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§1.

In the previous chapters of this book, experimental
results and the theory of elastic and inelastic neutron

Introduction

PART 2 SCATTERING IN MICROSCOPIC
PHYSICS AND CHEMICAL PHYSICS

Topic 2.8 Neutron Scattering

scattering have been presented under the assump-
tion that the magnetic moments of the neutrons are
randomly oriented. It has been shown that details
about the physical properties of a system are extracted
by analysing the momentum and the energy of the
scattered neutrons. It is intuitively imaginable, how-
ever, that measuring the spin state of the neutron after
scattering relative to its state before the scattering pro-
cess should provide us with additional information.
To that end the cross sections for neutron scattering
must now also take into account the relationship be-
tween the spin of the neutron with the physical prop-
erties of the target.
The polarisation of a neutron is defined as
P=2(8) = (&), (1)

where & are the Pauli matrices. Clearly, || is equal
to 0 for a completely unpolarised beam and |P| = 1
if the beam is totally polarised. For intermediate val-
ues, the neutron beam is not in a well-defined state
and the spin part of the neutron wave function must
be described by a more general form y = uy; +vy, with
2 + |v* = 1. That is, |u|* and [v]* are the probabili-
ties that the neutron spin will be up or down, respec-
tively. If a matrix operator p is defined like

2 "
I5=XXT=<|”|“ uv )zl(hp.c‘y), (2)

vl u)? 2

then the polarisation of the neutron is described
by a three-dimensional vector with components P =
(2N(u'), 23(u'v), [u)> - [v|?) (Lovesey, 1984). The
polarisation of a neutron beam is accordingly defined
asP= % 2 P;, where N is the total number of neutrons
and the sum runs over the polarisation vector of the
individual neutrons ;.

The cross section ¢ and the polarisation of the scat-
tered beam Py can be expressed as a function of the
density matrix p, the polarisation vector of the inci-
dent neutrons P; and the interaction potential 7 be-
tween the target and the neutron. In its most general
form, P¢ = Tr po' &0/ Tr poto.
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Neutron scattering with polarised neutrons has
been used in fundamental and condensed matter
physics for many years despite the low flux of po-
larised beams. One of the first applications was
the study of spin density distributions in ferromag-
nets, following the pioneering work of Nathans et al.
(1959). In those days the polarisation of the scattered
neutrons was established by measuring their transmis-
sion through a magnetised block of iron. As predicted
by Halpern and Johnson (1939) the polarisation of
the scattered neutrons, P, depends on the orientation
of the scattering vector Q with respect to the polari-
sation of the incident neutrons, P;, like

P =-0(0 Py, (3)

where O = Q/IQl. In other words for P; || Q all
magnetic scattering is spin flip. Therefore polarisa-
tion analysis in neutron scattering provides an excel-
lent method for distinguishing between nuclear and
magnetic scattering. In 1969 the classic paper by
Moon et al. (Moon et al., 1969) appeared that ex-
plains in simple terms one-dimensional polarisation
analysis (nowadays called longitudinal polarimetry)
of neutrons for elastic as well as inelastic neutron scat-
tering. They demonstrated the polarisation depen-
dence of nuclear and magnetic scattering.

Another, rather different application of polarised
neutrons is their use for attaining extremely high
energy resolution by measuring changes in the neu-
tron beam polarisation caused by inelastic scattering.
In 1972, Mezei (Mezei, 1972) suggested using the
precession of the magnetic moment of the neutrons
in a magnetic field as an internal clock. By means
of the so-called neutron spin-echo technique energy
resolutions on the order of nanoelectronvolts can be
achieved, enabling the investigation of slow dynam-
ics, for example, in the critical region of magnetic sys-
tems or in polymers and glasses.

Nowadays, polarised neutron scattering is a fast-
developing experimental method that finds applica-
tions in various fields of condensed-matter research.
Examples are

e determination of magnetic structures and spin
densities,

e identification of magnetic fluctuations and their
different modes and

e separation of coherent from incoherent pro-
cesses.

