Determination of the magnetic structure from powder neutron diffraction

Vladimir Pomjakushin Laboratory for Neutron Scattering, ETHZ and PSI

A Hands-on Workshop on X-rays, Synchrotron Radiation and Neutron Diffraction Techniques June 18-22, 2008, Paul Scherrer Institut, Villigen, Switzerland

Lecture notes: <u>http://sinq.web.psi.ch/sinq/instr/hrpt/praktikum</u>

Literature on (magnetic) neutron scattering

Neutron scattering (general) S.W. Lovesey, "Theory of Neutron Scattering from Condensed Matter", Oxford Univ. Press, 1987.Volume 2 for magnetic scattering. Definitive formal treatment

G.L. Squires, "Intro. to the Theory of Thermal Neutron Scattering", C.U.P., 1978, Republished by Dover, 1996. Simpler version of Lovesey.

All you need to know about magnetic neutron diffraction. Symmetry, representation analysis

Yu.A. Izyumov, V.E. Naish and R.P. Ozerov, "Neutron diffraction of magnetic materials", New York [etc.]: Consultants Bureau, 1991.

Overview of Lecture

- Principles of magnetic neutron scattering/ diffraction
- Types of magnetic structures
- Description of all possible magnetic structures. kvector formalism for classifying the magnetic modes
- Real example of magnetic structure determination

Magnetic neutron scattering on an atom

<u>Magnetic neutron scattering on an atom</u>

Magnetic field from an electron

neutron-electron dipole interaction $~V({f R})=-\gamma\mu_n\hat{\pmb{\sigma}}{f H}({f R})$

$\begin{array}{l} \label{eq:magnetic neutron scattering on an atom} \\ \mu_n = 2\gamma \mu_n \frac{\hat{\sigma}}{2} \\ \mbox{Magnetic field from an electron} \end{array} \begin{array}{l} \end{tabular} \mathbf{R} = \mathbf{C} \mathbf{R} \\ \end{tabular} \\ \end{tabular} \\ \end{tabular} \\ \end{tabular} \mathbf{R} \\ \end{tabular} \\$

neutron-electron dipole interaction $~V({f R})=-\gamma\mu_n\hat{\pmb{\sigma}}{f H}({f R})$

averaging over neutron coordinates

$$\langle \mathbf{k'} | V(\mathbf{R}) | \mathbf{k} \rangle = \gamma r_e \hat{\boldsymbol{\sigma}} \frac{1}{q^2} [\mathbf{q} \times [\hat{\mathbf{s}}_i e^{i\mathbf{q}\mathbf{r}_i} \times \mathbf{q}]]$$

$\begin{array}{l} \underline{\text{Magnetic neutron scattering on an atom}}\\ \mu_n = 2\gamma \mu_n \frac{\hat{\sigma}}{2} \\ \underline{\mu_n} = 2\gamma \mu_n \frac{\hat{\sigma}}{2} \\ \underline{\mu_e} = -2\mu_B \hat{s} \\ \underline{$

neutron-electron dipole interaction $~V({f R})=-\gamma\mu_n\hat{\pmb{\sigma}}{f H}({f R})$

averaging over neutron coordinates

$$\begin{array}{l} \langle \mathbf{k'} | V(\mathbf{R}) | \mathbf{k} \rangle = \gamma r_e \hat{\boldsymbol{\sigma}} \frac{1}{q^2} [\mathbf{q} \times [\hat{\mathbf{s}}_i e^{i\mathbf{q}\mathbf{r}_i} \times \mathbf{q}]] \\ & \mathbf{Q} \\ & \mathbf{$$

Magnetic neutron scattering on an atom

"magnetic scattering amplitude" $=\gamma r_e\left<\hat{\mathbf{Q}}_{\perp}\right>,$

Magnetic neutron scattering on an atom 1. The size "magnetic scattering amplitude" $= \gamma r_e \langle \hat{\mathbf{Q}}_{\perp} \rangle$, neutron magnetic moment in μ_n -1.91 classical electron radius $= \frac{e^2}{\sqrt{2}}$

Magnetic neutron scattering on an atom 1. The size "magnetic scattering amplitude" = $\gamma r_e \langle \hat{\mathbf{Q}}_{\perp} \rangle$, neutron magnetic moment in μ_n -1.91 $\gamma r_e = -0.54 \cdot 10^{-12} \text{ cm} = -5.4 \text{ fm}(\times S)$ fm=fermi=10⁻¹³ cm

$\begin{array}{l} \label{eq:magnetic neutron scattering on an atom} \\ \mbox{1. The size} \\ & ``magnetic scattering amplitude'' = $\gam{$\gammar_e}{Q_{\perp}}, \\ & neutron magnetic moment in μ_n -1.91} \\ & γr_e$ = -0.54 \cdot 10^{-12} {\rm cm} = -5.4 \, {\rm fm}(\times S) \\ & m=fermi=10^{-13} {\rm cm}$ \\ & x-ray scattering length: Zr_e \end{array}$

<u>magnetic scattering intensity can be</u> <u>larger than the nuclear one</u>

Magnetic neutron scattering on an atom

"magnetic scattering amplitude" = $\gamma r_e \left< \hat{\mathbf{Q}}_{\perp} \right>$,

<u>Magnetic neutron scattering on an atom</u> **2. q-dependence** "magnetic scattering amplitude" = $\gamma r_e \left\langle \hat{\mathbf{Q}}_{\perp} \right\rangle$,

 $\frac{1}{a^2} [\mathbf{q} \times \hat{\mathbf{Q}} \times \mathbf{q}]$

Magnetic neutron scattering on an atom 2. q-dependence "magnetic scattering amplitude" = $\gamma r_e \left\langle \left\langle \hat{\mathbf{Q}}_{\perp} \right\rangle \right\rangle$ $\frac{1}{q^2} [\mathbf{q} \times \hat{\mathbf{Q}} \times \mathbf{q}]$ $\left\langle \hat{\mathbf{Q}} \right\rangle = \left\langle \sum_{i} \hat{\mathbf{s}}_{i} e^{i\mathbf{q}\mathbf{r}_{i}} \right\rangle = \mathbf{S} \int d\mathbf{r} \rho_{s}(\mathbf{r}) e^{i\mathbf{q}\mathbf{r}}$

1s 2p

3d

4f

<u>Magnetic neutron scattering on an atom</u> 2. q-dependence (\hat{a})

"magnetic scattering amplitude" = $\gamma r_e \left< \hat{\mathbf{Q}}_{\perp} \right>,$

Magnetic neutron scattering on an atom

"magnetic scattering amplitude" = $\gamma r_e \left< \hat{\mathbf{Q}}_{\perp} \right>$

$$\mathbf{Q}_{\perp} = \tilde{\mathbf{q}} \times \mathbf{Q} \times \tilde{\mathbf{q}} = [\tilde{\mathbf{q}} \times \mathbf{S} \times \tilde{\mathbf{q}}] f(q)$$
$$\tilde{\mathbf{q}} = \mathbf{q}/q$$

