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Dear Colleagues

This is an anniversary issue of our SpotOn+, this 
edition being sent to you one year after the first 
edition in 2013. In the clinical section, the Study 
and Research Office presents the results of the 
atypical teratoid/rhabdoid tumor (ATRT) of the 
CNS of young patients treated at PSI with PBSS. 
Although the series is small, it builds to the body 
of recent studies published by the MDACC/
Houston and MGH/Boston that suggest that PT 
is an effective treatment for young children with 
ATRT. Of note, 66% of the patient in our series 
survived more than 2 years. Importantly, the 
(proxy-rated) quality of life was unaffected in 

these very young patients. In the physics’ sec-
tion, Ms. Bernatowicz reports quantitative anal-
yses of the effect of motion on (water equivalent) 
proton range, calculated based on 4D CT data 
for lung and liver tumors. Range maps were 
calculated by converting the CT’s Hounsfield Unit 
to proton stopping power. Interestingly, the 
mean range (normalized to end-exhale) de-
creased by 8% and 15% in liver and lung patients 
respectively. Unfortunately, large variations were 
observed and the impact of motion was indeed 
case-specific. The second part of the physics 
section pertains to a certain type of motion 
mitigation strategy, namely tumor tracking in 3 
liver cases. More specifically, two beam tracking 

strategies have been assessed and inter-com-
pared, using 4D dose calculations. The main 
difference between the two tracking methodol-
ogies is that 2D tracking adapts Bragg peaks to 
the fiducials, while full 3D tracking uses the 3D 
deformable motion extracted from the model 
based, motion reconstruction algorithm. Inter-
estingly, dose corruption (i.e. D5-D95) induced 
by motion could be substantially decreased 
when 2D or 3D tracking was simulated but could 
not guarantee an appropriate tumor coverage. 
As such, re-tracking was simulated and the 
target coverage was improved, nearly achieving 
the no motion (i.e. static) dose metrics. These 
data are of paramount importance so as to 

quantify the impact of motion on the proton’s 
range for moving targets and the way to mitigate 
the effect of motion on target coverage. PSI is 
committed to perform these analyses and opti-
mize its R&D program, with the aim to treat 
moving targets in a not too distant future. More 
information can be found on our website:
http://www.psi.ch/protontherapy/center-for-
proton-therapy-cpt.

I take the opportunity to wish you all a relaxing 
winter time and a happy new year. Happy holi-
days!

Sincerely,
Prof. Damien Charles Weber, Head of CPT

SpotOn+SpotOn+SpotOn+
Center for Proton Therapy :: Paul Scherrer Institut :: #4_11/2014



Newsletter of the Center for Proton Therapy :: Paul Scherrer Institut :: November 2014 :: #4

Atypical teratoid/rhabdoid tumor 
(ATRT) of the CNS is a rare, highly 
malignant and extremely aggressive 
embryonal neoplasm of early child-
hood. This tumor accounts for 1 – 2% 
of CNS pediatric tumors but up to 20% 
of malignant CNS neoplasms in pa-
tients younger than 3 years of age. 
Administered treatments are not ATRT 
specific and are highly variable but 
typically includes multi-modality treat-
ment, namely surgery, chemotherapy 
and radiation therapy (RT). Technical 
improvements in radiation therapy 

may improve the therapeutic ratio for 
these challenging patients. Unlike 
conventional radiotherapy, proton 
therapy (PT) allows for optimal dose 
distributions, with the added benefit 
of no exit dose. This absence of exit 
dose has triggered the rational of us-
ing protons for children with various 
cancer types.
We assessed the clinical results, not 
limited but including the recurrence 
pattern, toxicity and QoL, of pencil 
beam scanning (PBS) PT in the treat-
ment of non-metastatic ATRT patients 
treated at the Paul Scherrer Institute 
(PSI). QoL was analyzed by the QoL 
working group at University of Mün-
ster, Germany. The results have been 
published online (Weber et al 2014).
Between May 2008 and January 2013, 
15 consecutive children with non- met-
astatic ATRT aged from 4.6 to 27.4 
(median, 18.9) months were treated 
with PBS PT at PSI. Eighty seven % of 
these patients were < 24 months old 
and 20% < 12 months of age. There 
were 7 girls and 8 boys. The majority 
(n=12; 80%) of tumors were < 5 cm. 
Mean age at diagnosis was 17.4±7.0 

