
5.0 Principle of Muon Spin Rotation/Relaxation/Resonance 
 
The expression µSR is the acronym for Muon Spin Rotation/Relaxation/Resonance and 
underlines the analogy with NMR (Nuclear Magnetic Resonance). There are, however, 
important differences (see key features of µSR, next page). For instance with µSR it is 
possible to perform measurements without applying a magnetic field (so called zero field 
μSR, ZF) a big advantage with respect to NMR because this allows to investigate magnetic 
systems without perturbation. NQR (Nuclear Quadrupole Resonance) is also a zero field 
technique, but for magnetic investigations less direct than zero field µSR.  
 
The method is based on the observation of the time evolution of the polarization P(t) of an 
ensemble of muons implanted in a sample.  This quantity contains the physical information 
about the interaction of the muon magnetic moment with its local environment.  P(t) is 
obtained from the intensity of decay positrons as a function of time after implantation. 
 
The muon acts as a local very sensitive magnetic probe. Value ( L μ locω =γ B ), direction, 
distribution and dynamics of internal (microscopic) magnetic fields can be measured. Such 
fields may be produced by electronic moments, nuclear moments or local currents as those in 
superconductors). With µSR it is also possible to determine magnetic, non magnetic, and 
superconducting fractions. Muonium acts as a Hydrogen isotope, e.g., in chemical reactions 
or as impurity in semiconductors and insulators and gives information about its electronic 
environment. 
 
In a µSR experiment one measures the positron rate with scintillators, which are placed 
around the sample.  
 
The positron is emitted preferentially in the spin direction of the muon at the moment of the 
decay. 
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A: Asymmetry parameter (the theoretical decay asymmetry averaged over the positron energy 
is 1/3).  
 
 
After detecting the positrons from several 106 stopped muons, one obtains histograms as in 
Fig. 5-1, which in the ideal case have following dependence (t=0 is the implantation time, Nbg 
is a time independent background): 
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The recorded events in the positron histograms reflect the time evolution of the polarization of 
the muon ensemble. 

                          111 



Key features of µSR 
 
 

Muons are purely magnetic probes (I = ½, no quadrupolar effects1) 
 
Local information, mainly interstitial probe  complementary to NMR 
 
Large magnetic moment: μμ = 3.18 µp = 8.89 µn    sensitive probe 
 
Particularly suitable for: 
Very weak effects, small moment magnetism ~ 10-3 µB /Atom 
Random magnetism (e.g. spin glasses) 
Short range order (where neutron scattering is not sensitive) 
 
Independent determination of magnetic moment and of magnetic volume fraction 
 
Determination of magnetic/non-magnetic/superconducting fractions 
  
Full polarization in zero field, independent of temperature  unique measurements without 

disturbance of the system (typical polarization in NMR z
B

I(I 1)I B
3k T

γ +
< >=

  is very small. 

Needs high magnetic fields and low temperatures) 
 
Single particle detection  extremely high sensitivity 
 
No restrictions in choice of materials to be studied 
 
Fluctuation time window:  10

-5
 < t <10

-11
 s  

 
Bound state: µ+e-  Muonium, used as H-Isotope for spectroscopy, impurity studies, radical 
chemistry, reaction kinetics 
 
 
Other features: 
 
Number of implanted muons << number of atoms  negligible sample damage 
No perturbation of the system (unlike spin probes in EPR) 
No special isotope is needed (as in NMR, Mössbauer) 
 
 

1 2 2
I IQ I,M I 3z r I,M I=< = − = >  since 2 2

2,03z r Y− ∝  (irreducible tensor operator), by Wigner-

Eckart theorem: 2 2 2 2
zQ I, I 3z r I, I C I, I 3I I I, I C I(2I 1)=< − >= < − >= ⋅ − , i.e. Q=0 for I=0 or I=1/2 

(see C. Slichter, Principles of Magnetic Resonance, Chapter 9). 
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Fig 5-1: Principle of a µSR-measurement in transverse field (TF) (Time differential µSR). 
 
 
a) 
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b) 
 

 
 
 
 
 
 
 
 
                          114 



c)  
 

 
 
 
 
 
Fig 5-2: a) Schematic of a µSR apparatus, top view. b) Detailed view of detectors and c) 
sample region of the General Purpose Spectrometer (GPS) at PSI. 
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One distinguishes between continuous muon beams (PSI and TRIUMF, Canada) and pulsed 
beams (ISIS/RAL, UK and J-PARC, Japan). 
At PSI the accelerator time structure (50 MHz  microstructure) and the pion lifetime (26 ns) 
leads to a practically continuous surface muon beam: 
 
 
 

 
 
Fig. 5-3: Build-up of the muon rate at PSI. 
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In a µSR experiment with continuous beam one has to take care that only one muon at a time 
is present in the sample before decaying, otherwise the time correlation between muon and its 
decay positron is lost (see Fig. 5-1): 

 
This is done electronically (rejection of second muon event by pileup and busy gate) and by 
limiting the incoming muon rate. 
 