<u>Magnetic neutron scattering on an atom</u> 3. geometry

"magnetic scattering amplitude" = $\gamma r_e \left\langle \hat{\mathbf{Q}}_{\perp} \right\rangle$ $\mathbf{Q}_{\perp} = \mathbf{\tilde{q}} \times \mathbf{Q} \times \mathbf{\tilde{q}} = [\mathbf{\tilde{q}} \times \mathbf{S} \times \mathbf{\tilde{q}}]f(q)$ $\mathbf{\tilde{q}} = \mathbf{q}/q$

<u>Magnetic neutron scattering on an atom</u> 3. geometry

"magnetic scattering amplitude" = $\gamma r_e \left\langle \hat{\mathbf{Q}}_{\perp} \right\rangle$ $\mathbf{Q}_{\perp} = \tilde{\mathbf{q}} \times \mathbf{Q} \times \tilde{\mathbf{q}} = [\tilde{\mathbf{q}} \times \mathbf{S} \times \tilde{\mathbf{q}}]f(q)$ $\tilde{\mathbf{q}} = \mathbf{q}/q$

Elastic scattering intensity

Neutron scattering cross-section (for unpolarized neutron beam)

Elastic scattering on a lattice of spins

Elastic scattering on a lattice of spins

<u>Elastic scattering on a lattice of spins</u>

incoherent
$$I \sim \left< \hat{S^2} \right> = S(S+1)$$

coherent Bragg scattering
 $I \sim S^2 F_{HKL}^2$

Elastic scattering on a lattice of spins

Non-polarized neutron diffraction

 $\overbrace{I^{++} \propto \left\langle |\mathbf{Q}_{\perp} \boldsymbol{\sigma}_{n} + F|^{2} \right\rangle_{\sigma_{n}}}^{\mathsf{nuclear}}$ nuclear

average over neutron polarization

Non-polarized neutron diffraction

average over neutron polarization

$$\begin{split} I \propto \langle (\mathbf{Q}_{\perp} \boldsymbol{\sigma}_n) (\mathbf{Q}_{\perp}^* \boldsymbol{\sigma}_n) + FF^* + \boldsymbol{\sigma}_n (F\mathbf{Q}_{\perp}^* + F^* \mathbf{Q}_{\perp}) \rangle_{\boldsymbol{\sigma}_n} \\ \mathbf{0} \\ I \propto |\mathbf{Q}_{\perp}|^2 + |F|^2 \end{split} \text{ no magnetic/nuclear interference} \end{split}$$

Magnetic and nuclear scattering are completely independent and can be treated as two independent phases in the Rietveld refinement

Interference between nuclear and magnetic scattering

General note:

When the magnetic unit cell is larger than the nuclear one (propagation vector $k \neq 0$) the interference between nuclear and magnetic scattering is absent in any (un)polarized neutron diffraction experiment.

Reason: Magnetic Bragg peaks appear at different positions in reciprocal space

Only amplitudes can be determined

The phase Φ is not accessible and the magnetic moments on the atoms cannot be determined.

powder diffraction, + and -
+ thanks to strong dependence of \mathbf{Q}_{\perp} on \mathbf{S} and \mathbf{q} the powder experiment is in most cases sufficient

- + thanks to strong dependence of Q_{\perp} on S and q the powder experiment is in most cases sufficient
- + experimentally simple, full q-range is detected, no missed incommensurate satellites, better resolution

- + thanks to strong dependence of \mathbf{Q}_{\perp} on \mathbf{S} and \mathbf{q} the powder experiment is in most cases sufficient
- + experimentally simple, full q-range is detected, no missed incommensurate satellites, better resolution
- + no difficult corrections, e.g. extinction, crystal shape

- + thanks to strong dependence of \mathbf{Q}_{\perp} on \mathbf{S} and \mathbf{q} the powder experiment is in most cases sufficient
- + experimentally simple, full q-range is detected, no missed incommensurate satellites, better resolution
- + no difficult corrections, e.g. extinction, crystal shape
- peak overlapping/multiplicity in powder data puts a restriction on the determination of spin direction

- + thanks to strong dependence of \mathbf{Q}_{\perp} on \mathbf{S} and \mathbf{q} the powder experiment is in most cases sufficient
- + experimentally simple, full q-range is detected, no missed incommensurate satellites, better resolution
- + no difficult corrections, e.g. extinction, crystal shape
- peak overlapping/multiplicity in powder data puts a restriction on the determination of spin direction
- small spin components (~10⁻¹ μ_B) are difficult to detect

<u>Powder neutron diffractometers</u>

European Portal for Neutron Scattering http://pathfinder.neutron-eu.net

<u>Powder neutron diffractometers</u>

ILL, FR	D20, D2B, DIA
LLB, FR	G41, G42
ISIS, UK	GEM, HRPD, PEARL
FRM-II, DE	SPODI
FLNP/Dubna, RU	HRFD, DN2, DN12
SINQ/PSI, CH	DMC, HRPT, POLDI

European Portal for Neutron Scattering http://pathfinder.neutron-eu.net

Powder ND at SINQ/PSI

HRPT - <u>High Resolution Powder</u> Diffractometer for <u>Thermal Neutrons at SINQ</u>

HRPT RESOLUTION FUNCTIONS

DMC - cold neutron powder diffractometer

DMC: experimental resolution functions Ad/d (Q,))

16

HRPT RESOLUTION FUNCTIONS

DMC: experimental resolution functions Ad/d (Q,J)

 $\bigcirc \text{Magnetic moment} \\ \textbf{is a real quantity!} \quad \textbf{S}(\textbf{r}_j) = Re(\textbf{S}_0 e^{2\pi i \textbf{r}_j \textbf{k}}) = \frac{1}{2}(\textbf{S}_0 e^{+2\pi i \textbf{r}_j \textbf{k}} + c.c.)$

 $\begin{array}{ll} \text{Magnetic moment} & \mathbf{S}(\mathbf{r}_{j}) = & Re(\mathbf{S}_{0}e^{2\pi i\mathbf{r}_{j}\mathbf{k}}) = \frac{1}{2}(\mathbf{S}_{0}e^{+2\pi i\mathbf{r}_{j}\mathbf{k}} + c.c.) \\ & \textcircled{\mathbf{S}} & \text{Amplitude is complex} & \mathbf{S}_{0} = \mathbf{S}_{x}e^{i\phi_{x}} + \mathbf{S}_{y}e^{i\phi_{y}} + \mathbf{S}_{z}e^{i\phi_{z}} \end{array}$

Examples of magnetic structures. Propagation vector k $\begin{array}{ll} \text{Magnetic moment} & \mathbf{S}(\mathbf{r}_{j}) = & Re(\mathbf{S}_{0}e^{2\pi i\mathbf{r}_{j}\mathbf{k}}) = \frac{1}{2}(\mathbf{S}_{0}e^{+2\pi i\mathbf{r}_{j}\mathbf{k}} + c.c.) \\ & \textcircled{\mathbf{S}} & \text{Amplitude is complex} & \mathbf{S}_{0} = \mathbf{S}_{x}e^{i\phi_{x}} + \mathbf{S}_{y}e^{i\phi_{y}} + \mathbf{S}_{z}e^{i\phi_{z}} \end{array}$ **k**=[0,0] FM **Oth cell** K K K K $\mathbf{S}_{01} = \mathbf{S}_x + \mathbf{S}_y$

Magnetic moment is a real quantity!

