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neutron diffraction
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Lecture course 402-0543-00L:

Neutron Scattering in Condensed Matter Physics
24.03.10 Lecture |12: Advanced magnetic structures




Purpose of this lecture

|.You need to acquaint yourself with the classification of the
magnetic structures that are used in the literature, such as
Shubnikov (or black-white) groups and irreducible representation
notations.

2.You need to be able to construct all possible symmetry adapted
magnetic structures for a given crystal structure and a
propagation vector (a point on the Brilloine zone) using
representation (rep) analysis of magnetic structures. This way of
description/construction is related to the Landau theory of
second order phase transitions and applies not only to magnetic
ordering, but generally to any type of phase transitions. For
example, using the rep-analysis one can analyze displacive crystal
structure transitions.
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Overview of Lecture

®  Longrange magnetic order seen by ND. Two ways of magnetic structure
classification: “Shubnikov” vs. “reps analysis” -- introduction 9

° Point groups. Intro to group representations (reps) 12
® Irreducible representations (irreps) 8
e  Basic crystallography. Symmetry elements. Space groups (SG) 5

° Irreps of SG. Reciprocal lattice. Propagation k-vector of <magnetic>
structure/Brillouine zone points 8

®  (ase study of magnetic structure determination using k-vector reps
formalism for classifying symmetry adopted magnetic modes 12

e  Magnetic Shubnikov groups. Comparison of two ways of magnetic
structure classification/determination: “Shubnikov’ vs. “reps analysis” 4
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Literature on (magnetic) symmetry and
magnetic neutron diffraction

All you need to know about magnetic neutron
diffraction. Magnetic symmetry, representation
analysis

Yu.A. lzyumov, V. E. Naish and R. P. Ozerov, "Neutron diffraction of magnetic
materials”, New York [etc.]: Consultants Bureau, 1991.

and
Groups, representation analysis, point groups and

simple applications, e.g. molecular vibrations, crystal
field theory.

J.P Elliott and P.G. Dawber “Symmetry in physics”, vol. 1,1979 The
Macmillan press LTD
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Notes, papers, talks and computer programs, etc. on
magnetic structures, (magnetic) symmetry and
magnetic neutron diffraction

e Andrew S. Wills (UCL) http://www.chem.ucl.ac.uk/people/wills/
magnetic_structures/magnetic_structures.html

* Juan Rodriguez-Carvajal (ILL) et al, http://www.ill.fr/sites/fullprof/
program Baslreps

* Wiesfawa Sikora et al, http://www.ftj.agh.edu.pl/~sikora/modyopis.htm

* Bilbao Crystallographic Server is a web site with crystallographic
programs and databases accessible via Internet
bilbao crystallographic server http://www.cryst.ehu.es/

V. Pomjakushin , "Determination of the magnetic structure from powder
neutron diffraction.” Lecture given at the "Workshop on X-rays,
Synchrotron Radiation and Neutron Diffraction Techniques, June
18-22, 2008, PSI, http://sing.web.psi.ch/sing/instr/hrpt/praktikum
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Magnetic structure seen by ND

Magnetic interactions are described by QM Hamiltonian with quantum spin operators
- . AN A /\2
H = — E Jf,;jSZ'°Sj—|— E DZSZ—|—
1,9 1

In a diffraction experiment (coherent Bragg scattering), however, the problem is
reduced and we observe only the following correlators. <> averaging over all initial

states of the scatterer. i,j=1..N

~ g <§z> . <§]> = Fourier sum of classical axial vectors

Magnetic structure that we observe is an ordered set of classical axial
vectors S; — <S,L> that can be directed at any angle with respect to crystal

axes and field.
In the symmetry analysis we deal with the classical spins (no coreprs).

S, = <§Z> = S,.€, + Sy €y + S,€. <Sz SA2>
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Magnetic structure

Examples
k=[0,0]
k=[0,0] AFM
FM A A oA A

I:I ¥ ¥ othceu‘( , 4
Oth cell

A A b4
¥ ¥ VY

"4 "4 "4 P4 P4 4 p 4 p 4
V4 V4 V4 ¥
So1 =S, + S, So1 = Sr 5y
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Examples of magnetic structures.

Propagation vector k#0

| 1 - -
Magnetic moment ~ S(r;) = ~(Sget 2™k 4 §fe 2mirik)

is a real quantity D Bloch waves

Amplitude 1s complq Sy =8, eiPr 4 S, ey 1 §_ei®-
(one can not avoid this)

modulated (in)commensurate

Oth cell 1_

k=[1/2,1/2] AFM

k=[0,0,k] | '=—

So1 =Sz +S,e2 =S, + Z'SV

SOl — Sx + ZSy + Szei¢z
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Interference between nuclear and magnetic

scattering (slide skipped)

General note:

When the magnetic unit cell is larger than the nuclear one (propagation vector
k#0) the interference between nuclear and magnetic scattering 1s absent in any
(un)polarized neutron diffraction experiment.

Reason: Magnetic Bragg peaks appear at different from nuclear peaks
positions in reciprocal space
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Only amplitudes can be determined (slide skipped)

3
S = Sy cos(27k k= I~ S5+ SoF
pin/atom magnetic

oment Amplitude
¢ ="Tm/8 :
m2 m3 2 4
ml N\ ™ AN e
p— 2 \ | >
b=/ % m3 2 A4 Ny

The phase @ is not accessible and the magnetic moments on
the atoms cannot be determined.
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Example of complex magnetic structure

Antiferromagnetic three sub-lattice ordering in Tbi4Aus,

P6/m
k-vector=[1/3, 1/3, 0]

of Tb3*.
Conventional magnetic unit

cell contains 126 spins of
Tb3*!!
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Some legitimate questions

|. How do we describe/classify/predict magnetic symmetries and structures!?
2. How do we construct all symmetry allowed magnetic structures for a given
crystal structure!

Description vs. determination/constructiveness
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Two ways of description of magnetic

structures

Magnetic structure 1s an axial vector function S(r) defined on the discreet
system of points (atoms), €.g. S(r) =s(r1) @ s(r2) ® s(r3) @ s(rs)

@
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1. gS(r) = S(r) to 1tself, where g € subgroup of
SG®1°, 1’=spin reversal, SG (space group)
or

2. gS(r) = S’(r) to different function defined on the
same system of points, g& SG




) = S(r) to itself, Tz antytsp of description of magnetic
91°, 1’=spin reversal, SG (space group)
structures

r) = S’°(r) to different function defined on the
e byMagnetipointhubaikey groups. Historically the first way of SG 62 Pnma
——description. A group tirat feaves S{r) mvarrant under a subgroup

Pn’ma
of G®1°. Identifying those symmetry elements that leave S(r)
invariant. Pnm’a
Similar to the space groups (SG 230). Defining of all possible Pnma’ MSG
magnetic space groups MSG: a crystallographer dream. The *Pn'm’a
MSG symbol looks similar to SG one, e.g. Pn’'ma *Pnm’a’
nma
*Pn'ma’
2. Representation analysis. How does S(r) transform Pn’m’a’
under g € G (space group)?
S(r) that is transformed under g € G according to a single g /2 /3 /4 /25 [J26 /27 /28
irreducible representation i of G. Identifying/classifying #1 1 1 1 1 1 1 1
all the functions S’(r) that appears under all symmetry ) 1 1 T VS S, S
operators of the space group G d“(g) 3 1 1 =1 1 B T |
7O 1 1 -1 1 -1 1 -1
77 1 -1 1 1 -1 -1 1

TA=T3X T2, T0O=To X T2; 78 =77 X T2
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Introduction to representation theory
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four group axioms

A set G of elements is G1, G2, G3, Gy, ... said to form a group if a low
of multiplication of the elements 1s defined that satisfies certain
conditions

Closure

For all G4, Gp in G, the result of the operation G, * Gy 1s also 1n G.