 
 
Fig 5-4: Electronic diagram of a µSR experiment at a continuous muon beam facility such as 
PSI.  
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Fig. 5-5: Accepted rate as a function of incoming rate for a time window of 10 µs             
( exp(-2∆tRµ) is the probability that there is no second event in an interval ∆t if the rate is Rµ). 
 
 
At a pulsed machine all the muons are contained in a pulse (50-100 ns wide) with low 
repetition rate (25-50 Hz). All the decay positrons of a pulse are measured at once. This 
allows a higher rate. However, one has to take care either to have only one positron in a 
detector within the observation time, or if there are more than one to get the time stamp for 
each one. This requires a high segmentation of the positron spectrometer. 
A big disadvantage of a pulsed machine is that the time resolution is given by the pulse width 
(50-100 ns), whereas at a continuous beam line the time resolution is determined by the muon 
counter which is typically 1 ns or better. 
A pulsed beam has in principle a lower background than a continuous beam and allows a 
better exploitation of a pulsed environment. At PSI, the so-called muon on request 
electrostatic kicker device (MORE) allows only one muon at the time in the apparatus. This 
reduces the background, while keeping the excellent time resolution of the continuous beam. 
 
 

    
In the MORE mode the muon detector (M-counter) in the spectrometer (GPS or LTF) is used 
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to trigger the kicker. The kicker is switched to the spectrometer running in "MORE mode" 
(say, GPS) for a maximum of 5µs at a fixed repetition rate (max. 40 kHz). The signal of the 
first muon hitting the trigger detector (M-counter) after a minimum delay of 200ns is used to 
switch the kicker back to the spectrometer running in "parasitic mode" (Low Temperature 
Facility, LTF in this case). The delay is necessary to avoid damage to the power switches. 
 
 
 

 
 
 
 

 
 
 

Fig. 5-6: Top: Layout of the GPS/LTF beam areas at PSI with Spin Rotator and MORE. 
Bottom:  Example of µSR in silver in an external magnetic field of 10mT, taken with the GPS 
instrument (General Purpose Spectrometer) at PSI in MORE mode. For comparison a 
conventional spectrum taken at the same event rate is shown. The background in MORE 
mode is at least a factor of 100 lower than in conventional mode, thus easily allowing the 
study of muon-spin precession and relaxation up to 20µs. Insert: Reduced asymmetry plot for 
the first 2µs in MORE mode. 
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  Conventional MORE Pulsed µSR 
Trigger none GPS 50 Hz 
B0/N0 [10-5] 660 8.7 ca. 1 
Time resol. [ns] <1 <1 80 
Event. rate [106/h] 12 20 20-100 

Table: Comparison of results obtained with GPS in conventional and in MORE mode (using 
the GPS muon-counter as trigger). Values for pulsed µSR (at ISIS Rutherford Appleton 
Laboratory, UK) are also shown. 

 
 
After background subtraction the number of events in a detector placed in direction n 
(normally defined by the direction of the incoming muon beam or of the initial polarization): 
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e.g.  for forward (F: forward with respect to muon spin I



) and backward (B) detectors we 
have: 
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The asymmetry A(t) is obtained from: 
 

)t(N)t(N
)t(N)t(N)t(PA)t(A

BF

BF
0 +

−
==        [5-5] 

 
A0 is a parameter to be determined experimentally. It depends on factors such as detector 
solid angle, efficiency, absorption and scattering of positrons in the materials on the way from 
sample to detector. Generally A0 < 1/3 (intrinsic decay asymmetry). Typical values lie 
between 0.25 and 0.3.  
The function A(t) contains the information about the physics. In a real spectrometer one has to 
consider that the solid angles and efficiencies of the detectors may be different. This is taken 
care of by introducing in [5-5] one or two additional (fit) parameters (so called α, most 
important, and β parameters) (see exercise).  
 
  
                          120 



One distinguishes between transverse field- (TF) (


Bext⊥ P(0)


 longitudinal  field-  
(LF, 



Bext || P(0)


 ) or zero field measurements (ZF, 


Bext =0).  
 
