PAUL SCHERRER INSTITUT

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ELECTROCHEMISTRY LABORATORY

Investigating the phase transitions of graphite by in situ neutron diffraction

Michael Hess^{a,b}, Claire Villevieille^a, Reinhard Nesper^b, Petr Novák^{a,b} ^a Paul Scherrer Institute, Electrochemical Energy Storage Section, CH-5232 Villigen PSI, Switzerland ^b ETH Zurich, Laboratory of Inorganic Chemistry, CH-8096 Zurich, Switzerland, hessmi@inorg.chem.ethz.ch

1. Stage transitions in graphite				2
Motivation:	graphite	stage 4L	Li-C phase diagram	
1) Graphite in 90% of today's batteries	╸ ┇┇┇┇┇┇┇┇┇┇┇ ╒ ┇┇┇┇┇┇┇┇┇┇┇	n de the the the the two		
2) Phase transitions show different C-rates [1]		01 11 11 11 11 11 11 11 11 11 11 11 11 1		

situ cell (RD: Pouch cell (polyimide and polypropylene window) NPD: Cell with Ti/AI container with deuterated electrolyte LP30-D

3. In situ x-ray and neutron powder diffraction

4. Results

Lattice		ch/dis,	Space	a-axis	c-axis	FWHM	fraction	Rwp/
parameter:	r:	voltage	group				[%]	zero shift
	Na ₂ Ca ₃ Al ₂ F ₁₄	standard	I 213	10.25		0.32	100	8 /-0.31
	a) Stage1	ch 0.01V	P6/mmm	4.32	3.70	0.37	94	5 /-0.28
	a) Stage 2		P6/mmm	4.29	7.04	0.48	6	
	c) Stage 2	ch 0.1V	P6/mmm	4.29	7.02	0.55	26	4.5 /-0.3
	c) Stage 2L		P63/mmc	2.47	14.13	0.46	28	
	f) Stage 3L	dis 0.16V	P6/mmm	2.47	10.37	0.44	44	4.5/-0.24
	f) Stage 4L		P63/mmc	2.47	27.16	0.4	56	
	d) Graphite	pristine	P63/mmc	2.46	6.72	0.32	72	8 /-0.27
	d) Graphite	~3V	R-3m	2.46	10.07	0.37	28	
ges	Graphite	dis 3V	P63/mmc	2.46	6.72	0.4	100	7 /-0.27

Summary: In situ XRD:

1) less good method for Li-graphite system (low scattering of C, Li) 2) easy to redo at any synchrotron, very good electrochemistry in cell In situ NPD:

1) very good results for Li-graphite diffraction

2) high overpotentials for 200 mg/cm² loading and neutron sources needed

 \rightarrow Phase identification of stage 1, 2, 1L and graphite according to literature Phases 2L, 3L and 4L could be refined For the first time, proper determination of Li-in-plane concentration in disorder stag

[1] M. Hess, P. Novák, Electrochim Acta, 106, 149 (2013) [2] K.C. Woo, H. Mertwoy, J.E. Fischer, W.A. Kamitakahara, D.S. Robinson, Phys. Rev. B, 27, 7831 (1983) [3] G.K. Singh, G. Ceder, M.Z. Bazant, Electrochim Acta, 53, 7599 (2008)

[4] V.A. Godbole, M. Hess, C. Villevieille, H. Kaiser, J.-F. Colin, P. Novák, RSC Advances, 3, 757 (2013) Acknowledgement: H. Kaiser, C. Junker, N. Casati, A. Cervellino for the support with equipment/beam.