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Single-molecule magnets (SMMs)1 including a single trivalent lanthanide ion2 are attracting 
much attention due to their large energy barrier for magnetization reversal, opening a path toward 
potential applications in spintronic devices and high-density data storage3. The obstacle towards 
these applications is lack of understanding of the interaction between the molecules and their 
environment, especially with a surface, which often leads to the vanishing of the SMM’s 
remanence and closing of their hysteresis. Despite considerable effort to study SMMs on various 
surfaces4 knowledge about this interaction mechanisms remains scarce. A new light is shed by our 
study employing the use of an oxide surface as a substrate for SMMs. Its outcome deepens the 
understanding of the SMM-surface interaction and brings us closer towards finding a universal 
substrate preserving or improving the intrinsic magnetic properties of SMMs. 

We evidenced by x-ray magnetic circular dichroism that the sub-ML of TbPc2 on the MgO 
surface exhibits an extraordinary three-Tesla wide hysteresis opening with very large remanence 
at 3 K, outperforming the bulk properties of these molecules and the ones of any other surface 
adsorbed SMMs.5 A similar experiment which we performed with DyPc2 molecules, known of 
their significantly faster intrinsic relaxation dynamics than TbPc2, revealed additionally interesting 
result, namely a large butterfly-shaped hysteresis of DyPc2 with an opening up to 1 T and no 
remanence, yet with significant increase of DyPc2 blocking temperature.  

The studied cases reveal sizable openings of the SMMs’ magnetic hystereses and rise of a 
blocking temperature suggesting a desirable slowdown of magnetization relaxation dynamics 
induced by the oxide film. During the talk I will discuss the possible mechanisms by which the 
oxide surface impacts the magnetization relaxation pathways of an SMM and by using the 
empirical model I will demonstrate this influence on the SMM’s magnetization dynamics.  
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The study of magnons, the quasiparticle description of collective spin excitations, and 
magnonics, the development of devices utilizing magnons to perform information processing 
tasks, are rapidly growing fields covering many important fundamental and technological 
topics. Yttrium iron garnet (YIG), a ferrimagnetic insulating oxide, has long been appreciated 
in the context of high-Q microwave filters that make use of its sharp ferromagnetic resonance. 
The long magnon lifetime, with damping values up to three orders of magnitude lower than 
conventional metallic magnetic materials, along with advances in thin film growth and 
processing capabilities has resulted in a resurgence of interest in YIG from the magnonics 
community.   

A phenomenon closely linked to the extremely long lifetimes of magnons in YIG is their 
reported Bose-Einstein condensation (BEC) at room temperature. A finding that has raised 
many questions about the nature of a quasiparticle BEC in quasi-equilibrium, its relation to 
traditional BECs familiar from cold atom physics, and other types of macroscopic coherent 
phenomena. From an applications perspective the incorporation of condensate related 
phenomena to the magnonics toolbox would open the door to supercurrents of magnons and 
quantum information processing.   

Here I report on the first time resolved scanning-transmission x-ray microscopy (TR-STXM) of 
magnon dynamics in yttrium iron garnet. We demonstrate the ability to excite and observe 
both linear and non-linear magnon dynamics and discuss the steps we have taken towards 
imaging the magnon condensate.  

 

Figure 1. TR-STXM measurement of 
magnon dynamics in YIG. Frames 
show snapshots of time resolved 
measurements with different applied 
magnetic fields. The first column (A, D 
& G) shows transmission snapshot in 
which the stripline is visible as the 
vertical dark strip, and the spin waves 
are visible as the slight fluctuations in 
intensity. The second column (B, E & 
H) shows the dynamics, with each pixel 
normalised by its time averaged value. 
The third (C, F & I) column shows a 
phase/amplitude image extracted with 
Fourier analysis of the time series. The 
different rows correspond to external 
fields (horizontal in-plane) of 75 mT 
(top) 65 mT (middle) and 55 mT 
(bottom) all with an excitation 
frequency of 3.5 GHz. 
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Germanium (Ge) is considered as a silicon compatible light source, thanks to the possibility of becoming a 
direct bandgap material and its CMOS compatibility. In alternative to alloying Ge with Sn [1], a direct bandgap 
configuration can be reached by protracting Ge in specific crystallographic directions [2]. We present cavity 
mode analysis of photoluminescence (PL) spectra of uniaxial tensile stressed (along <100>) suspended GeOI 
micro-bridges and their dependence on the excitation wavelength. 

The highly strained Ge is obtained by patterning and under-etching a SmartCutTM GeOI layer with a built-in 
biaxial tensile pre-strain of 0.16% [3]. Through e-beam lithography and dry etching step, we define two 
stressor pads, connected by an 8 µm long and 1 µm wide micro-bridge and two parabolically shaped corner 
cube mirrors, which integrate the central constriction into an optical cavity. The subsequent selective etching 
of the underlying silicon oxide by vapor HF releases the germanium structure which enables the pads to 
elastically relax. As a result, the micro-bridge is uniaxially stretched to an amount uniquely defined by the 
geometrical dimensions of the pattern [4]. Thanks to the high quality of the GeOI substrate, we were able to 
achieve tensile strain values up to 4.9 % at room temperature [5]. 

The integration of a direct bandgap germanium structure inside an optical cavity represents a powerful tool to 
access the optical gain and loss, via the Fabry-Perot cavity mode analysis, as first shown by J. Petykiewicz et 
al [6]. Here, we used an excitation laser at 2100 nm wavelength to carry out power dependent 
photoluminescence experiments, from 0.5 to 30 kW/cm2. The temperature was reduced down to 20 K, allowing 
a further increase of the tensile strain in the micro-bridge, which reached approximately 6 %, shrinking the 
direct bandgap down to almost 0.3 eV. From the cavity modes analysis, we found an onset in the mode intensity 
at 1 kW/cm2, as well a narrowing up to a factor 3 of the linewidth. Due to the absence of a clear proof of 
threshold in the intensity, lasing can still not be claimed. Coherence measurement and comparison with group 
IV lasing system, namely GeSn, will be further discussed. 

	
Fig.	1	Photoluminescence	measurement	at	20	K	excited	with	2100	nm	wavelength	laser	in	CW	configuration. 
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