In the following, necessarily incomplete sections, we
shall provide a presentation of the polarisation de-
pendence of neutron cross sections and show how the
different scattering processes can influence the polar-
isation of the neutron beams. We will then explain
how polarised neutron beams can be produced and

the polarisation determined after scattering. Finally
we shall give examples where the technique of po-
larised neutron scattering can provide new insight
into physical processes in condensed matter research.
For a more detailed introduction into the field of
polarised neutron scattering, we refer the interested
reader to the book of Williams (1988).

§2. Elastic Neutron Scattering Cross
Section for Polarised Neutrons

The theory of elastic neutron scattering taking into
account polarisation effects was derived by Blume
(1963). The complete description of the scattering
process involving both nuclear and magnetic interac-
tions can be given by means of two master equations.
The first one gives the total neutron cross section that
depends on the polarisation P; of the incident neutron
beam as

o= NN*+D_-D+P;(Dy N* + D% N) +iP;(D% x D), (4)

where o is the total cross section expressed in barns.
For simplicity, the contribution of the nuclear spins
is neglected. N =N(Q) =3, biexp (iQ-r;) is the struc-
ture factor of the atomic structure that depends on
the scattering vector Q and the scattering lengths of
the individual nuclei b;; D, is the magnetic interac-

tion vector with D, =D, (Q) = Q X (p(Q) x Q)- pP(Q)

is the Fourier transform of the magnetic moment dis-

tribution and Q = Q/IQI. Therefore, only magnetic
components perpendicular to the scattering vector
participate in the scattering process. The scalar of
the polarisation vector P; reflects the degree of polar-
isation of the neutrons, being equal to %1 for a fully
polarised beam.

Equation (4) shows that the neutron cross section
depends only on the square of the chemical and mag-
netic structure factor if a nonpolarised neutron beam
(P; = 0) is used. For a fully polarised beam (|P;] =
1), two additional terms contribute to the scattering,
namely the magnetic-nuclear interference term and
the chiral term, respectively. The magnetic-nuclear
interference term being proportional to D; N* +D* N
yields only a nonvanishing contribution to the neu-
tron cross section if a Bragg reflection is due to nuclear
and magnetic scattering, like in ferromagnets and in
noncentrosymmetric antiferromagnets with propaga-
tion vector Qg = 0. The chiral term D% x D, is nonzero
whenever D is not parallel to D%, as is the case, e.g.,
for a helicoidal magnetic structure.

The second master equation provides the polari-
sation of the neutron beam after the scattering pro-
cess relative to the polarisation of the incident neutron
beam,

Pro =P;NN*+(=1)P;(D_ - D)+ D, (P; -D})+D(P;-Dy)
+D N*+DIN+i(DyN*-D} N) xP; +iDy xD%, (5)
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where Ps is the polarisation vector of the scattered
neutrons. On the one hand, Eq. (5) shows that pure
nuclear scattering (D, = 0) leaves the polarisation of
the neutron beam unchanged. On the other hand, po-
larisation of the scattered beam is obtained either, as
we will see in the next section, by scattering neutrons
on mixed nuclear-magnetic Bragg reflections or from
a helicoidal magnetic structure. In the latter case,
with D;N*+D3N = 0, a polarised beam with a po-
larisation given by

_ Dy xD}j D, xD}

= 6
o) D_]_Dj_ ( )

Py

is created. We point out that a measurement of the
chiral term provides the helicity of a helicoidal mag-
netic structure as has been shown by Shirane et al.
(1983). In the general case, the polarisation vector of
the neutron beam after scattering is rotated with re-
spect to P; and its length is not necessarily equal to
[P;|. The term “polarisation analysis” therefore refers
to the determination of the direction and length of Ps.