Amplitude is complex

$$\begin{split} \mathbf{S}(\mathbf{r}_j) &= \frac{1}{2} (\mathbf{S}_0 e^{+2\pi i \mathbf{r}_j \mathbf{k}} + \mathbf{S}_0^* e^{-2\pi i \mathbf{r}_j \mathbf{k}}) \\ \mathbf{s}_{\text{complex}} \quad \mathbf{S}_0 &= \mathbf{S}_x e^{i\phi_x} + \mathbf{S}_y e^{i\phi_y} + \mathbf{S}_z e^{i\phi_z} \end{split}$$

 $\begin{array}{ll} \text{Magnetic moment} & \mathbf{S}(\mathbf{r}_j) = \frac{1}{2} (\mathbf{S}_0 e^{+2\pi i \mathbf{r}_j \mathbf{k}} + \mathbf{S}_0^* e^{-2\pi i \mathbf{r}_j \mathbf{k}}) \\ \text{Amplitude is complex} & \mathbf{S}_0 = \mathbf{S}_x e^{i\phi_x} + \mathbf{S}_y e^{i\phi_y} + \mathbf{S}_z e^{i\phi_z} \end{array}$

k=[1/2,1/2] AFM

Magnetic moment is a real quantity!

 $\begin{array}{ll} \mathbf{c} \mbox{ moment} & \mathbf{S}(\mathbf{r}_j) = \frac{1}{2} (\mathbf{S}_0 e^{+2\pi i \mathbf{r}_j \mathbf{k}} + \mathbf{S}_0^* e^{-2\pi i \mathbf{r}_j \mathbf{k}}) \\ \mbox{ quantity!} & \mathbf{S}(\mathbf{r}_j) = \frac{1}{2} (\mathbf{S}_0 e^{+2\pi i \mathbf{r}_j \mathbf{k}} + \mathbf{S}_0^* e^{-2\pi i \mathbf{r}_j \mathbf{k}}) \\ \mbox{ Amplitude is complex} & \mathbf{S}_0 = \mathbf{S}_x e^{i\phi_x} + \mathbf{S}_y e^{i\phi_y} + \mathbf{S}_z e^{i\phi_z} \end{array}$

modulated (in)commensurate

 $\begin{array}{ll} \text{Magnetic moment} & \mathbf{S}(\mathbf{r}_j) = \frac{1}{2} (\mathbf{S}_0 e^{+2\pi i \mathbf{r}_j \mathbf{k}} + \mathbf{S}_0^* e^{-2\pi i \mathbf{r}_j \mathbf{k}}) \\ & \text{Amplitude is complex} & \mathbf{S}_0 = \mathbf{S}_x e^{i\phi_x} + \mathbf{S}_y e^{i\phi_y} + \mathbf{S}_z e^{i\phi_z} \end{array}$

modulated (in)commensurate

Magnetic moment is a real quantity!

 $\begin{array}{ll} \mathbf{c} \mbox{ moment} & \mathbf{S}(\mathbf{r}_j) = \frac{1}{2} (\mathbf{S}_0 e^{+2\pi i \mathbf{r}_j \mathbf{k}} + \mathbf{S}_0^* e^{-2\pi i \mathbf{r}_j \mathbf{k}}) \\ \mbox{ quantity!} & \mathbf{S}(\mathbf{r}_j) = \frac{1}{2} (\mathbf{S}_0 e^{+2\pi i \mathbf{r}_j \mathbf{k}} + \mathbf{S}_0^* e^{-2\pi i \mathbf{r}_j \mathbf{k}}) \\ \mbox{ Amplitude is complex} & \mathbf{S}_0 = \mathbf{S}_x e^{i\phi_x} + \mathbf{S}_y e^{i\phi_y} + \mathbf{S}_z e^{i\phi_z} \end{array}$

modulated (in)commensurate

Example of complex magnetic structure

Example of complex magnetic structure

Analysis of magnetic neutron diffraction: computer programs and tutorials/notes

- INDEXING, K-VECTOR: programs distributed with FullProf Suite [1]
- SYMMETRY: Baslreps[1], SARAh[2], MODY[3]
- SOLUTION: FullProf [1] (simulated annealing)
- REFINEMENT: FullProf, GSAS [4]
- Visualization: FPStudio [1]

References

- I.Juan Rodríguez-Carvajal (ILL) et al, <u>http://www.ill.fr/sites/fullprof/</u>
- 2. Andrew S. Wills (UCL) <u>http://www.chem.ucl.ac.uk/people/wills/magnetic_structures/</u> <u>magnetic_structures.html</u>
- 3. Wieslawa Sikora et al, <u>http://www.ftj.agh.edu.pl/~sikora/modyopis.htm</u>
- 4. **Bob Von Dreele (ANL) et al,** <u>http://www.ncnr.nist.gov/programs/crystallography/</u> software/gsas.html

Magnetic symmetry

1651 3D magnetic Shubnikov (Sh) space groups. Derived from 230 space groups G and an additional element: spin inversion operator R. Sh groups contain additional 'antielements' $g'=(g \cdot R)$, $g \in G$ (except I) e.g. Pnnm'

Magnetic symmetry

1651 3D magnetic Shubnikov (Sh) space groups. Derived from 230 space groups G and an additional element: spin inversion operator R. Sh groups contain additional 'antielements' $g'=(g \cdot R)$, $g \in G$ (except I) e.g. Pnnm'

Magnetic symmetry

1651 3D magnetic Shubnikov (Sh) space groups. Derived from 230 space groups G and an additional element: spin inversion operator R. Sh groups contain additional 'antielements' $g'=(g \cdot R)$, $g \in G$ (except I) e.g. Pnnm'

Magnetic symmetry

1651 3D magnetic Shubnikov (Sh) space groups. Derived from 230 space groups G and an additional element: spin inversion operator R. Sh groups contain additional 'antielements' $g'=(g \cdot R)$, $g \in G$ (except I) e.g. Pnnm'

Disadvantages:

• Sh group is not necessarily made from the parent G. Thus, it is not an ultimate practical tool for obtaining all allowed spin configurations

Magnetic symmetry

1651 3D magnetic Shubnikov (Sh) space groups. Derived from 230 space groups G and an additional element: spin inversion operator R. Sh groups contain additional 'antielements' $g'=(g \cdot R)$, $g \in G$ (except I) e.g. Pnnm'

• Sh group is not necessarily made from the parent G. Thus, it is not an ultimate practical tool for obtaining all allowed spin configurations

For example:

CrCl₂ space group: Pnnm Possible Sh groups derived from the parent space group are: Pnnm Pn'nm, Pnnm', Pn'n'm, Pnn'm', Pn'n'm'

Magnetic symmetry

1651 3D magnetic Shubnikov (Sh) space groups. Derived from 230 space groups G and an additional element: spin inversion operator R. Sh groups contain additional 'antielements' $g'=(g \cdot R)$, $g \in G$ (except I) e.g. Pnnm'

• Sh group is not necessarily made from the parent G. Thus, it is not an ultimate practical tool for obtaining all allowed spin configurations