Associativity

For all G4, Gy and G¢ in G, the equation (G, * Gp) * G: = G4 * (Gp * G¢) holds.

Identity element

One element of the set E called 1dentity must have the properties G, * E =G, and E * G, = G,
Inverse element

For each G, in G, there exists an element G, ! in G such that G, * G,'! =G, 1« G, =E
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Example: point group 32

Point group Hermann—Mauguin symbol 32 (D3 Schoenflies symbol)

e.g Quartz

or regular triangle

- O
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Multiplication table, isomorphism

Point group 32 (D3 Schoenflies symbol)
e.g regular triangle

6 symmetry elements (rotations):

RO=E, Ri=2n/3, Ro=4n/3 around z, R3, R4, Rs, = m around resp. multiplication table

hex —> 1 31 32 20 2, 2, Aaxes in xy-plane 81 g2 I
g1 g";' g188 e 18
g2 | 8281 & 828,

/ Xhe) - . . -
f 3 . . . .
R /.4 .
- 7 R[ Z 3 — / 2 gn g-ngl gng'z g'n

Uhex
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Multiplication table, isomorphism

Point group 32 (D3 Schoenflies symbol)
e.g regular triangle

6 symmetry elements (rotations):
RO=E, R1=2n/3, Ro=4n/3 around z, R3, R4, Rs, = m around resp. axes in xy-plane

hex —> 1 31 32 2u 2y 2x
Gp
/th E Ry Rz Ry Rq R
)
E E R, Ro R: Ry Rs
R| Rl RQ E R‘ R5 R3
R.z R’ E R.l Ro R3 R4
R, R, R R, E Ry
R« R, R, Rs R: R, E

Two groups are isomorphous if they have the same multiplication table
Quartz 32 D3
Ammonia molecule 3m Cs,

Uhex

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10

Thursday, 25 March 2010



Isomorphism. Abstract group. (slide skipped)

cyclic group of ordinary complex numbers

i*  k=0,1, 2, 3

Gp
{ —1 i =
Ca
1 1 —1 : —
—1 = 1 i ‘ .
, i - —1 1 /2
T TE/ 2 -TE/ 2
crystallographic point group Cs @ A A
sy A \C0 E
Sl
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Linear vector spaces I. Vectors

Vector of dimension 3:

position (or magnetic moment) S
of a particle in 3D: S

Vector of dimension 3N:

positions (or magnetic
moments) of N particles in 3D: ( 5.1 \

SxN

SyN
\52n/
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Linear vector

Asetri, o, ... 1s said to form a ‘linear
vector space L’ if the sum of any two
members produces another in the set and a
multiplication by a complex number ¢ also
produces another 1n the set.

A set of vectors r1, 12, ... 1pis said to be
‘linearly independent’ if the members are
not related by an equation:

p

chrk =0

k=1

The ‘dimension’ (/) of L = greatest number
of vectors which form a linearly
independent set.

In /-dimensional vector space L any set of o
[ linearly independent vectors are said to

form a ‘basis’ €;.
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spaces II. Basis

rj+ Ti

CTj

any vector I in /-dimensional vector space
L can be written as:

l
r = E cjej
J=1

22



Linear vector spaces III. Basis. Examples

3-dimensional space of
. . S — Sj ej
particle displacement (or e S
magnetic moment) J=x,Y,% Z
Cy
0 ex

3N-dimensional space of all

possible displacements (or ( Sl \ 6-dimensional function space
magnetic moments) Syl
Function y=s(s11, S12,..) s Sz21 e1 = 12
defined on N discreet points S49 2
€or —
N 7y 2
S3Y e Nl | @=c
V=), ) 5in€n Y= Zc]e] _
n=1j=x,y,z j=1 €4 = Yz
€s = ZX
SyN
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Group representations (reps) I

multiplication table

If we can find a set of square matrices (in general ] g, gs wann B
linear operators) T(ga) in a vector space L, which

correspond to the elements g, of group G and have the g4 g‘f 8182 ... 818,
same multiplication table, i.e. T(ga) T(gb)= T(ga gb) .

then this set of matrices is said to form a matrix §2 | 8281 &, oo 828y

‘representation’ of the group G 1n space L.

3
\ c | g2 €. g

n matrices /x/. n 1s order of G
[t thy fy . th) (B 8 By o 8)
t3, tag a3 ... 13 2 2, 2 >
21 22 23 21 t21 t22 t23 t2l
rgy=|( " B BACHES I | Te) = -
1,1 1 S e :
\tll iy tig - Ty ) \tle t122 tlzs tl2l

Dimension of representation 1s equal to the
dimension of the vector space

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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Reps II. Point groups. Real 3D space

3-dimensional vector space of S = E S;€;

particle spin j=x,y.2

Rotation matrices for point groups can be used to construct 3-
dimensional representations

cospy —siny 0
0, | singp cosp O
0 0 1

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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Reps II. Point groups. Real 3D space
Example Point group 32

6 symmetry elements (rotations): 4
RO=E, R1=2n/3, Ro=4n/3 around z, R3, R4, Rs, = m around resp. axes in xy-plane

cosp —siny 0
0, | sinp cosp 0
0 0 1

1. 3-dimensional representation

- — -+ J3 0 -1 0
TRY)=| /2 -4 0])]TRI=| -/3 -4 0 | TR)= 0 1
0 0 1 0 0 1 0 0 —1 ... etc

2. By taking the one dimensional space of vector €, alone we may generate
very simple one-dimensional representation

TAR,) =1, TP(R,) = 1, T?(Ry) = 1, TP(Ry) = ~1,
TR, = —1, TP(E) = 1

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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representation with dim=6 for point group 32.
Induced transformation of functions (skipped)