§3. Production of Polarised Neutrons

For a measurement of the polarisation dependence of
cross sections various techniques for producing and
analysing polarised neutron beams have been devel-
oped. Depending on the required phase space prop-
erties of the beams, i.e., continuous vs pulsed, energy,
divergence, type of detector, etc., different methods
for the spin analysis are used. The most common
methods are diffraction from single-crystal polaris-
ers (mostly Heusler), reflection from magnetised thin
film multilayers or supermirrors and absorption of
the nonwanted spin state by means of polarised *He.
A recent review of these techniques can be found in
Anderson et al. (2000).

Single-Crystal Polarisers

This method produces a polarised neutron beam by
taking advantage of the magnetic—nuclear interfer-
ence term in Eq. (4) and Eq. (5). If a magnetic field
is applied to a centrosymmetric crystal so that all the
magnetic moments are saturated and aligned perpen-
dicular to the scattering vector Q, the neutron scatter-
ing cross section for Bragg scattering is given by (set
Pi=0and D, =D} in Eq. (4))

c=N?+D3. (7)
The second master equation, Eq. (5), yields for P; =0
2ND 2ND
P¢ = L= = (8)
o N?‘ + DJ.

Hence, the diffracted beam from a single crystal is
completely polarised if there is a Bragg reflection with
ID .| =IN|. Typical examples are the (111) reflection

of Heusler CuyMnAl (d spacing = 3.43 A) and the
(200) reflection of the alloy Cog.92Feq. 03 (d spacing =
1.76 A). Other single crystals like Fe3O4 or Fe3Si
have also been considered but are less used. All
these crystals can be used to produce polarised and
monochromatic neutron beams and to analyse the
energy and polarisation of neutron beams. Therefore,
single-crystal polarisers are used for single-crystal
diffractometers and in triple-axis spectroscopy. De-
pending on the requirements for neutron energy and
resolution, different d spacings must be considered.
Recently, the quality and the reflectivity of Heusler
monochromators have been improved considerably
(Courtois, 1999) which will make it possible to use
these crystals at relatively short neutron wavelengths.

Thin Films

Total reflection from magnetised thin films can be
used to produce polarised neutrons. The angle of to-
tal reflection for a ferromagnetic film is given by

07 =Ay/N(b£p)/m, (9)

where A is the neutron wavelength, N is the nuclear
density and b and p are the nuclear and magnetic
scattering lengths, respectively. Thus, by an appro-
priate choice of materials, a polarised beam can be
produced by total reflection. For the special case b = p
all reflected neutrons are polarised. Unfortunately,
the reflection angles are only reasonably large for cold
neutrons: For example, FesoCo4gV2 has b ~ p and
0. ~ 0.4° for L~ 4 A (Schirpf, 1975).

The angles of reflection can be significantly im-
proved by adding artificial magnetic and nonmagnetic
layers that reflect neutrons at small angles above 6,.
Such artificial multilayers (supermirrors) were pro-
duced for the first time by physical vapor deposition
by Mezei (Mezei, 1976; Mezei and Dagleish, 1977).
Typical material combinations are Co/Ti, Fe/Si, and
Fes0Co48V, /TiNiy (Hoghoj et al., 1999; Krist et al.,
1999; Lee and Majkrzak, 1999; Syromyatnikov et al.,
1999; Anderson et al., 2000). The latter combina-
tion exhibits a remanent magnetisation and can there-
fore be used as a spin selective device, where no spin
flipper is necessary anymore (Boni, 1996; Béni et al.,
1999). Recently, the number of layers has been in-
creased steadily, thus leading to reflection angles for

polarised neutrons on the order of 0.3° for A~ 1A.
These modern devices can now also be used as white
beam polarisers for thermal neutrons.

Spin Filters

A major drawback of polarising single crystals
and thin films is their decreasing efficiency with
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increasing neutron energy, i.e., short wavelength, and
the small divergence that they accept (see Table 1).
On the other hand they are maintenance free and easy
to use. Therefore, polarising filters with broadband
characteristics and minor restrictions on divergence
are of significant interest for neutron scattering in par-
ticular for pulsed spallation sources and spectrome-
ters with large area detectors.

