PAUL SCHERRER INSTITUT

Online Electrochemical Mass Spectrometry for Rechargeable Batteries (IBAp-0225)

<u>C. Bolli¹</u>, M. He¹, A. Guéguen¹, M. Mendez², E. J. Berg¹, P. Novák¹

¹ Paul Scherrer Institut (PSI), Electrochemistry Department, CH-5232 Villigen PSI, Switzerland

² BASF, SE D-67056 Germany

Sources for gas release in LIBs $O_2 \ CO_2, CO \ Me_3SiF \ POF_3/PF_5 \ C_2H_4, CO_2, CO$ $(1) \ ($

Studying Gas Release in LIBs

- In situ mass spectrometry (MS) was established in the 1980s^[1]
- Previous setup at PSI was a constant flow setup^[2,3]

- I. Surface reconstruction: O_2 II. Surface impurities (e.g. Li_2CO_3): CO_2
- III. Electrolyte oxidation:
- IV. Electrolyte reduction/SEI formation:
- V. Electrolyte hydrolysis:
- VI. HF scavenging:
- CO_2 CO_2 , CO CO_2 , C_2H_4 , CO, H_2 POF_3/PF_5 , CO_2 Me_3SiF

Working principle:

- Continuous Ar flow transports gases to the MS
- Gases reach the MS after ~30s
- Calibration by dilution of calibration gases

Disadvantages:

- Only one cell per measurement
- Constant electrolyte evaporation
 - high electrolyte volume
 - risk of capillary clogging
- Relatively low sensitivity (100 ppm background)

Working principle:

Current OEMS setup at PSI^[3]

Advantages:

- + Several cells in parallel possible
- + Higher sensitivity (1 ppm O₂ background)
- + Setup can be placed in climate chamber
- + Direct sampling of calibration gases for fast calibration

- Valves for carrier gas and cell open for about 10s to transport gas from cell to MS
- Step is repeated for the other attached cells
- Computer controlled system with automatic data processing

Disadvantages:

- Decreased time resolution (one measurement /15 min)
- Electrolyte evaporation still significant for t > 48h

Screening: Additives and Electrolytes for Li-rich NCM^[5]

Scope of study: Investigation of gas suppression and action mechanisms for TMSPa/i additives in Li-rich/graphite cells

Method Development: Additives as Chemical Probe^[4]

Scope of study: Application of TMSPa as chemical probe for F⁻ formation in LIBs

- TMSPa reacts with *in situ* formed inorganic fluorides such as HF, LiF
- Different contributions can be identified:
 - I. LiF during SEI formation (FEC reduction)
 - II. HF from $LiPF_6$ (due to proton formation)
 - III. Further contributions from PVDF binder

Conclusions:

Formation of reactive species can be monitored in situ by OEMS using suitable additives as chemical probes

Observations:

- Suppression of POF_3 by TMSPi/a due to HF scavenging
- Suppression of CO₂ formation only by TMPSi in EC based electrolyte

Conclusions:

- > TMSPi/a lead to decreased electrolyte acidification (especially with FEC)
- > TMSPi has a further action mechanism in EC (analysis of CO₂ gas evolution profile
 - indicates rather chemical scavenging than SPI formation).

Summary

- The new setup allows parallel measurement of several cells with improved sensitivity
- The improved sensitivity allows to apply the electrolyte additive TMSPa as chemical probe to study in situ the formation of HF/LiF in LIBs
- The multi-cell setup allows to study additive operation mechanisms and to show that TMSPi/a act mainly as chemical scavengers

References

[1] G. Eggert, J. Heitbaum, Electrochim. Acta, 31 (1986) 1443-14487 [2] M. Holzapfel, A. Würsig, W. Scheifele, J. Vetter, P. Novák, J. Power Sources, 174 (2007) 1156-1160. [3] M. He, Elucidating Interface Reactions in Li-Ion Batteries and Supercapacitors by In Situ Gas Analysis. ETH Zürich, 2016. [4] C. Bolli, A. Guéguen, M. A. Mendez, E. J. Berg, Chem. Mater. DOI: 10.1021/acs.chemmater.8b03810 [5] C. Bolli, A. Guéguen, M. A. Mendez, E. J. Berg, in preparation.

Acknowledgement

BASF SE is greatly acknowledged for funding. H. Kaiser is acknowledged for technical support during cell design.