6-dimensional function space
Let’s construct the rep-matrix for

P = T element R;=2x/3 rotation around z
Py =17 T(Ga)b(r) = v'(r) = ¥(G, ')
¢=§6:C'¢' Wy = 27 T = xcos(—2mw/3) + ysin(—27/3) = —(%)x_(z)lﬂy
oY =y e — 2 — (M 1 (32 1 (32
¢5=Z£IZ (Rl)wl_x _(4)33 +(4) :Cy+(4)y
— 1 3 3
ro s T(Ri)gs = 3% = (1) + ()20 + ()0
L3 0 0 0 3
3
: @ 0 0 0 =3
— 0 0 1 0 0 0
bR 0 0 0o -1 /3 0
0 0 0 -1 -3z 0
Y- S R S

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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Reps III. Sites space.
Example Point group 32

6 symmetry elements (rotations):
RO=E, R;=2n/3, Ro=4n/3 around z, R3, R4, Rs, = m around resp. axes in xy-plar

3-dimensional vector space of
particle sites.
Note, not the xyz, but labeled

sites.

clement R permutes

the sites
b=a (0 1 0] [ a b
c=b 0 0 1 b | =1 ¢ d £
a=C 1 0 0|\ ¢ a F‘é")
permutation (n=3) representation of group 32
] I o N I - _ ‘origin
1 0 0 0O 1 O 0 0 1 0O 1 O 0 0 1 1 0 0 5
0O 1 O 0 0 1 1 0 0 1 0 0 0O 1 0 0 0 1 qQ ,cf-——===C
‘oo 1|l1o0o0]|l0o10|l0oO0OT1][100][010] b
V. Pomjakushin, Advanced magnetic structures ETHZ ‘10 28

Thursday, 25 March 2010



Product of two representations of group

—'111.1'1’1.1 U1t =+ Up2U11 UL2U12
- U121 UL 1U22 U1 2Uz21 U 2U22

§ - e

U1 1 Vo ou 1.2 V

Direct (tensor) matrix product UgV = |tV w2V _
: . Ug,1V1,1 U2,1012

E . Ug U1 U21V22

.
- —d

dimension m

n
(axf) __ ) B) gives a new rep with dimension mxn
T‘l' kl (G“) o T‘k (Ga) Tﬂ (G“)' and new vector space!

permutation (n=3) representation of group 32

1 oof][o1o0][]oo1T][]Oo 1T O0][O0OO1 1 00
0 1 0 0 0 1 1 0 O 1 0 O 0 1 0 0 0 1
00 1]|100][01TO0][0O0OT1T|[1TO0O0O]|]|[O0OT1 0]
® : : :
Rotation matrices for point group 32
cosp —siny 0
0, | sinp cosp 0
0 0 1
=9 by 9 matrices: 9 dimensional representation
V. Pomjakushin, Advanced magnetic structures ETHZ ‘10 29

Thursday, 25 March 2010



Reducibility

A study of possible representations of even a simple group like D3 seems to be a scaring task.

BUT!

For a finite group all representations can be built up from a
finite number of ‘distinct® 1rreducible representations

(000100000 0y o\ [sa)
00001 0000 N& 0]]sn
000007100 oo ||sa
1 000000 &0 0 0 |]sa
0b0000° <2000 0 |]se
00 b 0O0C 5,000 0 []s=
00000 .05 00100 [fse
0000 & 0000 T 0 []s
000 L&7000000 T |[fss
00 "e20 010000 0 |[se
00 Q5 00 0b 000 0 ||sy
L0 «<©T 00000500 0)/\su
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Reduction of any representation of group to
block diagonal shape

Representation (dimension=n) of a group

G 1n linear space L 1s reducible to a block- One can divide space L into the sum of
diagonal shape that 1s a direct sum of subspaces Li each of which 1s invariant
irreducible square matrices ti, 12, ... For and irreducible. S+ is a vector from L;
each element G, the representation has the and 1s transformed by matrices ti(G,).

shape: /
@ O O O (,
S7'2

ol O O| |°

TIETDT1T3D ... = %
000 ™ k
Ti 1s irreducible if: It 1s impossible to find —/{ — L
a new basis such that non-diagonal ! k { % e
elements of any 7i in the new basis are zero / _XT'
for all elements G, l Lk

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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Example: Irreducible representations (irreps)
of point group 32 (Ds3)

] 31 32 2 2y 2
~ e o e _ B R R R PR
. Group E R, R, R, R, R
. element |
G,
Representation
- . S e S——— SR SR R
T 1 1 1 1 1 1
T 1 1 l -1 -1 -1

S | ,
) G ()
01 vi -3 -3 -3 01 - Vi

j =
;—
7
B
|
<\\
N
\_/
7 e X
Ex
| S -
| <
— S
\_/
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Character = trace of rep matrix

Conjugated class = elements with the same character — =

\‘\) E 13210

L Y 32

o I B

Group
element
G,

Representation \

T(l)
T(Z)

T3

Characters of representations

X(Ga) = Z T:i(Ga)

Character Table

i=1 D3(32) | # |13 |2
Mult. |- [1]213]
Ay (T 1] 1

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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Reduction formulae. Projection.

rep =_, Irreps:
@

Ty=> mTh o lrr | o] o
D

0 O |I,7 | O
0 0 0
=S wox™(9)

n(G) order of G

basis functions: projection operator P technique

%:P@_ ZT*V

gCG

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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6
Example: P = Z Cj wj
6-dimensional function space j=1
in point group D3 (32) defines 5
6D-representation 7’ =2
Yo = y
decomposed s = 2
to
Y4 =yz
T=2T'® 2T>
Vs = zw
Ve = XY
Character Table
D3(32)| # |13 |2 functions
Mult. | - |12 3
Ay [T 101 (1 x2+y2 72
A2 2111 | -1 Z,Jz
E | T2|2]-1] 0 | (xy)(xz.yz).(x*y2.xy).(Jxy)

34



Symmetry in QM. Theorem.

H(r), r = (r1, 2, 13, ... 1a) , vector space with n degree of freedoms (dimension n)
w(r) arbitrary wave function

G - group of coordinate transformation, T(Ga.) - induced transformations in y-space
T(Ga)(r) = ' (r) = (G 'r)

T(GH)HT YG,) = H if H=H": G is called symmetry group of the Hamiltonian
potential energy V(r) = V(Gar)

eigenvalues/functions

Hy,=Ew, =E w!, w?, .. wh

E,, w»" can be classified by irreps ;" '

dimension of #;¥ = degeneracy /, .
/10010
. o o|'fojo
01010

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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Illustration. Single molecular “classical” magnet
or molecular vibrations

/ /
H = Z Ao s(R,R)S5.(R)S(RY) (o, 8 = x,y,2) 3N-dimensional space of spins.
R7Rl7a7/8

Function y=s(s11, S12,...) is
defined on N discreet points

3N
f’ def of potential energy operator
Aej = ZAjiei P 8y Opb

1=1

3N .
i runs on both a and R W) = Z s;e; @

~ 1=1

H = (w - Aw) = Zsisj(ei . Aej) = ZSiSinj

i,7 1,]

The molecule has symmetry group G => A must be invariant under
symmetry elements of G

Representation of group G in v o - |
3N-dimensional space of spins e; =T(Ga)e; = Z Tij(Ga)e;
J

|

. . E\, v can be classified by irreps
rep =_  irreps: ]
@ t;¥ Normal modes y, ‘¥ can be
Z found without diagonalization of
= !