Whereas Heusler and supermirrors are well estab-
lished but still progressing techniques, the 3He spin
filters using direct optical pumping of metastable 3He
(Colgrove et al., 1963) have improved during the past
few years (Heil et al., 1999). The basic idea behind
the filter technique is the polarisation dependence of

the transmission that can be written in its most simple
form as (Williams, 1988)

T(A) = exp (~ogNd) cosh(c,pNd), (10)

where A is the neutron wavelength, d the thickness
of the filter and N the 3He density. oy and Op
are the spin-independent and polarisation-dependent
cross sections of *He, respectively. If the filter is not
perfectly polarised, a significant portion of the cor-
rectly polarised neutrons will be absorbed. Because
the absorption increases with increasing A, the thick-
ness d of the filter must be optimised for the wave-
length band to be used even if oy is small.

3He filters are now in regular use at the ILL on
several instruments. Due to wall relaxation of po-
larised He nuclei, the polarisation and transmission
of the filters decreases with time and they must be
exchanged. It is foreseen that *He filters will fur-
ther improve and find applications in particular at
pulsed neutron sources and instruments with large
area detectors. The method of using spin exchange
of He with optically pumped Rb vapor (Bouchiat
et al., 1960) is progressing too and may challenge the
metastable type of pumping. One major advantage of
the latter technique is that the filter does not have to
be exchanged during an experiment.

The development of SmCos polarising filters
has been conducted at ISIS. If the problems of
depolarisation of the neutrons within the filter and

of y-heating in intense neutron beams can be solved
one may obtain a quality factor of Q ~ 0.25 (Mayers
et al., 1986) that is lower than the maximum to be
achieved for a future 3He filter.

Polarised hydrogen can also be used as a polar-
ising filter. Moreover, the spin-dependent interac-
tion of the neutrons with the protons can be used
for contrast variation of hydrogen-containing mate-
rials in small-angle neutron scattering experiments
(Stuhrmann, 1999). We defer the interested reader
to the literature.

§4. Determination of Form Factors
and Spin Densities

Polarised neutrons make it possible to measure mag-
netic densities with improved accuracy as compared
to that of standard diffraction methods. The method
presented below applies to magnetic structures de-
scribed by a propagation vector Qg = 0. For a para-
magnet, a ferromagnetic component can be induced
by applying an external magnetic field. According to
Eq. (4) in the case of mixed nuclear-magnetic Bragg
reflections with real structure factors, the intensity
ratio R of scattered neutrons polarised by an external
magnetic field along the +z or —z direction, where z
is perpendicular to the scattering plane (that contains
Q), is given by
R I®_ N2+2NDi+DZ _ (N+D3p
[ N2-2ND% +D¥? ~ (N-D3)?

(11)

Dj is the projection of the magnetic interaction vector
D, along the z axis. Determination of a spin density
with polarised neutrons consists of measuring R at
many different Bragg reflections (bkl). As the crystal
structure and hence the chemical structure factors N
are presumably known (N depends on the Miller in-
dices), the method provides usually directly the values
of the magnetic structure factors. For small magnetic
amplitudes, polarised neutrons give an enhanced sen-
sitivity compared to unpolarised neutrons that yield
an intensity Iy, = N2+ %—Di The factor 2/3 comes
from the spherical averaging of D, in the second term

Table 1 Performance and Applications of Various Neutron Polarisers.