For example:

CrCl₂ space group: Pnnm Possible Sh groups derived from the parent space group are: Pnnm Pn'nm, Pnnm', Pn'n'm, Pnn'm', Pn'n'm'

No one describes CrCl₂ magnetic structure Cr-atoms in 2(a)-position Cr-spins are antiparallel in 0th cell **k**=[0 1/2 1/2]

Magnetic symmetry

1651 3D magnetic Shubnikov (Sh) space groups. Derived from 230 space groups G and an additional element: spin inversion operator R. Sh groups contain additional 'antielements' $g'=(g \cdot R)$, $g \in G$ (except I) e.g. Pnnm'

• Sh group is not necessarily made from the parent G. Thus, it is not an ultimate practical tool for obtaining all allowed spin configurations

For example:

CrCl₂ space group: *Pnnm* Possible *Sh groups* derived from the parent space group are: *Pnnm Pn'nm*, *Pnnm'*, *Pn'n'm*, *Pnn'm'*, *Pn'n'm'*

No one describes CrCl₂ magnetic structure Cr-atoms in 2(a)-position Cr-spins are antiparallel in 0th cell **k**=[0 1/2 1/2]

 $\frac{\text{Magnetic symbol}}{\{Pnnm; 2(a) \text{ Sh}^{7}{}_{2}=\text{P}_{s}\overline{\text{I}}; \\ \textbf{S}_{1}=(uvw), \textbf{S}_{2}=(-u-v-w)\}$

Magnetic symmetry

1651 3D magnetic Shubnikov (Sh) space groups. Derived from 230 space groups G and an additional element: spin inversion operator R. Sh groups contain additional 'antielements' $g'=(g \cdot R)$, $g \in G$ (except I) e.g. Pnnm'

Disadvantages:

- Sh group is not necessarily made from the parent G. Thus, it is not an ultimate practical tool for obtaining all allowed spin configurations
- Do not describe modulated structures. No rotations on non-crystallographic angle - no helix. Linear orthogonal transformations preserve the spin size - no SDW

Magnetic symmetry

1651 3D magnetic Shubnikov (Sh) space groups. Derived from 230 space groups G and an additional element: spin inversion operator R. Sh groups contain additional 'antielements' $g'=(g \cdot R)$, $g \in G$ (except I) e.g. Pnnm'

Disadvantages:

- Sh group is not necessarily made from the parent G. Thus, it is not an ultimate practical tool for obtaining all allowed spin configurations
- Do not describe modulated structures. No rotations on non-crystallographic angle - no helix. Linear orthogonal transformations preserve the spin size - no SDW

Representation analysis

A universal technique of finding all possible symmetry adapted spin configurations for the given space group G and the propagation vector **k**.

Magnetic symmetry

1651 3D magnetic Shubnikov (Sh) space groups. Derived from 230 space groups G and an additional element: spin inversion operator R. Sh groups contain additional 'antielements' $g'=(g \cdot R)$, $g \in G$ (except I) e.g. Pnnm'

Disadvantages:

- Sh group is not necessarily made from the parent G.Thus, it is not an ultimate practical tool for obtaining all allowed spin configurations
- Do not describe modulated structures. No rotations on non-crystallographic angle - no helix. Linear orthogonal transformations preserve the spin ^{PSt} diffraction Workshop '08

Representation analysis

A universal technique of finding all possible symmetry adapted spin configurations for the given space group G and the propagation vector **k**.

Case study. Antiferromagnetic order in orthorhombic TmMnO₃

Step 1

Experiment. q-range/resolution.

Patterns, 1.9Å HRPT and 4.5Å DMC

Patterns, 1.9Å HRPT and 4.5Å DMC

cf. resolution/q-range

HRPT I.9Å

Cf. resolution/q-range

Step 2

Finding the propagation vector of magnetic structure (k-vector). Le Bail profile matching fit.

T-dependence of Bragg peak positions

Refining the propagation k-vector from profile matching fit

Refining the propagation k-vector from profile matching fit

Step 3

Symmetry analysis. Classifying possible magnetic structures

Classifying possible magnetic structures k-vector group

Group G: Pnma, no.62: 8 symmetry operators

(1) 1	(2) $2(0,0,\frac{1}{2}) \frac{1}{4},0,z$	(3) $2(0,\frac{1}{2},0)$ 0, y, 0	(4) $2(\frac{1}{2},0,0) x,\frac{1}{4},\frac{1}{4}$
$(5) \bar{1} 0,0,0$	(6) $a x, y, \frac{1}{4}$	(7) $m x, \frac{1}{4}, z$	(8) $n(0,\frac{1}{2},\frac{1}{2}) \frac{1}{4},y,z$

Classifying possible magnetic structures k-vector group

Group G: Pnma, no.62: 8 symmetry operators

(1) 1	(2) $2(0,0,\frac{1}{2}) \frac{1}{4},0,z$	(3) $2(0,\frac{1}{2},0)$ 0, y, 0	(4) $2(\frac{1}{2},0,0)$	$x, \frac{1}{4}, \frac{1}{4}$
$(5) \ \overline{1} \ 0, 0, 0$	(6) $a x, y, \frac{1}{4}$	(7) $m x, \frac{1}{4}, z$	(8) $n(0, \frac{1}{2}, \frac{1}{2})$	$\frac{1}{4}$, y, z

Little group G_k , k=[0.45,0,0]=[q,0,0]

Little group of propagation vector G_k contains only the elements of G that do not change **k**

Classifying possible magnetic structures k-vector group

Group G: Pnma, no.62: 8 symmetry operators

(4) $2(\frac{1}{2}, 0, 0) \quad x, \frac{1}{4}, \frac{1}{4}$ (8) $n(0, \frac{1}{2}, \frac{1}{2}) \quad \frac{1}{4}, y, z$

Little group G_k , k=[0.45,0,0]=[q,0,0]

Little group of propagation vector G_k contains only the elements of G that do not change $R_1 ma(Pmc2_1, 26)$

$$\begin{array}{cccc} \text{(1) } x, y, z & \text{(4) } x + \frac{1}{2}, \bar{y} + \frac{1}{2}, \bar{z} + \frac{1}{2} & \text{(7) } x, \bar{y} + \frac{1}{2}, z & \text{(6) } x + \frac{1}{2}, y, \bar{z} + \frac{1}{2} \\ \text{rotation+} & E \begin{pmatrix} 100 \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} & 2_x \begin{pmatrix} 100 \\ 0\bar{1}0 \\ 00\bar{1} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & m_y \begin{pmatrix} 100 \\ 0\bar{1}0 \\ 001 \end{pmatrix} \begin{pmatrix} 0 \\ \frac{1}{2} \\ 0 \\ 0 \end{pmatrix} & m_z \begin{pmatrix} 100 \\ 010 \\ 00\bar{1} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \\ \end{array}$$

group element	gı	g 2	g3	g 4
rotation+ E translation	$\begin{pmatrix} 100\\010\\001 \end{pmatrix} \begin{pmatrix} 0\\0\\0 \end{pmatrix}$	$2_x \begin{pmatrix} 100\\ 0\overline{1}0\\ 00\overline{1} \end{pmatrix} \begin{pmatrix} \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2} \end{pmatrix}$	$m_y \begin{pmatrix} 100\\0\overline{1}0\\001 \end{pmatrix} \begin{pmatrix} 0\\\frac{1}{2}\\0 \end{pmatrix}$	$m_y \begin{pmatrix} 100\\010\\00\overline{1} \end{pmatrix} \begin{pmatrix} \frac{1}{2}\\0\\\frac{1}{2} \end{pmatrix}$
Mn-position	$0, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, 0$
position number	a	Ь	С	d