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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Landau theory of phase transitions says that only one
irrep (+c.c.) is becoming critical and is needed to
describe the ordered structure

Great simplification!

Zeroth cell contains 14 spins
=> 14%*3=42 parameters.

l one 1rrep

Only 3 independent spins are
needed!

PHYSICAL REVIEW B 72, 134413 (2005)
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Basic crystallography
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32 crystallographic point groups

A crystallographic point group 1s a point group that maps a

point lattice onto itself. Consequently, rotations and
rotoinversions are restricted to the well known

crystallographic cases 1,2,3,4,6and 1, 2=m,3,4,6

Crystal system
Monoclinic (top)
General symbol |Triclinic |Orthorhombic (bottom) Tetragonal Trigonal Hexagonal Cubic
n 1 G |2 &) 4 Cy |3 G |6 Ce |23 T
n 1 G |[m=2 C |4 i |3 Cyv |[6=3/m Ca |- -
nim 2/m Cy |4/m Co |- —~  |6/m Cer | 2/m3 T,
n22 222 D, (422 Dy |32 D; |622 Ds |432 0
nmm mm?2 Ca 4mm Cy |3m Gy | 6mm Ca |- -
n2m - - |42m Dy |32/m Dse | 62m Dsj | 43m I
nfm2/m?2/m 2/m2/m2/m Dy, |4/m2/m2/m Dy |- - |6/m2/m2/m  Der |4/m32/m O
Hermann—Mauguin (left) and Schoenflies symbols (right).
V. Pomjakushin, Advanced magnetic structures ETHZ ‘10 39
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3D Space* groups

Groups of transformations/motions of three dimensional
homogeneous discreet space into itself

Two kinds of
transformations/motions = 1. rotations (32 point groups)

2. translations t = n1t; + naoty + ngts

* E.S. Fedorov (1890) A.Schoenflies (1890)

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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14 Bravias™ groups.

A full group of motions (of both
kinds) that bring the lattice into self-coincidence, i.e., which contains both point

symmetry operations and translations, is called a Bravais group, and an infinite
lattice derived from one point by a Bravais group, a Bravais lattice.

/ azb+#c, P£m/2 a=b*c, B£n/2, y#£n/2

group
10tation)

International
symbol

(a) triclinic; (b) monox
orthorhombic; (d) tetra
trigonal; (f) hexagonal;
(see Table 2.10)

P1

P2/m
B(C)2/m
Pmmm
C(B,A)mmm
Immm
Fmmm
P4/ mmm
14/ mmm
R3m
P6/mmm
Pm3m
Im3m
Fm3m

¢ .
V. Pomjakushin, Advanced magnetic structures ETHZ ‘10 A. Bravias (1 848)

Thursday, 25 March 2010

41



230 space groups

Product of 32 point crystallographic groups and 14 Bravias groups

New symmetry elements

Screw axes or axes of screw rotations =
rotation + translation. e.g. 21, 31,32, ...

a, = 2n/N, N = 2, 3, 4, 6,

\\
\\
—~

Thursday, 25 March 2010

g=1,2,3,4,6.

—~

-
//

a

Glide-reflection planes =

a, b, n

mirror reflection + translation by #/2,

"2

b



International Tables

6] Schoentlies symbol
P nmdad o mmm Orthorhombic

No. 62 P 21 / In 21 / m?2 I / d Patterson symmetry Pmmm

Hermann—Mauguin

OriginatTon 12,1

l/A\
-
-
IA
)
Fa
[a—

Asymmetric unit D<x<3i 0<y

Symmetry operations

(2) 2(0,0,3) £,0,2z (3) 2(0,1,0) 0,y,0 4) 2(3,0,0) x, 4,1
0.0.0 (6) a x.v.1 (7) m x,%.2 8) n(0,3.3) vz | zeroth block of SG

1
5

(1)
()

Generators selected (1): 7(1.0,0): £(0,1,0): t(0.0,1): (2): (3): (5)

Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry ~ .
general pOSlthIl:
8 d 1 (1) x,v,z (2) X+1,V.2+3 (3) £, y+3.2 (4)x+3,F+3.2+3 . . .
(5) %,v.2 (6) x+ 3,024+ 1 (7) x,¥+ 3.2 (8) ¥+ 3, v+ 3,243 rotation matrix + tranSIatlon
LAl T}
00/ : I=2n
Special: as above, plus
4 ¢ .m. X, 7.2 ¥ +7.7.2+7 t.1.7 Y+ 31.1.24+3 no extra conditions
4 b 1 0,0.3 £,0,0 0,1,3 55,0 hkl : h+1,k=2n
4 a 1 0,0,0 2,0.7 0,:7,0 1.7, 7 hkl : h+1.k=2n

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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irreps of SG

O. V. Kovalev, “Representations of the Crystallographic Space
Groups: irreducible representations, induced representations, and
corepresentations”’ (Gordon and Breach Science Publishers, 1993),

2nd ed.

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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Bloch waves, irreps of Bravias Lattice group

Bloch wave y(r) 1s a solution of Hamiltonian having periodic symmetry of Bravias Lattice
BL (tv), (e.g. y(r) can describe magnetic structure)

Y(r) = u(r)eikr, u(r +tr) = u(r)

Representation theory

Space group G contains translation (f) BL group 7. t = n1t; 4+ nats 4+ nsts
What are 1rreps and basis functions (b.f) of 7'?

Two properties T'(t) = T(t1)™ T (t2)"T(t3)"* = T'(n1t1 + nata + nsts)
of T-elements: T(tj)Na‘H =T(t;),7=1,2,3 U,

Born—von Karman

1D matrixes

N=N1 N> N3 irreps of T enumerated by exp [_27”. (plm n D2n2 n p3n3>] 0<p: <Ni—1
ordinary numbers p; Ny No N o =F) =21

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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Bloch waves = basis functions

N1 N> Nsirreps of T enumerated by ordinary . [_ : (plm P2tz P3n3 )] . o
p | —2mi + + ,0<p; <N; -1
numbers p; Ny Ny N3 ! ’

Reciprocal lattice (b1, b2, b3) allows us conveniently sort out/enumerate all irreps of 7€G
bjtk =27 (Sj k

b = p1b1 + p2bs + p3bs
T(t) — exp(—ikt)

P1 p2 p3
v On v k=|(-—bi+ —=bys+ —D
wave vector Or propagation vector (Nl 1 N, 2 N 3)

t = n1t1 + n2t2 + ngtg
Matrices of irrep number k: D¥(t) = exp(—ikt)

T(t)*(r) = exp(—ikt)y*(r)
/b’f 7

operator

Most general basis function of the kth rrep |k (r)

: : : ekr
of translation group 7€G is Bloch function

= uk(r)
uk(r +t) = uy(r)

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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Symmetry group of propagation vector,
star tk}

16
Pnma Dg,-, mmm Orthorhombic

No. 62 P2 I _;“‘” 21 ‘;"‘l” 2 ,"‘(l Patterson symmetry Pmtmm

Symmetry operations

(2) 2(0,0,%) 1.0,z (3) 2(0,1,0) 0,y,0 (4) 2(1,0,0) x,L,

» 3 X
0,0,0 6) a x,y,1 () m x,t.z (8) n(0,4,4) & +T(nity + nate + nats)

(1)
(3)

R S
»
L N P

1
1

How does b.f. 9¥(r) = ui(r)e’™ ™ transform under any element of SG 7(g)?