Technique Beam E range (meV) Instruments T P Q Ref.
Heusler fixed A E<80 TAS, DAX 0.62 0.95 0.56 Courtols {1999)
Supermirror white E<20 NSE, TAS, REF, TOF 0.9 0.95 0.81 Hoghoj et al. (1999)
SHe white E < 2000 DAX, TAS, TOF, SANS 0.4 0.80 0.26 Heil et al. (1999)

p targets white E > 2000 SANS 0.4 0.80 0.26 Heil et al. (1999)
SmCos white 20< E< 180 Not implemented 0.3 0.75 0.17 Mayers et al. (1986)

Note. The quoted values are only approximate, The notation is TAS, triple-axis spectrometer; DAX, double-axis diffractometer; NSE, neutron spin
echo; REF, reflectometer; TOF, time of flight; and SANS, small-angle neutron scattering. The quality factor is defined by Q= TP?, where the

transmission/reflection T and polarisation P are taken from the literature.
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of Eq. (4) over all directions with respect to Q for a
nonmagnetised isotropic sample.

Namely, considering a typical example with D, =
0.1N yields I,,p ~ 1.01N?, while the contrast as mea-
sured with polarised neutrons, R = 1.21N?/0.81N? =
1.49, is rather large. Therefore polarised neutrons
are particularly well suited for measuring maps in
compounds with small magnetic moments (for exam-
ple, heavy fermion systems) or with seriously diluted
magnetic moments (for example, molecular magnetic
crystals).

To extract the magnetic moment density from the
data, a classical Fourier calculation is usually per-
formed (for a recent review, see Schweizer (1995)).
Because

p(Q) =f J J m(r) exp (iQ-1)dr, (12)
one can obtain the spin density m(r) in real space by
the inverse Fourier transform through the relation

) = 3 T p(Qexp (~iQ ). (13)
Q

As the cloud of unpaired electrons that are responsi-
ble for magnetism is extended in real space, the mag-
netic form factor decreases with increasing Q and
equivalently with increasing Bragg indices (bkl). To
obtain precise measurements, data are to be taken
up to large values of scattering vectors Q. To that
end short-wavelength neutrons are to be preferred,
and instruments dedicated to such measurements pro-
vide usually hot neutrons, like the double-axis diffrac-
tometers D3 at the ILL and 5C1 at the LLB. The
layout of such an instrument is presented in Fig. 1.
Until now, no polarised neutron diffractometers have
been built at a spallation source. In any case, how-
ever, the data set is restricted to finite values of
b, k, 1, which leads to oscillatory distortions in the spin

Figure 1 Schematic arrangement of a two-axis spectrometer
used for the determination of magnetic densities. The monochro-
mator produces a polarised beam with the neutron polarisation
perpendicular to the scattering plane. A small guide field pre-
vents the neutron beam from depolarising. A spin flipper makes
it possible to reverse the neutron polarisation by 180° and hence
to measure the flipping ratio R. A magnetic field saturates the
magnetic moments of the sample along the neutron polarisation.

Magnetic Field

Detector

density maps m(r) due to finite size effects (Schweizer,
1995). Therefore, other reconstruction methods of
the spin density map have been developed. The two
most often used techniques are based either on in-
formation theory like the maximum entropy method
(Papoular and Gillon, 1990a,b) or on the multipo-
lar expansion of the electronic density (Gillon and
Schweizer, 1989). The latter method models the spin
density by a set of parameters that must be determined
by standard least-squares fitting calculations.

Magnetic Form Factors

Ever since the experiments of Shull and co-workers
in the 1960s on 3d ferromagnets (Shull and Yamada,
1962; Moon, 1964; Mook, 1966), the main moti-
vation to measure spin densities has been to gain a
better insight into electronic distributions in solid-
state materials. Since that time, measurements have
been extended to paramagnetic metals and to the 4f-
electrons in rare-earth compounds (Boucherle et al.,
1982; Moon, 1982, and references therein).