 
 

 
 
 

 
Fig. 5-7: a) Longitudinal (LF) and zero field geometry (ZF). b) and c) Transverse field 
geometry (TF) 
 
 
Often the direction of 



Bext is taken as z-axis. With P(0)  n


  then the measured polarization 
directions are indicated as: 
 
In LF und ZF:  Pz(t) 
In TF   Px(t) 
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TF- spectrum and polarization function: 
 
 

 
 
ZF and LF spectra and polarization function: 
 

 
 
Fig. 5-8: Examples of µSR spectra and polarization functions. 
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5.1 Polarization- and relaxation functions for static fields 
 
 
Spin precession in a static field.  
Static means: the local field experienced by the muon is constant over times t  5-20 tµ. 
 

 
 
 

 
 
 

 
Fig. 5-9: Muon spin precession in a constant field ( B or Bµ



). The initial polarization is along 
the z-axis, which is also the observation direction ( n). 
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2 2 2
x y zB B B B= + +  

 
 
By making use of Eq. [5-7], with a single crystal sample one can determine the direction of 
the internal fields from the angular dependence of the amplitudes of the oscillating 
components. 
Example is a measurement of the tetragonal heavy fermion compound CeRhIn5 (A. Schenck 
et al., Phys. Rev. B 66 (2002) 144404). 
 

 
 

 
 
Fig. 5-10: Crystal structure of CeRhIn5. Amplitude of the precession signal as a function of 
the rotation angle of the crystal. From the measurement a local field pointing at 26o with 
respect to the c-axis is determined. The local field in this case is produced by an 
incommensurate helical structure of the Ce moments and also induced moments at the Rh 
sites. 
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If the field distribution probed by the muon ensemble p(B)



 is known we can calculate the 
corresponding polarization function: 
 

3
B

z 3

P (t)p(B)d B
P (t)

p(B)d B
= ∫

∫

d

d

d

 

This expression can be used to calculate the muon spin polarization in several special very 
useful cases.  
 
A) Zero Field case with B



 constant, random direction isotropically distributed (e.g. in 

domain structures of ferromagnetic materials or in ferromagnetic or antiferromagnetic powder 
samples). 
 
In this case: 
 

3 1p(B)d B (B B )dBd
4 µ= d − Ω

p

d

 

 

( )2 2
L

1 1 2P(t) cos sin cos( t)  d(cos )d cos( B t)
4 3 3 µ µ= θ + θ ω θ φ = + γ

π ∫    [5-8] 

 
 

If the fields are isotropic in the xz or yz planes, we obtain z
1 1P (t) cos( B t)
2 2 µ µ= + γ  
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Fig 5-11: Polarization and corresponding magnetic field distribution in the case of equation   
[5-8].  
 
 
Eq. [5-8] and Fig. 5-11 correspond to the ideal case. In the real case, there is distribution of 
fields around a mean value; i.e. the field distribution is not a delta function but has a finite 
width, better described e.g. by a Gaussian or Lorentz distribution. In the case of a Gaussian 
field distribution of width 2 2 2 2

x y zB B B B< ∆ >=< ∆ >=< ∆ >≡< ∆ >  small compared to the 
average field Bµ, [5-8] becomes for instance: 
 

2 2 21 B t
21 2P(t) e cos( B t)

3 3
µ− γ ∆

µ µ= + γ  

 
2 2 2 2 2

i i x y zB (B  B )     ,  i=x,y,z  B B B< ∆ >=< − < > > < ∆ >=< ∆ >=< ∆ >  

1
3
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Fig 5-12: Polycrystalline PrBa2Cu3O7-d , ZF measurement, AF order of the Cu moments. The 
asymmetry shows the 2/3 precessing component (damped) and the 1/3 non-precessing 
component (B.M. Wojek et al, Physica B 404, 720 (2009)). 
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Fig 5-13: ZF µSR spectra in the CaV3O7 antiferromagnet. The local field is a consequence of 
the AF order of the V moments. We observe two precession signals corresponding to two 
different muon sites and in addition the non-precessing 1/3 component. The bottom curve 
shows the corresponding microscopic magnetization curve (R.E. Walstedt, L.R. Walker, 
Phys. Rev. 9 4857 (1974)). 
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Fig 5-14: Zero field measurement. Initial asymmetry A(0) as a function of temperature in two 
polycrystalline samples. a) GdNi5 (ferromagnet) b) UPt2Si2 (antiferromagnet). At Tc and TN 
respectively the asymmetry falls to 1/3 (from P. Dalmas de Réotier, A. Yaouanc, Journal of 
Physics, Cond. Matt. 9, R9113 (1997)). The origin of the jump can be the formation of large 
local fields or of fluctuating moments, so that the precessing 2/3 part of the polarization is 
suppressed.  
 