I. Recap- under pure translation To find y’ consider pure translation again
T (t)y*(r) = exp(—ikt)y*(r) T(t)wl(r) = ...some math... = exp(—iﬁkt)wl(r)
{PlTh +t, 39" (r) = " (r)
hk=or# k+b
2. under .general clement g Manyfold of all non-equivalent® 4k = propagation
rotation l vector star {k}
: : {k}
gUR(r) = (|7 + to 5 (r) = ¥ (r) Little group GkeG s b3 k=[0,u,v]
leave k invariant
T accompanying translation >< > b2
V. Pomjakushin, Advanced magnetic structures ETHZ ‘10 *non-equivalent hk # k+b
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Symmetry group of propagation vector,
examples of star ¢k}

16

PII mad My mmm Orthorhombic
No. 62 P2/n2/m2/a Patterson symmetry Patmm
Symmetry operations
(1) 1 (2) 2(0,0,%) 1,0,z (3) 2(0,1,0) 0,y,0 (4) 2(,0,0) x,L1
(5) 1 0,0,0 (6) a x.,v,% (7) m x.,%.z (8) n(0,3,3) :.wz +T(n1t1 + ngty + n3t3)
Manyfold of all non-equivalent zZk = propagation
vector star {k}
k} Kk}
>\ > b2 abel K O > b2 4 > bi
label I’ label X
Little group GkeG (H 1
leave k invariant (8) n(0,3,3) 3.,z Gk=G Gi=G
Gk= ‘Plnl’

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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The k-vector types and Brillouin zones of
the space groups

propagation vector = a point on/inside Brillouine zone

Brillouine zone of Pmmm (I'o) Kovalev

A.P. Cracknell, B.L. Davis, S.C. Miller and W.F. Love (1979)
(abbreviated as CDML)

Kovalev O.V (1986) (1993) Representations of the
Crystallographic Space Groups (London: Gordon and Breach)

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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k-vector label Wyckoff position
CDML ITA

GM|[0,0,0 1 la mmm
X 11/2,0,0 1T b mmm
Z 10,0,1/2 1 ¢ /mmm
U 12012 1 d |mmm
Y 0,120 1 e |mmm
S (12,120 1 f |mmm
T 01212 1 g |mmm
R 11/2,1/2,1/21 h mmm
SM |u,0,0 2 i [2mm
A |u0,1/2 2 ] |2mm
C u1/2,0 2 k 2mm
E w1212 2 | |2mm
DT 0,u,0 2 m |m2m
B 10,u,1/2 2 n m2m
D (1/2,u,0 2 0 |m2m
P (1/2u1/2 2 p |m2m
LD |0,0,u 2 q mm2
H 0,12,u 2 r mm2
G (1/2,0,u 2 s mm2
Q 1212u 2 t |mm2
K O,uyv 4 u |m..

I I I I

49



[.f face centered cubic.
Brillouine zone, $k}

Classification symbol, number, etc.

IPHS w . 8 1 0 )
L 9 2 % Y2
X 10 0 0 ]

CMDL Kovalev Bi,B>,B3

B:, B>, Bsedges of Bravias
cell of reciprocal lattice

b1, b2, bsreciprocal lattice periods

bl | [ —B1+B2+B3 |
b2 | = Bl — B2 + B3
| b3 | | B1+B2-B3 |

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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k-vector star {k}

w -

Ll R

=Y (b, +b,)+%(b, +b,), k, =—k,.

=Vi(b, +b,)+% (b, +b,), k, = —k,

=Y(b, +b,)+ %, +b,), k, =k,

=%, +b, +b,), k, =%b,, k, =Yb,, k, =¥%b,
=1%(b, +b,), k, =%(b, +b,), k, =% (b, +b,)

R\, Fm -3 m-O},5 (225)

50



Brillouine zone
of Pmmm (I'o)

V. Pomjakushin, Advanced

Thursday, 25 March 2010

Kovalev book (slide skipped)

Table C CHARACTERISTIC POINTS

Correspondence between letter symbols of [13] and number symbols of this book.

Lattice C (Fig. 7): A=k;,B=/5Xxk2,C=k3,J=/5xks, T =ky,
S=f5}{k5,Z=/9Kk3=f15Kk14,T=k?,ﬁ=f5xl-[g,.!"i=kg,x=/5xk1u,
M= kg, I"=kin, B=TKis,

Lattice Cf (Fig.8): A=k;, B=/5xk; +b;,C=ks, J=/5%xks, Q= /9 x ks,
E=k4,5=;'5xk4Hbz,ﬂ=k5,ﬁ=/5xkﬁ,Vz/Q}ik?-{-ba:k;—,
IV:IQKkg,L:kg,xY=/5Xk1{],r=k11.

Lattice Cv (Fig.9): A=k;,C=ky=/27Tx ks —b;,J = /5% ka= /30 x k3 — by,
B=k3= /2TXky+b2,E=ky,G=ks, D =kg, A=k7= /16 X k13 — b3,

&=/5Xk3,N=kg,P=kln,1—'=k11,H=g’5Xk12.F=,"5xk13= /23 X k7 + ba.

Lattice @ (Fig.10): D=k, E=k;,B=k3, F=ky,C=ks, Y =kg, T = k7,
A=kg, U=ko, E=kio, S=ki1, W=kj2, A=kj3, V=kig, X = ks, R=kje,
I'=ky7, M = kig, Z = kig, A = kao.

Lattice Qv (Fig. 11): B=k;,C =ks, A=ka= /27Tx ky — by, E =k,
=;’27)¢k3+b2,Q=k5,Eﬂk5,&:kT,Y=k3,;V:kg,ﬁ=k1ﬁ,
V=kio—bi1+bs, N=kyn1, P=kjo= /16 X kig, X = k13, " = kiq,
ﬁﬁr=k15—b1 +b3

Lattice Qu (Fig. 12): B=k;,C =k, D =ks + by, A = k3= /27 X kg — by,
E=ky= [2TX ks +b2,Q=ks,E=ks, F=kg+b; —ba, A=ks, Y = ks,
U= /14 x kg + b,, H”:kg,ﬁ:k1g,N=k11,P=klg=/16Xk1s,X=k13,
I'=kis, M =kjs.