Permutation representation

Permutation representation

element g₂ changes atomic position:

$$a \Rightarrow b$$
$$b \Rightarrow a$$
$$c \Rightarrow d$$
$$d \Rightarrow c$$

Permutation representation

element g₂ is represented by 4x4 matrix

$$\begin{pmatrix} 0100\\1000\\0001\\0010 \end{pmatrix} \begin{pmatrix} a\\b\\c\\d \end{pmatrix} = \begin{pmatrix} b\\a\\d\\c \end{pmatrix}$$

Permutation representation

in addition, element g_2 sometimes moves the atom outside of the zerocell. We have to return the atom back with $-\mathbf{a}_p$: $-\mathbf{a}_p$

element g₂ is represented $\begin{bmatrix} 0100\\1000\\0001 \end{bmatrix}$

$$\begin{pmatrix} 0100\\1000\\0001\\0010 \end{pmatrix} \begin{pmatrix} a\\b\\c\\d \end{pmatrix} = \begin{pmatrix} b\\a\\d\\c \end{pmatrix}$$

$$a \Rightarrow b (000)$$
$$b \Rightarrow a (-100)$$
$$c \Rightarrow d (000)$$
$$d \Rightarrow c (-100)$$

Permutation representation

in addition, element g_2 sometimes moves the atom outside of the zerocell. We have to return the atom back with $-\mathbf{a}_p$: $-\mathbf{a}_p$ $\mathbf{a} \Longrightarrow \mathbf{b} \ (000)$ $\mathbf{b} \Longrightarrow \mathbf{a} \ (-100)$ $\mathbf{c} \Longrightarrow \mathbf{d} \ (000)$ $\mathbf{d} \Longrightarrow \mathbf{c} \ (-100)$ $\mathbf{d} \Longrightarrow \mathbf{c} \ (-100)$ $\mathbf{S}(\mathbf{r}_j) = \mathbf{S}_0 e^{2\pi i \mathbf{r}_j \mathbf{k}}$

element g₂ is represented by 4x4 matrix

$$\begin{pmatrix} 0100 \\ b000 \\ 0001 \\ 00b0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} b \\ a \\ d \\ c \end{pmatrix}$$
$$b = e^{2\pi i (\mathbf{ka}_p)} \simeq e^{-0.9\pi i}$$

group element	gı	g 2	g 3	g 4
rotation+ translation	$E\begin{pmatrix}100\\010\\001\end{pmatrix}\begin{pmatrix}0\\0\\0\end{pmatrix}$	$2_x \begin{pmatrix} 100\\ 0\overline{1}0\\ 00\overline{1} \end{pmatrix} \begin{pmatrix} \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2} \end{pmatrix}$	$m_y \begin{pmatrix} 100\\0\overline{1}0\\001 \end{pmatrix} \begin{pmatrix} 0\\\frac{1}{2}\\0 \end{pmatrix}$	$m_y \begin{pmatrix} 100\\010\\00\overline{1} \end{pmatrix} \begin{pmatrix} \frac{1}{2}\\0\\\frac{1}{2} \end{pmatrix}$
Mn-position	$0, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, 0$
position number	а	b	С	d
		Permutation re	presentation	
4x4 matrices (P)	$\begin{pmatrix} 1000 \\ 0100 \\ 0010 \\ 0001 \end{pmatrix}$	$\begin{pmatrix} 0100 \\ b000 \\ 0001 \\ 00b0 \end{pmatrix}$	$\begin{pmatrix} 0010 \\ 0001 \\ 1000 \\ 0100 \end{pmatrix}$	$\begin{pmatrix} 0001 \\ 00b0 \\ 0100 \\ b000 \end{pmatrix}$

group element	gı	g 2	g3	g 4
rotation+ translation	$E\begin{pmatrix}100\\010\\001\end{pmatrix}\begin{pmatrix}0\\0\\0\end{pmatrix}$	$2_x \begin{pmatrix} 100\\ 0\overline{1}0\\ 00\overline{1} \end{pmatrix} \begin{pmatrix} \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2} \end{pmatrix}$	$m_y \begin{pmatrix} 100\\ 0\bar{1}0\\ 001 \end{pmatrix} \begin{pmatrix} 0\\ \frac{1}{2}\\ 0 \end{pmatrix}$	$m_y \begin{pmatrix} 100\\010\\00\bar{1} \end{pmatrix} \begin{pmatrix} \frac{1}{2}\\0\\\frac{1}{2} \end{pmatrix}$
Mn-position	$0, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, 0$
position number	а	Ь	С	d
		Permutation re	presentation	
4x4 matrices (P)	$\begin{pmatrix} 1000\\ 0100\\ 0010\\ 0001 \end{pmatrix}$	$\begin{pmatrix} 0100 \\ b000 \\ 0001 \\ 00b0 \end{pmatrix}$	$\begin{pmatrix} 0010\\ 0001\\ 1000\\ 0100 \end{pmatrix}$	$\begin{pmatrix} 0001\\ 00b0\\ 0100\\ b000 \end{pmatrix}$

Axial vector (spin) representation

group element	gı	g 2	g3	g 4
rotation+ translation	$E\begin{pmatrix}100\\010\\001\end{pmatrix}\begin{pmatrix}0\\0\\0\end{pmatrix}$	$2_x \begin{pmatrix} 100\\ 0\overline{1}0\\ 00\overline{1} \end{pmatrix} \begin{pmatrix} \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2} \end{pmatrix}$	$m_y \begin{pmatrix} 100\\ 0\bar{1}0\\ 001 \end{pmatrix} \begin{pmatrix} 0\\ \frac{1}{2}\\ 0 \end{pmatrix}$	$m_y \begin{pmatrix} 100\\010\\00\overline{1} \end{pmatrix} \begin{pmatrix} \frac{1}{2}\\0\\\frac{1}{2} \end{pmatrix}$
Mn-position	$0, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, 0$
position number	а	b	С	d
		Permutation re	presentation	
4x4 matrices (P)	$\begin{pmatrix} 1000\\ 0100\\ 0010\\ 0001 \end{pmatrix}$	$\begin{pmatrix} 0100 \\ b000 \\ 0001 \\ 00b0 \end{pmatrix}$	$\begin{pmatrix} 0010\\ 0001\\ 1000\\ 0100 \end{pmatrix}$	$\begin{pmatrix} 0001\\ 00b0\\ 0100\\ b000 \end{pmatrix}$