 
Fig 5-15: ZF µSR spectra in an organic antiferromagnet, showing the magnetic phase 
transition (S. Blundell et al., Physica B 289, 115 (2000)). The T-dependence of the 
spontaneous precession frequency gives the local magnetization. The peak in the relaxation 
rate λ(T) at TN is typical of a phase transition. In this case only the local magnetization is of 
interest so that  (T)t

L TP(t) A A e cos(2 (T)t )− λ
µ≈ + πν + ϕ .     

 

Organic antiferromagnet 
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B) B


 Gauss distributed in  x, y and z direction with  
 

iB< > =0   and     i = x,y,z 
2

2 2 2 2 2
i i i i i i 2B (B  B )   B B  B  

µ

σ
< ∆ >=< − < > > = < > − < > = < > =

γ
  [5-9] 

 
A Gauss distribution of fields is obtained in the case of a dense arrangement of randomly 
oriented moments (for example nuclear moments, which on the µSR time scale can be 
considered as static) and is justified by the central limit theorem. 
 
Magnetic field distribution: 
 

2 2
i

2

B
 G 2

ip (B ) e
2

µγ
−µ σ

γ
=

pσ
     i = x,y,z     [5-10] 

 

 
 
The distribution function for the absolute value B B≡



 is 

 
2 2

2

B
 G 3 22p (B)dB ( ) e 4 B dB

2

µγ
−µ σ

γ
= ⋅ p
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      [5-11] 

 

Which is a Maxwell distribution with maximum at  B 2
µ

σ
=

γ
 and 8B

µ

σ
< >≈

π γ
. 

Fig. 5-16 a) Randomly oriented dense moments. b) Resulting distribution of fields 
projected onto an axis. The projection is a Gaussian distribution in each of the field 
components. 
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Fig. 5-17: Distribution of the field value p(B) for Gauss distributed Bx, By and Bz (σ=1 µs-1). 
 
 
The relaxation function is obtained in this case from: 
 
 

G KT G G G
x y z x y zBP (t) p (B )p (B )p (B )P (t)dB dB dB− = ∫ d     [5-12] 

 
Where BP (t)  is given by [5-7]. 
 
 
The integration in [5-12] can be explicitly performed, by using for instance spherical 
coordinates. We obtain the well-known Kubo-Toyabe relaxation function (Fig. 5-19) 
(R. Kubo and T. Toyabe in Magnetic Resonance and Relaxation, edited by R. Blinc .  
North-Holland, Amsterdam, 1967): 
 

2 2σ t
G-KT 2 2 21 2P (t) = + (1- σ t )e

3 3
 -

       [5-13] 

                        
 

Damped oscillation (with damping σ, relaxation rate) around maximum 
of B


  

               On  average one third of the muons does not precess or relax. 
 
The 1/3 and 2/3 components can be qualitatively understood by considering that the local 
field is random in all directions: about 1/3 is parallel or antiparallel to the muon spin and 
about 2/3 is perpendicular.  
In the paramagnetic state, a Kubo-Toyabe function is very often observed reflecting the field 
distribution of the small fields created by the nuclear moments. 
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Fig. 5-18: Observation of a Gauss Kubo-Toyabe relaxation in semiconducting InN, Y.G. 
Celebi et al., Physica B 340-342, 385 (2003). 
 
C) If the local fields instead of  Gauss  are Lorentz distributed:  
 

3
L 2

2 2 2 2 2
ap (B)dB ( ) 4 B dB

(a B )
µ

µ

γ
= ⋅ p

p + γ
 

 
 
One obtains the so called static Lorentz Kubo-Toyabe function (ZF): 
 

L KT at1 2P (t) (1 at)e
3 3

− −= + −         [5-14] 
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It holds: 
 

L L
x y z 2 2 2

x

ap (B ) p (B)dB dB ( )
(a B )

µ

µ

γ
= =

p + γ∫ ∫  

( a

µγ
 = HWHM) 

 
and in analogy for By and Bz.  
 