Lattice O (Fig.13): K =k;, L=ko, M =ks, N=ky, V = ks, W = k¢, & = ky,
A =kg, A =ko, C =kjo, E = ki1, A=ki12, D =kj3, P = kg, B = kis, G = kjg,
Q=ki7, H=kis, ' =kio, X = ko, Y = ko1, Z = koa, T = ko3, U = kog4,

S =kas, R = ksg.

Lattice Oc (Fig. 14): K=k, M =ky, N=k; — by, P=k3, Q = ks, D = ks,
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Kovalev book (slide skipped)

62, Di°I = Pnma

MSSPC. 4,a,1,(000). 4,5,1,(001). 4,c,m,(z3z).
ELG. a-25. b-(002/25). ¢-(010/27).

LIR, SICR. k1-9(1,2/1+2). k2-33(1+2/2x1,2x2).

k3-10(1,2/1+42).

k4-34(1+2/2x1,2x2). k5-2(1,2/1+2). k6-35(1+2/2x1,2x2). k7-30(1,2,
3,4/1B2). k8-31(1,2,3,4/1B2). k9-11(1,2,3,4/1B2). k10-58(1+2,3+4/
2x1B4). k11-441(142,3+4/2x1B1). k12-96(1+3,2+4/2x1B4). k13-37
(1B4/1+3,2+4). k14-40(1+2,3+4/2x1B1). k15-43(1B4/1+4,243).
k16-83(1+4,2+3/2x1B3). k17-84(2x1B2/2x1,2x2,2x3,2x4). k18-44

(1B4/144,2+3). k19-32(1,2,3,4,5,6,7,8/182,2B2).
1+42). k21-61(1B3,2B3/1+B112B1). k22-9
k23-442(1B1,2B1/1+B112B1). k24

k-vector

Matrix 1s by table T85 for
simple group or by P85 fo
double group, p.387 crogs-ref

LIR 11, T

SICR '
double G LIR 11, (coirreps)

matrixes constructed
with B-matrixes as

explained on pp.
26-28

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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B-matrixes ir

In Chapter 2, the information on SICRs is written in lists entitled
“LIR,SICR” in the parentheses which follow the LIR set number. If there
are no parentheses, this means that variation I occurs. In parentheses, be-
fore a slanted line is given information on the SICRs of simple groups and
atter the slanted line information on SICRs of double groups.

The numbers indicated in the parentheses are SIR numbers according
to the corresponding table of LIRs. If the SIR generates a type a ICR,
then we will show the SIR number, and, immediately after it, the concrete
form (B1, By, etc.) of the auxiliary matrix 8. If this matrix is not shown,
this means that it is equal to one. For example, “1, 2, 3B4” means that the
one-dimensional SIRs ! and 62 generate type a SICRs with 8 = 1, and the
multi-dimensional SIR 62 generates a type a SICR with 8 = By (denoted
by B4).

If an SIR generates a type b SICR, then before the number of this
SIR we write the number 2 with a multiplication sign. Then the auxiliary
matrix 3 is shown, if it is different from unity. For example, “2x4, 2x5B2”
means that SIR 6% generates a type b SICR with 8 = 1, and SIR §° a type
b SICR with g = B,.

If SIRs § = §' and § = 6§/ together generate SICR d(i+j) of type ¢
according to the rule of Eq. (26a) and with 8 = 8,,, then “i+ Bm!jBm” is
written. For example, the expression “14+B312B3” means that the matrices
for unitary elements have the form,

6'(9) 0
0 Blé?Bs /-

Thus the equations in Chapter 2 give: (1) the connection between
ICR matrices and SIR matrices, i.e., SICR matrices, and (2) the auxiliary
matrices [ needed for the construction of basis vectors. The 8 matrices are
defined in Appendix 3.

In the beginning of the data relating to each Bravais lattice is shown
how, in each case, the fixed antiunitary operator ag is chosen. It is im-
portant to keep in mind that the meaning of matrix 8 is defined by this
operator. In replacing element ay with a different one, and also in changing
the form of a SIR or LIR matrix, the # matrix, in general, changes.

Real SIRs are possible only under the condition that k = —k + b.
They generate type a SICRs d of group G(k) + KG(k), where K is the
complex conjugate operator. SICR d reduces to the real form d, with the
help of unitary matrix S:



W Space group irreps Y

Representation of SG for star
{k} are characterized by 1rreps
of little group Gk of any arm of
propagation vector k.

b1
k=[1/2,0,0]
label X
Gk=G
IT

Pnma k=[1/2,0,0], k20, X

g Kovalev

|
Consider one irrep d* (/, X ' .
I, matrixes) with dim=/, with Not yet defined. A linear
number v combination of vectors of

some linear vector space
[ts basis: 1y fuM LVS
(UX
k2
A

l;” =|up, (r eikr()\ =1,...,0,)

that are transformed by
symmetry elements g by
matrixes d<"(g)

\pkie)

Example (LIR)

2x 2y 2, I Ny my a:
/2 /3 /4 /25 /26 [27 /28

irreps: two 2D 11, 12

d<(g)

A EOCHCNED B (Y 6

T2=71Xx1 1 1 -1 -1 -1 -1

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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Space group irreps, examples
dimensions up to 6 (cf. 3 for point groups)

K Example 1 Pnma k=[1/2,0,0], k20
bz{ } irreps: two 2D 11, T2
k=[1/2,0,0]
b g )2 /3 /4 /25 /26 /27 /28
—> > b1 — ,
= T GDEHINEY (DG G
label X 7(g) 0 —1 10/ \-10/ \10 -1 0 01 0 -1
g
T2=T1 X1 1 1 -1 -1 -1 -1
Ge= G Example 2 Pnma k=[0,0,0], k19
K irreps: eight 1D 11, 12, 13, T4, T5, Ts, T7, T8
#1 1 1 1 | 1 1 1
® > b 2 1 L ] e el =
label 7 A*(g) 73 1 -1 -1 1 1 -1 -1
T5 —1 1 -1 1 -1 1 -1
77 -1 -1 1 1 -1 -1 1
Gi=G A=A P2 T0=FA R T2 T8 =T ¥ 72

Example 3
Higher dimensions: Ia3d (#230) k=[1,0,0]: 1(6D) @ 3(2D)
k=[1/2,1/2,1/2]: 1(4D) @ 2(2D)

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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Constructing of vector space of magnetic
structure and reducible magnetic representation

Case study of magnetic structure of multiferroic TbMnOs3

Space Group G: Pnma, n0.62 o
propagation vector k=[,0,0] : . |
- o
T .
~ P
¢
. il y
: -
\ : ¢
: r 4
has 4 1D irreducible representations : 7
: e |
& v
Y .
« -

symmetryi linear space

New Journal of Physics 11, 043019 (2009) , i
ureps : repsof Gin LS

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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k-vector group