Axial vector (spin) representation

For instance: rotational part of element g₂: R(g₂) changes atomic spin direction:

$$\begin{pmatrix} S_x \\ S_y \\ S_z \end{pmatrix} = \begin{pmatrix} S_x \\ -S_y \\ -S_z \end{pmatrix}$$

group element	gı	g 2	g 3	g 4
rotation+ translation	$E\begin{pmatrix}100\\010\\001\end{pmatrix}\begin{pmatrix}0\\0\\0\end{pmatrix}$	$2_x \begin{pmatrix} 100\\ 0\overline{1}0\\ 00\overline{1} \end{pmatrix} \begin{pmatrix} \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2} \end{pmatrix}$	$m_y \begin{pmatrix} 100\\ 0\overline{1}0\\ 001 \end{pmatrix} \begin{pmatrix} 0\\ \frac{1}{2}\\ 0 \end{pmatrix}$	$m_y \begin{pmatrix} 100\\010\\00\bar{1} \end{pmatrix} \begin{pmatrix} \frac{1}{2}\\0\\\frac{1}{2} \end{pmatrix}$
Mn-position	$0, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, 0$
position number	а	Ь	С	d
		Permutation re	presentation	
4x4 matrices (P)	$\begin{pmatrix} 1000\\ 0100\\ 0010\\ 0001 \end{pmatrix}$	$\begin{pmatrix} 0100 \\ b000 \\ 0001 \\ 00b0 \end{pmatrix}$	$\begin{pmatrix} 0010\\ 0001\\ 1000\\ 0100 \end{pmatrix}$	$\begin{pmatrix} 0001\\ 00b0\\ 0100\\ b000 \end{pmatrix}$

Axial vector (spin) representation

For instance: rotational part of element g₂: R(g₂) changes atomic spin direction:

element g₂ is represented
by 3x3 matrix
$$R(g_2) \times det(R) \begin{pmatrix} 100\\0\overline{1}0\\00\overline{1} \end{pmatrix} \begin{pmatrix} S_x\\S_y\\S_z \end{pmatrix} = \begin{pmatrix} S_x\\-S_y\\-S_z \end{pmatrix}$$

group element	gı	g 2	g3	g 4
rotation+ translation	$E\begin{pmatrix}100\\010\\001\end{pmatrix}\begin{pmatrix}0\\0\\0\end{pmatrix}$	$2_x \begin{pmatrix} 100\\ 0\overline{1}0\\ 00\overline{1} \end{pmatrix} \begin{pmatrix} \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2} \end{pmatrix}$	$m_y \begin{pmatrix} 100\\0\overline{1}0\\001 \end{pmatrix} \begin{pmatrix} 0\\\frac{1}{2}\\0 \end{pmatrix}$	$m_y \begin{pmatrix} 100\\010\\00\bar{1} \end{pmatrix} \begin{pmatrix} \frac{1}{2}\\0\\\frac{1}{2} \end{pmatrix}$
Mn-position	$0, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, 0$
position number	a	b	С	d
		Permutation re	presentation	
4x4 matrices (P)	$\begin{pmatrix} 1000\\ 0100\\ 0010\\ 0001 \end{pmatrix}$	$\begin{pmatrix} 0100 \\ b000 \\ 0001 \\ 00b0 \end{pmatrix}$	$\begin{pmatrix} 0010\\ 0001\\ 1000\\ 0100 \end{pmatrix}$	$\begin{pmatrix} 0001\\ 00b0\\ 0100\\ b000 \end{pmatrix}$
	4	Axial vector (spin)	representation	
3x3 matrices (A) R(g ₂)×det(R)	$\begin{pmatrix} 100\\010\\001 \end{pmatrix}$	$\begin{pmatrix} 100\\ 0\overline{1}0\\ 00\overline{1} \end{pmatrix}$	$\begin{pmatrix} \overline{1}00\\010\\00\overline{1} \end{pmatrix}$	$\begin{pmatrix} \overline{1}00\\ 0\overline{1}0\\ 001 \end{pmatrix}$

group element		82 1 1 0	83	84
Mn-position	$0, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, 0$
position number	a	b	С	d
spin	SI	S ₂	S 3	S 4

		Permutation repre	sentation	
4x4 matrices (P)	$\begin{pmatrix} 1000\\ 0100\\ 0010\\ 0001 \end{pmatrix}$	$\begin{pmatrix} 0100 \\ b000 \\ 0001 \\ 00b0 \end{pmatrix}$	$\begin{pmatrix} 0010\\ 0001\\ 1000\\ 0100 \end{pmatrix}$	$\begin{pmatrix} 0001\\ 00b0\\ 0100\\ b000 \end{pmatrix}$
		Axial vector (spin) rep	presentation	
3x3 matrices (A) R(g ₂)×det(R)	$\begin{pmatrix} 100\\010\\001 \end{pmatrix}$	$\begin{pmatrix} 100\\ 0\bar{1}0\\ 00\bar{1} \end{pmatrix}$	$\begin{pmatrix} \bar{1}00\\ 010\\ 00\bar{1} \end{pmatrix}$	$\begin{pmatrix} \bar{1}00\\ 0\bar{1}0\\ 001 \end{pmatrix}$

group element	gı	g 2	g3	g 4	
Mn-position	$0, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, 0$	
position number	а	b	С	d	
spin	Sı	S 2	S ₃	S 4	Vector spaces
		Permutation repre	esentation		$\langle a \rangle$
4x4 matrices (P)	$\begin{pmatrix} 1000\\ 0100\\ 0010\\ 0001 \end{pmatrix}$	$\begin{pmatrix} 0100 \\ b000 \\ 0001 \\ 00b0 \end{pmatrix}$	$\begin{pmatrix} 0010\\ 0001\\ 1000\\ 0100 \end{pmatrix}$	$\begin{pmatrix} 0001\\ 00b0\\ 0100\\ b000 \end{pmatrix}$	$\begin{pmatrix} b \\ c \\ d \end{pmatrix}$
	A	xial vector (spin) re	presentation		$\langle S_{x} \rangle$
3x3 matrices (A) R(g ₂)×det(R)	$\begin{pmatrix} 100\\010\\001 \end{pmatrix}$	$\begin{pmatrix} 100\\ 0\overline{1}0\\ 00\overline{1} \end{pmatrix}$	$\begin{pmatrix} \bar{1}00\\010\\00\bar{1} \end{pmatrix}$	$\begin{pmatrix} \bar{1}00\\ 0\bar{1}0\\ 001 \end{pmatrix}$	$\begin{pmatrix} S_x \\ S_y \\ S_z \end{pmatrix}$