months. The localization was infraten-
torial in 9 (60%) patients. Gross total 
resection of the primary tumors was 
achieved in 7 (47%) patients. The 
dose administered focally under se-
dation was 54 Gy (RBE). After a median 
follow-up of 33.4 months (range, 9.7 
– 69.2), 3 (20%), 4 (27%) and 2 (13%) 
patients presented with local failure 
(LF), distant brain failure (DBF) and 
spinal failure (SF), respectively. Six 
patients died, all of tumor progres-
sion. The 2-year overall- and progres-
sion-free survival was 64.6% and 
66.0%. Tumor location (supratento-
rial; Fig.) and the extent of surgical 

resection (non-gross total resection) 
were negative prognostic factors for 
both OS and PFS.
Our data suggests that PBS PT is an 
effective treatment for young children 
with ATRT. After PT, with or without 
concomitant chemotherapy, two third 
of the patients survived > 2 years. 
Importantly, focal only PT, as opposed 
to WBI with or without CSI did not re-
sult in an access of distant intracranial 
failures, the former accounting for 
20% of all treatment failures. The 
acute toxicity was limited and our pro-
spective parental-proxy reporting data 
do not suggest a decrease of QoL of 

these very young patients. Late toxic-
ity was unusual. As such, we continue 
to treat these challenging young pa-
tients with focal only PT.

Reference:

Weber et al 2014 Tumor control and 
QoL outcomes of very young children 
with atypical teratoid/rhabdoid Tumor 
treated with focal only chemo-radia-
tion therapy using pencil beam scan-
ning proton therapy. Journal of Neu-
ro-Oncology. Published online 02 Nov 
2014

Radio-Oncology News
Spot-scanning Proton Therapy for pediatric atypical teratoid/rhabdoid tumors (ATRT):  
Clinical outcome of 15 patients treated at PSI
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Dose distribution of a treatment plan superimposed on CT images of a  
patient with an supra-tentorial ATRT (a axial, b sagital and c coronal views). 
Note the rapid dose decline between the target and non-target volumes 
and the optional sparing of contro-lateral brain (coronal and axial slices). 
The isodose contours are represented by the color-wash (corresponding 
values are displayed on the right border of each photo).
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Background and Methods

Calculated proton ranges depend on 
density information extracted from the 
CT images. Density changes appearing 
due to respiratory deformation are 
local and temporal variations along 
the geometrical penetration path need 
to be quantified for accurate 4D dose 
calculations. Here, we report a quan-
titative analysis of the effects of mo-
tion on water equivalent range (WER) 
in proton therapy, calculated based 
on the 4D-CT images. Additionally, we 
evaluate density effects in simulated 
images (4D-CT(Sim)). 4D-CT(Sim) is 
interesting for advanced 4D planning, 
as it generates dose-free images and 

can represent the variability of respira-
tory motion over multiple breathing 
cycles.
Firstly, 4D-CTs of three liver and three 
lung patients were evaluated. Changes 
in tumor and organ volume were calcu-
lated and the tumor motion was esti-
mated based on the image data. Single 
Field, Uniform Dose treatment plans 
were calculated using the PSI 3D-TPS. 
Three single-field plans: P1 – from the 
right lateral, P2 – posterior oblique, 
and P3 – posterior were created. Real-
istic WER maps were then calculated 
by converting the Hounsfield Unit Val-
ues to proton stopping power through 
the whole patient and then evaluated 
in the CTV region. Secondly, the corre-

sponding simulated 4D-CT images were 
created using a static reference CT of 
liver patients and motion data ex-
tracted from the 4D-CT deformable 
registration. Density information from 
4D-CT(Sim) and original 4D-CT images 
was then compared in terms of WER to 
evaluate the effect of using a warped 
CT image to generate a 4D data set. 
Similar method is applied to lung pa-
tients (data in preparation). 

Results

As WERs vary over the respiratory cy-
cle, mean WERs were normalized to 
end-exhale (WER_EE), and were ex-
tracted from 4D-CT images of all pa-

tients (covering three different field 
directions each). In general, mean 
WER_EE decreased by up to 8 % with 
inhale in liver patients and about 15 % 
in lung patients (Fig. 1). Locations ex-
hibiting largest positive/negative dif-
ferences were identified and analyzed 
with the WER map. The density infor-
mation of 4D-CT(Sim) is compared 
with that of the 4D-CT: an excellent 
agreement was observed, with mean 
WER differences <3 mm in the liver 
region (Fig. 2).

Conclusion

In summary, intrafractional motion 
affects the beam range in proton ther-
apy. WER variations are case-specific; 
depend on tumor motion, size and its 

position. This work will be presented 
on 28–29th of November at the 4D 
Treatment Planning Workshop organ-
ized by ICR and UCL in London.