 
But differently from the Gaussian case: 
 

L L L L
x y z x y zp (B)dBd p (B )p (B )p (B )dB dB dBΩ ≠  

 
 
 
Sometimes a general relaxation function, which in the limiting case gives the Gauss and 
Lorentz Kubo-Toyabe function, is used: 
 

t Gen KT 1 2P (t) (1 t )e                            1 2
3 3

α αλ
−− α α α= + − λ ≤ α ≤  

 

Fig. 5-19: a) Randomly oriented dilute moments. Muons at site A feel weak fields, while 
those at B feel stronger fields. b) Resulting distribution of fields projected onto an axis. The 
projection is a Lorentzian distribution. 
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Fig. 5-20: Static ZF polarization functions, corresponding to Gaussian and Lorentzian field 
distributions. 
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D) Longitudinal field case  
LF Gauss KT: as example B) but in addition an external field 



Bext || z  is applied. In this case 
the (total) field distribution modifies to: 
 

2 2
ext z

2

(B B )
 G 2

zp (B ) e
2

µγ −
−µ σ

γ
=

pσ
       [5-15] 

 
The Bx and By distributions remain unchanged and the Bz distribution is offset. If we integrate 
[5-12] with the new distribution we get the so called Gauss-Kubo-Toyabe relaxation in 
longitudinal field (R.S. Hayano et al., Phys. Rev. B20, 850 (1979)). 
 
 

2 2 2 2tt t2 4  G KT 2 2
ext ext ext2 3

ext ext 0

2 2P (t,B ) 1 1 e cos( B t) e sin( B t )dt
( B ) ( B )

ss
− −−

µ µ
µ µ

 ss   ′ ′= − − γ + γ
 γ γ 

∫
           [5-16] 
 
If Bext is large with respect to the local fields the spin will be aligned along the z-direction (so 
called decoupling of static fields). LF measurements are used to distinguish between static 
and dynamic contributions to the relaxation. 
 

 
 
Fig. 5-21: Field dependence of the polarization function for isotropic Gauss distributed fields. 
Time scale in units of 1/σ. Bext in units of σ/γµ. The zero field curve corresponds to the Kubo-
Toyabe function. 
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Fig 5-22: Example of Gauss Kubo-Toyabe relaxation and longitudinal field-decoupling: 
Muon spin relaxation in the paramagnetic phase of MnSi (R.S. Hayano et al., Phys. Rev B 20, 
850 (1979)). The local field is produced in this case mainly by the Mn nuclear moments. 
 
 
 
The behavior of the LF relaxation can be understood qualitatively by considering that the 1/3 
component of eq. [5-8] corresponding to the muons with spin parallel or antiparallel to the 
local field is increased in Bext, whereas the 2/3 component is reduced while still showing 
indication of a precession around the external field.   
 

( )min min
3t     P(t ) 0.03583= =

σ
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E) LF with Lorentz distributed local fields,  



Bext || z . 
 

 
 
 
Fig. 5-23: Gz(t): Muon spin polarization in random distributed Lorentz fields as function  of 
the external field ( L / µω γ ) (Y. Uemura et al., Phys. Rev. B31, 546 (1985)). 
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 [5-17] 

 
j0 and j1 are spherical Bessel functions. 
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F) Transverse field case. ext ˆB P(0) and  z⊥
d d

 .  Relaxation in an external field:  
 
If the internal fields are Gauss distributed, we have  
 

2 22 2 2 2
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2 2 2
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− − −µ µ µσ σ σ
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       [5-18] 

 

with extB
µ

σ
>>

γ



,  in [5-7]: θ = 90,  BP (t) cos( Bt)µ= γ  and zB Bµ µγ γ   

 
 

2 22 2 2 2
yext z x

2 2 2

2 2

G TF G G G
z y x x y zB

B(B B ) B
   3 2 2 2

z z y x

t 
2

ext

P (t) p (B )p (B )p (B )P (t)dB dB dB

                ( ) e cos( B t)dB e e dB dB
2

                e cos( B t)

µµ µ

−

γγ − γ
− − −µ sss 

µ

s
−

µ

=

 γ ≅ γ =
 ps
 

= γ

∫

∫ ∫

d

   [5-19] 

 

The Gauss relaxation does not depend on Bext if extB
µ

σ
>>

γ



. Fig. 5.8a shows an example of 

Gauss relaxation (depolarization due to dephasing, inhomogeneous broadening). 
 
 
G) If the local field is Lorentz- instead of Gauss distributed, we obtain: 
 

L TF at
extP (t) e cos( B t)− −

µ= γ         [5-20] 
 
In both cases the oscillation frequency gives the average local field (in this case Bext) and the 
damping gives the local field width.  
 
Depending on the physical conditions, there may be various contributions to the average field, 
which is then not given simply by the external field. An example is the Knight shift K where 
Bext Bext(1+K), another example is the vortex state in a superconductor, where Bext <B>, 
average field generated by the vortices, see Chapt. 7. 
 
 

In the static TF case, when 2
z zB   B

µ

σ
< > >> = < ∆ >

γ
 , a  Gauss relaxation reflects a Gauss 

distribution of local fields and an exponential relaxation reflects a Lorentz distribution of 
local fields (polarization and field distribution are related via a cosine Fourier transform). 
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