Mn-position $0, 0, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}, 0$ $0, \frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}, 0, 0$	
position number a b c d	
spin SI S2 S3 S4	
	vector
	spaces
Permutation representation	$\langle a \rangle$
4x4 matrices (P) $\begin{pmatrix} 1000\\ 0100\\ 0010\\ 0001 \end{pmatrix}$ $\begin{pmatrix} 0100\\ b000\\ 0001\\ 0001\\ 00b0 \end{pmatrix}$ $\begin{pmatrix} 0010\\ 0001\\ 1000\\ 0100 \end{pmatrix}$ $\begin{pmatrix} 0001\\ 00b0\\ 0100\\ 0100 \end{pmatrix}$	$\begin{pmatrix} b \\ c \\ d \end{pmatrix}$
Axial vector (spin) representation	$\langle S \rangle$
$\begin{array}{ll} 3 \times 3 \text{ matrices (A)} \\ R(g_2) \times det(R) \end{array} \begin{pmatrix} 100 \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} 100 \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} 100 \\ 0\overline{10} \\ 00\overline{1} \end{pmatrix} \begin{pmatrix} \overline{100} \\ 010 \\ 00\overline{1} \end{pmatrix} \begin{pmatrix} \overline{100} \\ 0\overline{10} \\ 00\overline{1} \end{pmatrix} \begin{pmatrix} \overline{100} \\ 0\overline{10} \\ 00\overline{1} \end{pmatrix}$	$\left(egin{array}{c} S_x \ S_y \ S \end{array} ight)$
Magnetic representation	$\langle D_z \rangle$

direct (tensor) product P⊗A I2xI2 matrices

PSI diffraction Workshop'08

gı	g 2	g3	g 4	
$0, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, 0$	
a	Ь	С	d	
Sı	S 2	S ₃	S 4	Vector
Per	mutation repre	esentation		spaces
$\begin{pmatrix} 1000\\ 0100\\ 0010\\ 0001 \end{pmatrix}$	$\begin{pmatrix} 0100 \\ b000 \\ 0001 \\ 00b0 \end{pmatrix}$	$\begin{pmatrix} 0010\\ 0001\\ 1000\\ 0100 \end{pmatrix}$	$\begin{pmatrix} 0001\\ 00b0\\ 0100\\ b000 \end{pmatrix}$	$\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$
$\begin{array}{c} Axial \\ \begin{pmatrix} 100 \\ 010 \\ 001 \end{pmatrix} \end{array}$	vector (spin) re $\begin{pmatrix} 100 \\ 0\overline{10} \\ 00\overline{1} \end{pmatrix}$	epresentation $ \begin{pmatrix} \bar{1}00\\ 010\\ 00\bar{1} \end{pmatrix} $	$\begin{pmatrix} \bar{1}00\\ 0\bar{1}0\\ 001 \end{pmatrix}$	$\begin{pmatrix} S_x \\ S_y \\ S_z \end{pmatrix}$
		Sentation	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	
e.g. for group element g ₂		$\left.\right) \otimes \begin{pmatrix} 100\\ 0\overline{1}0\\ 00\overline{1} \end{pmatrix}$	$= \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	gi $0, 0, \frac{1}{2}$ a Si Per $\begin{pmatrix} 1000\\ 010\\ 0010\\ 0010 \end{pmatrix}$ Axial $\begin{pmatrix} 100\\ 010\\ 0010 \end{pmatrix}$ e.g. for group element g ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} g_1 & g_2 & g_3 \\ 0, 0, \frac{1}{2} & \frac{1}{2}, \frac{1}{2}, 0 & 0, \frac{1}{2}, \frac{1}{2} \\ a & b & c \\ \mathbf{S}_1 & \mathbf{S}_2 & \mathbf{S}_3 \end{array}$ $\begin{array}{c ccccc} & \mathbf{Permutation representation} \\ \begin{pmatrix} 1000 \\ 0010 \\ 0001 \end{pmatrix} & \begin{pmatrix} 0100 \\ 0000 \\ 0000 \\ 0000 \end{pmatrix} & \begin{pmatrix} 0010 \\ 0001 \\ 1000 \\ 0000 \\ 0000 \end{pmatrix} \\ \mathbf{Axial vector (spin) representation} \\ \begin{pmatrix} 100 \\ 010 \\ 001 \end{pmatrix} & \begin{pmatrix} 100 \\ 010 \\ 001 \end{pmatrix} & \begin{pmatrix} \overline{100} \\ 010 \\ 001 \end{pmatrix} \\ \mathbf{Magnetic representation} \\ \mathbf{e}.g. \ for \ group \\ element \ g_2 & \begin{pmatrix} 0100 \\ b000 \\ 0001 \\ 0001 \end{pmatrix} \otimes \begin{pmatrix} 100 \\ 0\overline{10} \\ 0\overline{10} \\ 00\overline{1} \end{pmatrix} \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

d

Matrix of magnetic representation acts on

12 dimensional vector

4x3=12 spin components

() (0 0	1	0	0	0	0	0	0	0	0	$\left(s_{x1} \right)$
() (0 0	0	$\overline{1}$	0	0	0	0	0	0	0	s_{y1}
() (0 0	0	0	$\overline{1}$	0	0	0	0	0	0	s_{z1}
-	1 (0 0	0	0	0	0	0	0	0	0	0	s_{x2}
() \overline{b}	0	0	0	0	0	0	0	0	0	0	s_{y2}
() () \overline{b}	0	0	0	0	0	0	0	0	0	s_{z2}
() (0 0	0	0	0	0	0	0	1	0	0	s_{x3}
() (0 0	0	0	0	0	0	0	0	$\overline{1}$	0	s_{y3}
() (0 0	0	0	0	0	0	0	0	0	$\overline{1}$	S_{z3}
() (0 0	0	0	0	1	0	0	0	0	0	s_{x4}
() (0	0	0	0	0	\overline{b}	0	0	0	0	s_{y4}
() (0 0	0	0	0	0	0	\overline{b}	0	0	0 /	$/ \langle s_{z4} \rangle$

E.g. for the element g_2 M=P \otimes A

group element	gı	g 2	g3	g 4	
Mn-position	$0, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, 0$	

Magnetic representation is reducible to a block-diagonal shape that is a direct sum of irreducible square matrices τ_1 , τ_2 , ... (dimensions can be from 1 to 6.)

$$\tau_1 \oplus \tau_2 \oplus \tau_3 \oplus \dots = \begin{pmatrix} \tau_1 & 0 & 0 & \dots & 0 \\ 0 & \tau_2 & 0 & \dots & 0 \\ 0 & 0 & \tau_3 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & \end{pmatrix} \begin{pmatrix} S_{\tau 1} \\ S_{\tau 2} \\ S_{\tau 3} \\ \vdots \\ \vdots \end{pmatrix}$$

group element	gı	g 2	g3	g 4
Mn-position	$0, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, 0$

Magnetic representation is reducible to a block-diagonal shape that is a direct sum of irreducible square matrices τ_1 , τ_2 , ... (dimensions can be from 1 to 6.)

Each of these matrices τ_1 , τ_2 , ... acts only on a subspace of the 12 spin components. $S_{\tau 1}$, $S_{\tau 2}$, ... are vectors with dimension of matrix τ_1 , τ_2

$$\tau_{1} \oplus \tau_{2} \oplus \tau_{3} \oplus \dots = \begin{pmatrix} \tau_{1} & 0 & 0 & \dots & 0 \\ 0 & \tau_{2} & 0 & \dots & 0 \\ 0 & 0 & \tau_{3} & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \end{pmatrix} \begin{pmatrix} S_{\tau 1} \\ S_{\tau 2} \\ S_{\tau 3} \\ \vdots \\ \vdots \end{pmatrix}$$

group element	gı	g 2	g3	g 4	
Mn-position	$0, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, 0$	

Magnetic representation is reducible to a block-diagonal shape that is a direct sum of irreducible square matrices $\tau_1, \tau_2, ...$ (dimensions can be from 1 to 6.)