For any further information,  
please refer to CPT, 
Kinga Bernatowicz
Tel. +41 56 310 5016
kinga.bernatowicz@psi.ch

Medical-Physics News
Characterizing the effect of density variation on proton range in liver  
and lung as a result of respiratory motion

Figure 1 Water equivalent range (WER) 
calculated for the lung patient at 
end-inhale (left). The corresponding 
WER difference (=inhale - exhale) of the 
same patient. Note largest differences 
in the CTV occur at the distal edge of 
the target. Maximum differences (>1cm) 
were observed around the heart.

Figure 2 End-inhale liver  
image from 4D-CT (upper 
left) and simulated 4D-CT 
(lower left). The correspond-
ing WER difference (= 4D-CT 
– 4D-CT(Sim)) of the same 
patient. Note largest differ-
ences occur outside of liver 
region.
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Medical-Physics News
Online Image-guided Scanned Beam re-Tracking:  
necessity and extra benefits

Among all possible motion mitigation 
approaches, beam tracking has been 
considered as the optimal technique, 
since it should not lead to excessive 
treatment prolongation or target vol-
ume expansions. Due to sequential 
dose delivery and high sensitivity of 
proton beams to both small motion 
and range changes, knowledge on 3D 
motion in real-time, together with the 
resultant density variations, is a 
pre-requisite for clinically implement-
ing such a technique. We have devel-
oped an efficient model-based motion 
reconstruction method (Zhang et al 
2013) previously, which allows for on-
line prediction of deformable motion 
from sparse surrogate motions tracked 
via an on-board, Beams’ Eye View 
(BEV) X-ray imaging system. Further 
investigating the feasibility and effec-
tiveness of tumour tracking using pen-
cil beam scanning based on such an 
image-guided motion compensation 
approach is the objective of this study 
(Zhang et al 2014). Two beam tracking 
strategies have been simulated using 
4D dose calculations (4DDC). Conven-
tional 2D tracking laterally adapts 
Bragg peak positions directly accord-

ing to fiducial marker motions tracked 
from time-resolved BEV images, while 
3D tracking utilizes the full, 3D deform-
able motion extracted from the model 
based, motion reconstruction algo-
rithm. To reduce the sensitivity of 
beam tracking to the inevitable uncer-
tainties from both motion tracking and 
prediction, this study also investi-
gated the potential for ‘re-tracking’ (a 
combination of re-scanning and track-
ing), whereby all delivered pencil 
beams are delivered multiple times 
while also tracking the tumour. 
Due to the relatively large motions 
considered, considerable over- and 
under-dosage can be observed for all 
cases when no motion compensation 
is applied. However, the D5-D95 can 
be substantially reduced to 17, 19 and 
29 % or to 15, 18 and 23 % when 2D or 
3D beam tracking is employed, com-
pared to the D5-D95 value of 9 % that 
was achieved for the reference (static) 
plan. Thus, tracking alone (either 2D 
or 3D) cannot fully recover target dose 
coverage and homogeneity. By moving 
to 3x re-scanning (re-tracking), the 
robustness has been significantly im-
proved, with even 2D re-tracking pro-

viding dose homogeneities in the PTV 
of almost comparable quality as the 
static plan, together with significant 
reductions of the ‘inverse interplay 
effect’ in the proximal regions. 
This study has demonstrated the fea-
sibility and potential advantages of 
clinically applying online image-guided 
scanned beam tracking for mobile tu-
mours treatment. The dosimetric com-
parison has revealed only a small 
benefit for deformable 3D beam track-
ing with respect to 2D tracking, and 
these gains are mainly evident only for 
the larger motions. Our results have 
also shown that beam tracking alone 
cannot fully mitigate all motion effects, 
but that combining tracking with res-
canning (re-tracking) could provide an 
approach which combines the best 
aspects of tracking (better dose con-

formation) and re-scanning (washout 
of interplay effects).  

Reference:

• Zhang et al 2013 Deformable motion 
reconstruction for scanned proton 
beam therapy using on-line x-ray 
imaging. Physics in Medicine and 
Biology, Vol. 58(24), pp. 8621-8645 

• Zhang et al 2014 Online image 
guided tumour tracking with scanned 
proton beams: A comprehensive 
simulation study. Physics in Medi-
cine and Biology. accepted Oct 2014 

For any further information,  
please refer to CPT, 
Ye Zhang, Tel. +41 56 310 5834 
ye.zhang@psi.ch

Figure 1 The 4D dose distribution with and without motion 
mitigation.
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Figure 1. The 4D dose distribution with and without motion mitigation 

Figure 2. The relative conformity number in PTV of the 4D plan with 
different motion mitigation approaches 

Figure 2 The relative conformity number in PTV of the 
4D plan with different motion mitigation approaches.