Group G. Pnma, n0.62: 8 symmetry operators

(2) 2(0.0.5) 3.0.z (3) 2(0,%,0) 0,30 @) 2(+,0,0) x,3.1
5) 1 0,0,0 <(6) a x,y,3 (7Y m x,7.2> ®) n(0,5, 1) T yz

Little group Gy, k=[0.45,0,0]=[q,0,0]

Little group of propagation vector Gk contains only the elements of G that do not change k
P2 ma(Pmc2,, 20)

(l)r;}’:: (4) ,}C—i—%,f+%f—}—% (7) '¥:?+%:Z (6) 'x—i_%}“;’—}_%
. 100\ /0 100 % 100\ /0 100\ /3
'”Otatl'of‘ EL010) (0] 2, (010 | (2] my (010} {5 m.|010] |0
transiation o1/ \0 001/ \1 001/ \0 001/ \4

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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vector space and representation for an atom in
position (0,0,1/2) for k-vector group

”_ 1 |

Mn-position 0,0, 5 5,3,0 0,3,3 +,0,0
position number a b C d
k-group element 8! 82 &3 &4

- 100\ /0 100 % 100\ /0 100
rotatllo.n Elowl o] 2, (o010 2| 010 | [ 3] my (010
translation 001 0 001 I 001 0 001

Permutation representation

N~ O

|

in addition, element g, sometimes

clement o) chanses moves the atom outside of the zerocell.
82 CN g. We have to return the atom back with -ap:
atomic position: -a,
2= b(0100) () (1) a=b (000)
element g, is repregenteds, | (2000 bl _|oa b—a (-100)
by 4x4 matrix _, | \8) \OCZ) \CCZ) C z d (000)
d=c d = c (-100)
h = e?milkay) V¥ (r) = uf (r)e? ™"

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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Classifying possible magnetic structures
Magnetic representation

group element &l 82 g3 g4
- 100\ /0 100 % 100\ /0 100
rotation™ p (o010 (o] 2, o010 5 | my (010 L1 m, | 010
translation 001 0 001 ! 001 A 001
Mn-position 0,0, 3 5.3,0 0,3,3 +,0,0
position number a b C d
Permutation representation
4x4 matrices (P) [ 1000 0100 (0010 (0001
0100 6000 0001 0060
0010 Axial v¢c@BsHin) reprdsdat) 0100
\ 0001 00604 . \0100 \ 5000 /

rotational part of element g»: R(g2) changes
atomic spin direction:

| | d 100\ /S, S,
element g is represente T _

. R(g)xdet(R) | 010 |[ S, | = | -5,

by 3x3 matrix 001/ \s. s,

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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Classifying possible magnetic structures
Magnetic representation

group element 8! 82 &3 &4
- 100\ /0 100 % 100\ /0 100\ (3
"Otatl"’,“ BL010) (0] 2, (010 | (5] my (010 ) {5 my|010]) (0
transiation 1001/ \o 001) \1 001/ \0 001) \1
Mn-position 0,0, 3 5.3,0 0,3,3 +,0,0
position number a b C d

Permutation representation

0100 0010
b0O0O 0001
0001 1000
00560 0100

Axial vector (spin) representation

o
4x4 matrices (P) (33?3)

0001

3x3 matrices (A) R(g2)*det

(R) 100 100 100 100
010 010 010 010
001 001 001 001

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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Classifying possible magnetic structures

Magnetic representation

group element 8! &2 &3
Mn-position 0,0, 5 2,5,0 0,3,3
position number a b C
spin

Permutation representation

1000 0100 0010

: 0100 b000 0001

4x4 matrices (P) 0010 0001 1000
0001 0060 0100

Axial vector (spin) representation

100 100
010 010
001 001

Magnetic representation

3x3 matrices (A) R(gz)*det (/"
(R)

001

direct (tensor) product (0100\ 100
P®A e.g. for group 6000 | & [ 010
| 2x 12 matrices element g» 0001 001

\ 0060 /

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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|
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TmMnO03: Classifying possible magnetic structures
basis vectors/functions Sti, Stz, St3, ...

Pnma, k=[0.45,0,0] Mn in (4a)-position recap: irrep: 1D matrixes d:(g) that define

12D magnetic representation 1s reduced to how basis functions b.f. should be changed/
four one-dimensional irreps transformed under action of abstract
d — Z n,d” =371 & 379 & o 374 group clements g;. The permutations and
= g spin rotations, or whatever meaning of gi
1 is, are not yet here!
n, = ——— > x(9)x™(9)
n(G)
gCG

Tm 1n (4c)-position (x,1/4,z) Different
171 219 D 273 P 114 decomposition!

Projection method: to find basis functions b.f.
E 2, m, m, transforming according to a specific irrep T

g1 g2 g3 ga

71 1 a 1 a
T 1 a —1 —a
@ 1 —a 1 —a
™ 1 —a -1 «a
a — ewikx

V. Pomjakushin, Advanced magnetic structures ETHZ ‘10
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Axial basis construction. Projection method.

Basis functions.
3omN-dimention

Pi =27 0% exp (ikty),
I

column
L]
3om-dimention column in oh = ﬁ@ S ( 5 f:) ;
zeroth-cell. =y YA
7 :
KV S (6 § :;arlt\lflclllilrrclgr(i:i;)n column
- =KV - . =
S (?1, ;) = ) dru () exp [— ika, (g, )] 6:, 5173 O, Ry tp] N
hEGy

B_ VO ip 'K
R e ¢ § oiP exp (ixt,),

[...] the values, that must be fixed, define a start for the basis T
function construction. Choosing different start values for “[...]”

one obtains either different linear independent b.f. or zero 3om-dimension column in zeroth-cell.

All components = 0, except the one
for atom j and direction f

R4 rotation matrix of rotational part of group element {4 |z}
d;,” matrix of irrep number v

a,(g,j) returning translation after action of g on atom ]
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Verifying invariance of b.f. under irrep T3

Pnma, k=[0.45,0,0] Mn in (4a)-position Projection method: to find basis functions b.f. transforming
12D magnetic representation is reduced to according to a specific irrep t
four one-dimensional irreps |

d dl/ 00*% E-’%-’O 0*%*% %.00
- Z nyd" =37 O 37 S 374 Mn-position 1 2 3 4
>

/
3 — —|_1elac —a” €22 — 19333 + a*e4:c

recap: irrep: 1D matrixes d:(g) that define y »
how basis functions b.f. should be changed/ r3 = tleiy +a"eyy + lesy + a”eyy
transformed under action of abstract ’T’é = t+le;, +a"ey, — leg, —a"ey,
group clements g;. The permutations and

spin rotations, or whatever meaning of gi Example: ferromagnetic mode S”'; . Element g»

is, are not yet here!