Landau theory of phase transitions says that only one irreducible representation is needed to describe the structure

Why the Landau theory does work for magnetic phase transition is a separate topic.

Classifying possible magnetic structures basis vectors/functions S_{τ_1} , S_{τ_2} , S_{τ_3} , ...

Pnma, k=[0.45,0,0] Mn in (4a)-position

Magnetic representation is reduced to four one-dimensional irreps

 $3 au_1 \oplus 3 au_2 \oplus 3 au_3 \oplus 3 au 4$

	g_1	g_2	g_3	g_4
$ au_1$	1	a	1	a
$ au_2$	1	a	-1	-a
$ au_3$	1	-a	1	-a
$ au_4$	1	-a	-1	a

$$a = e^{\pi i k_x}$$

Classifying possible magnetic structures basis vectors/functions S_{T1} , S_{T2} , S_{T3} , ...

Pnma, k=[0.45,0,0] Mn in (4a)-position

Magnetic representation is reduced to four one-dimensional irreps

Classifying possible magnetic structures basis vectors/functions S_{T1} , S_{T2} , S_{T3} , ...

Pnma, k=[0.45,0,0] Mn in (4a)-position

Magnetic representation is reduced to four one-dimensional irreps

 $3\tau_1 \oplus 3\tau_2 \oplus (3\tau_3) \oplus 3\tau_4$ $0, 0, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}, 0$ $0, \frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}, 0, 0$ $g_1 \quad g_2 \quad g_3 \quad g_4$ 2 3 Mn-position 4 $au_1 \quad 1 \quad a \quad 1$ \boldsymbol{a} $au_2 \quad 1 \quad a \quad -1 \quad -a$ $S'_{\tau 3} = +1\mathbf{e}_{1x} - a^*\mathbf{e}_{2x} - 1\mathbf{e}_{3x} + a^*\mathbf{e}_{4x}$ au_3 1 -a 1 $-a_ S_{\tau 3}'' = +1\mathbf{e}_{1y} + a^*\mathbf{e}_{2y} + 1\mathbf{e}_{3y} + a^*\mathbf{e}_{4y}$ $\tau_4 \quad 1 \quad -a \quad -1$ \boldsymbol{a} $S_{\tau 3}^{\prime\prime\prime\prime} = +1\mathbf{e}_{1z} + a^*\mathbf{e}_{2z} - 1\mathbf{e}_{3z} - a^*\mathbf{e}_{4z}$ $a = e^{\pi i k_x}$

> Assuming that the phase transition goes according to one irreducible representation T3 the spins of all four atoms are set only by 3 variables instead of 12!

Solving/refining the magnetic structure by using one irreducible representation

Solving/refining the magnetic structure by using one irreducible representation

I. construct basis functions for single irreducible representation irrep (use Baslreps, SARAh, MODY)

Solving/refining the magnetic structure by using one irreducible representation

- I. construct basis functions for single irreducible representation irrep (use Baslreps, SARAh, MODY)
- plug them in the FULLPROF and try to fit the data. In difficult cases the Monte-Carlo simulated annealing search is required

Solving/refining the magnetic structure by using one irreducible representation

- I. construct basis functions for single irreducible representation irrep (use Baslreps, SARAh, MODY)
- plug them in the FULLPROF and try to fit the data. In difficult cases the Monte-Carlo simulated annealing search is required
- 3. If the fit is bad go to 1 and choose different irrep. If the fit is good it is still better to sort out all irreps.

Refinement of the data for T_3

$$\mathbf{S}(\mathbf{r}) = \frac{1}{2} (C_1 S'_{\tau 3} + C_2 S''_{\tau 3} + C_3 S'''_{\tau 3}) e^{2\pi i \mathbf{k} \mathbf{r}} + c.c.$$

$$\mathbf{k} = [0.45,0,0]$$

$$\mathbf{k}'_{\tau 3} = +1\mathbf{e}_{1x} - a^* \mathbf{e}_{2x} - 1\mathbf{e}_{3x} + a^* \mathbf{e}_{4x}$$

$$S''_{\tau 3} = +1\mathbf{e}_{1y} + a^* \mathbf{e}_{2y} + 1\mathbf{e}_{3y} + a^* \mathbf{e}_{4y}$$

$$S'''_{\tau 3} = +1\mathbf{e}_{1z} + a^* \mathbf{e}_{2z} - 1\mathbf{e}_{3z} - a^* \mathbf{e}_{4z}$$

Refinement of the data for T_3

$$\mathbf{S}(\mathbf{r}) = \frac{1}{2} (C_1 S'_{\tau 3} + C_2 S''_{\tau 3} + C_3 S'''_{\tau 3}) e^{2\pi i \mathbf{k} \mathbf{r}} + c.c.$$

Visualization of the magnetic structure

a cycloid structure propagating along x-direction

$$\mathbf{S}(\mathbf{r}) = Re \left[(C_1 S'_{\tau 3} + |C_3| \exp(i\varphi) S'''_{\tau 3}) \exp(2\pi i \mathbf{k} \mathbf{r}) \right]$$

$$S'_{\tau 3} = +1\mathbf{e}_{1x} - a^* \mathbf{e}_{2x} - 1\mathbf{e}_{3x} + a^* \mathbf{e}_{4x}$$

$$S'''_{\tau 3} = +1\mathbf{e}_{1z} + a^* \mathbf{e}_{2z} - 1\mathbf{e}_{3z} - a^* \mathbf{e}_{4z}$$

Visualization of the magnetic structure

a cycloid structure propagating along x-direction

Visualization of the magnetic structure: xz-projection

for arbitrary ϕ : both direction and size of S_1 are changed

Visualization of the magnetic structure: xz-projection

Propagation of the spin, e.g. for atom no. I $\mathbf{S}_1(x) = C_1 \cos(kx)\mathbf{e}_x + |C_3| \cos(kx + \varphi)\mathbf{e}_z$

Visualization of the magnetic structure: xz-projection

Propagation of the spin, e.g. for atom no. I $\mathbf{S}_1(x) = (C_1 \mathbf{e}_x + |C_3| \mathbf{e}_z) \cos(kx)$

literature, programs and tutorials/notes

All you need to know about magnetic neutron diffraction. Symmetry, representation analysis (u.A. Izyumov, V. E. Naish and R. P. Ozerov, "Neutron diffraction of magnetic materials"

Yu.A. Izyumov, V. E. Naish and R. P. Ozerov, "Neutron diffraction of magnetic materials", New York [etc.]: Consultants Bureau, 1991.

COMPUTER PROGRAMS, TUTORIALS

I.Juan Rodríguez-Carvajal (ILL) et al, <u>http://www.ill.fr/sites/fullprof/</u>

2.Andrew S.Wills (UCL) <u>http://www.chem.ucl.ac.uk/people/wills/</u> <u>magnetic_structures/magnetic_structures.html</u>

3.Wieslawa Sikora et al, <u>http://www.ftj.agh.edu.pl/~sikora/modyopis.htm</u>

This lecture <u>http://sinq.web.psi.ch/sinq/instr/hrpt/praktikum</u>