 x 10 ⁻⁸	PRL 104 (2010) 021802	Babar
τ⁻ -> e⁻ e+ e⁻	2.7 x 10 ⁻⁸	Phy. Let. B 687 (2010) 139	Belle
τ> μ- μ+ μ-	2.1 x 10 ⁻⁸	Phy. Let. B 687 (2010) 139	Belle
τ> μ+ e- e-	1.5 x 10 ⁻⁸	Phy. Let. B 687 (2010) 139	Belle
Z -> µ e	7.5 x 10 ⁻⁷	Phy. Rev. D 90 (2014) 072010	Atlas
Z -> µ e	7.3 x 10 ⁻⁷	CMS PAS EXO-13-005	CMS
Η -> τ μ	1.85 x 10 ⁻²	JHEP 11 (2015) 211	Atlas (*)
Η -> τ μ	1.51 x 10 ⁻²	Phy. Let. B 749 (2015) 337	CMS
K _L -> μ e	4.7 x 10 ⁻¹²	PRL 81 (1998) 5734	BNL

The role of the low energy precision physics

• The Standard Model of particle physics: A great triumph of the modern physics but not the ultimate theory

Low energy precision physics: Rare/forbidden decay searches, symmetry tests, precision measurements very sensitive tool for unveiling new physics and probing very high energy scale

The role of the low energy precision physics

- Two main strategies to unveil new physics
 - Indirect searches
 - Precision tests

The role of the low energy precision physics

- Two main strategies to unveil new physics
 - Indirect searches
 - Precision tests

Charged lepton flavour violation

Charged lepton flavour violation

Neutrino oscillations: Evidence of physics Behind Standard Model (BSM)
 Neutral lepton flavour violation

 $\Delta N_i
eq 0$ with i = 1,2,3

Charged lepton flavour violation

Neutrino oscillations: Evidence of physics Behind Standard Model (BSM)
 Neutral lepton flavour violation

$\Delta N_i eq 0$ with i = 1,2,3

Charged lepton flavour violation: NOT yet observed