E 2, my m, action of g> =(rotation 2. ; swap 1 < 2,3 < 4, phase 27rzkx for 2=1, 4=3)

—2mik,
g1 92 g3 94 a”’ =e
7 2. ol , .
n 1 a 1 «a ta — g57 S s = —ley, —a“ey, — les, —a’ey, : spinspace
T 1 a —1 —a :
2 i - . T — g5 PSY = —a*ey, — leg, — a*es, — ley, : citespace
( :) 1 phase g7 __ * 2 * * 2 .
= 1 -a -1 a Ts — g5 s =—0"€), —a ey —aes —a ey : to0th
" irrep T3 iy Invariant!
a=e"" d(g2) r3 = —a- Sz = +ley +a’eyy + legy + a’ey,
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Classifying possible magnetic structures
Great simplification!

Pnma, k=[0.45,0,0] Mn in (4a)-position
12D magnetic representation is reduced to

four one-dimensional irreps
3T1 P 379 @@@ 374

I 1
0‘0,% E‘E"O On%n% %,0;0

E 2, my m, Mn-position 1 2 3 4
g1 92 93 94 "o =+ley, —aex, — leg, +a*ey,
1 1 a 1 a « %
7_; 1 q 1 . ;./3 — —|—1€1y +a €2y —+ 183y +a €4y
@ Il —a 1 —a 73 = tlei. +a"ez. — leg, —a’ey,
7w 1 —a -1 a

Assuming that the phase transition goes according to one
q = e tha irreducible representation t3 the spins of all four atoms
are set only by 3 variables instead of 12!

AN

_I_ CQ _|_ 03 ///
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Refinement of the data for T3

1 .
S(I‘) = 5(01 ;_3 —+ CQ 7/_,3 -+ 03 ;./é)€27mkr -+ C.C.

to (p .
m
o o)
;7
S Y N, eta
@S N T

| ' | ' | ' |
2.0 - TmMnO,, 35K 7]
1 DMC, A=4.5A
1.5 - at T=35K
f’é Cl=2.11(1)ps, C2=0,
S :
S 104 C3=0.67(2) €'® s
= (p can be fixed to any value.
*_E, ‘. Experiment data are insensitive
% |
=
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Visualization of the magnetic structure

a cycloid structure propagating along x-direction

S(r) = Re[(C1573 + |Cs| exp(ip) S73) exp(2mikr)]

¢ -
— ‘0 4 6 90 ’0-\
W= el Y 4 P

V- a -
P P g -
~ > »
/2 P 4 >
o v C >
3 y e )
Z
o 4 %
- > . AN
a | Kk=[0.46,00] “__/

X
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Magnetic symmetry. 1651 3D-Shubnikov (Sh
or L) space groups

an additional element:

230 space groups (SQ) spin inversion operator R or color change.
l R-group (1,R)

Magnetic Groups = (subgroup of)
space group G ® R-group

|

230 (gray) paramagnetic groups Shy,
1,1’ Shy, = S=0, e.g. Pnmal’

/ ~

R(E)=X

R(© )=
R(MD=1|

additional elements:
‘anti-elements’ g’=(g'R), geG

N
<

my=2,l /

-

S —7” [V e I']”

N
—

S S

—

230 Single-color magnetic groups
no antieclements

=

1191 black/white magnetic groups that contain
additional ‘anti-elements’ g’=(g'R) except g=1
(identity). No primed 1’

=
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groups: Zamorzaev (1953, 1957); Belov, Neronova,
Smirnova (1955)
spin reversal: Landau and Lifschitz (1957) 67



Isomorphism between Sh-groups and 1D
irreps of SG. Niggli-Indenbom theorem

Consider /D real irrep of space

sHoup 1D real irrep and Sh group are 1somorphous
g1, 22, 23, ... 3 Niggli-Indenbom theorem S formally we can
I, -1, 1, .. 21,22, 23, ...

magnetic Sh space groups

same multiplication table

230 Single-color magnetic groups
< > no antielements

1191 black/white magnetic subgroups that contain
> additional ‘antielements’ g’=(g'R) except g=1
(identity). No primed 1’

identity representations
1,1,1,1, ..

non-identity 1D irreps <
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Examples of Sh groups

59 Pmmn 62 Pnma
Pm’mn Pn’ma .
— Pyt Ferromagnetic
, fod s groups: point
*Pm’m n ana’

symmetry allows

*Pmm’n’ / . .
*Pn'm’a FM orientation of
Pm'm’n’ p :
*Pnm’a spins

P, .mmn
chmfmn *Pn'ma’
o
P,.m’m’n Pn'm’a’
X ,
!
;ecatp: o i (e R), geC t k#[0,0,0] structures for Pnma
or -anti-elements g =g ~), § correspond to either complex
g can be a pure translation 7, so ¢’ irreps or/and muti-
gives centering/doubling dimensional irreps and
>—Yy cannot be derived from

Pnma

X

| | . ch = Pa,b,20
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Disadvantages of Sh-group description

Sh groups do not give a constructive way of
deducing all symmetry allowed magnetic modes.

Reason 1: Sh group 1s not necessarily made from the  Reason 2: 3D Sh not describe modulated structures.
parent G. Thus, it 1s not an ultimate practical tool for = No rotations on non-crystallographic angle - no helix.
obtaining all allowed spin configurations Linear orthogonal transformations preserve the spin

size - no SDW
Example 1: there are no cubic ferromagnetic Sh-groups.

“problems” with cubic ferromagnets Fe, EuO, EuS, ... L
— . AWV 4
Example 2: ) .. Y
CrClz space group: Pnnm. YV ) X
Sh groups.: Pnnm Pn’nm, Pnnm’, Pn’'n’'m, Pnn'm’, Pn'n’m’ = AV
No one describes CrCl> magnetic structure ‘ LA v
Cr-atoms in 2(a)-position
k=[0 1/2 1/2] b -
Z) ‘
/’:’“O‘ ‘‘‘‘‘ Q__ / (’ 7“
2 ‘ 7 /l
L e i Cr i 7
g ‘”1 [ o Gl ; v i
'« P ‘a/*—-ﬁg..mf__l,l A }/)i 7 One can still find less symmetric S/ group
X

Magnetic symbol
{Pnnm; 2(a) Sh7,=P4l;
Si=(uvw), So=(-u-v-w)}
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further complications

1. several irreps involved, e.g. exchange multiplet

2. multi-k structures

3. spin domains, k-domains, chiral domains for
single crystal data
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Literature on (magnetic) neutron scattering

Neutron scattering (general)

Albert Furrer, Joel Mesot , and Thierry Strassle, “Neutron scattering in
condensed matter physics”.World Scientific, 2008

S.W. Lovesey, “Theory of Neutron Scattering from Condensed Matter”,
Oxford Univ. Press, 1987.Volume 2 for magnetic scattering. Definitive
formal treatment

G.L. Squires, “Intro. to the Theory of Thermal Neutron Scattering”, C.U.P,
1978, Republished by Dover, 1996. Simpler version of Lovesey.
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