Whereas in 3d ferromagnets the atomic form factor
can be very precisely reproduced from spin-polarised
Hartree-Fock calculations (Watson and Freeman,
1961), there is a strong indication from form factor
measurements of a negative spin polarisation between
the atomic sites in both Fe and Co. Also, the mag-
netic moment density map in Ni (Mook, 1966) and
Pd (Cable et al., 1975) shows an aspherical d-electron
distribution plus an orbital contribution. In order to
allow for these effects, the form factor is usually writ-
ten as

Q) =2 (1+0) [<m> 1= 1-)A/z/c1(/'4)}

(g-2) 2
| &2 - oz, (14
where g is the Landé factor, o is a parameter describ-
ing the fraction of negative spin polarisation, vy is the
percentage of electrons in E, orbitals, which takes
into account the orbital contribution (Mook, 1966).
Apkl is a geometrical factor and (jo) and (js) repre-
sent the spherical and aspherical part of the form fac-
tor, respectively. A comparison of the calculated and
measured form factors for Ni yielding a uniform neg-

ative contribution equal to —0.0091ug /./0\3 is shown
in Fig. 2. The spin magnetic moment per Ni atom is
Hspin = 0.656up and the orbital contribution porpiel =
0.055up.

In contrast to metallic compounds with d electrons,
f electrons are well localised around the nuclei, which
makes it possible to perform atomic calculations to
obtain the spin distribution. As the orbital moment is
usually different from 0, there is a significant contri-
bution of the orbitals to the magnetic density. Also,
the spin—orbit coupling, which results in a mixing of
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Figure 2 Magnetic moment distribution of Ni in the [100] plane
(taken from Mook (1966)).
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the atomic wave functions, is important. The form
factors for the atoms of the rare-earth and actinide
series have been calculated by Freeman and Desclaux
(1979) using the relativistic Dirac~Fock theory. It
was shown that the atomic form factor can be ex-
pressed as

AQ) = (o) +c2(f2) +calja) +cs (js), (15)

where

el
Q) = [ " PjiCnanar. (16)
U(r) is the radial wave function for the unpaired elec-
trons in the atom, and j;(Qr) the Bessel function of Ith
order. The coefficients c; are tabulated in, e.g., Brown
(1992).

Among the rare-earth elements, Samarium repre-
sents a particular case as the orbital and spin con-
tributions to the magnetisation almost cancel out so
that the magnetic density map contains both positive
and negative regions. This leads to a form factor that
has a maximum located at a position different from
Q =0. The Sm form factor measured in SmCos is
shown in Fig. 3. An interesting effect is that as the
first excited crystal-field states are located at relative
low energies, they become populated when the temper-
ature approaches 300 K. Consequently, the magnetic
moment of Sm is only s ~ 0.04up at room temperature
and increases to u ~ 0.38up for T=4.2 K (Givord et al.,
1979). For all temperatures, however, the form factor
of Sm has a strong orbital character.

Finally, we should point out that a study of the
spatial distribution and temperature dependence of
the spin density makes it possible to probe the spin
susceptibility %(Q,0). As such the method can be

Figure 3 (a) Experimental form factor for Sm at 7 = 4.2 K. The
line corresponds to a calculation including crystal field, exchange
and spin—orbit effects. (b} Same for T = 300 K (taken from Givord
et al. (1979)).

1.0

5 1.0  sin &/A(A-1)

used to investigate the nature of the electrons, e.g.,
in superconductors. For example, in V3Si (Shull and
Wedgwood, 1966), it was shown that the spin sus-
ceptibility of the V electrons disappears upon entering
the superconducting phase, which is an indication of
spin pairing. On the other hand, no similar effect
could be observed in the new heavy-fermion super-
conductors UPt3, UBe;3 and CeCuySiy. For the lat-
ter compounds, the spin susceptibility is temperature
independent in the superconducting phase (Stassis
et al., 1986). These results are of particular im-
portance as they impose severe restrictions on the
possible pairing mechanisms that can give rise to
the electron pairing in these unconventional heavy-
fermion superconductors.

Magnetisation Distribution in Molecular Magnets

Molecular magnetism is a fast growing field in ma-
terial science with potential important technological
applications in electronic devices. By building blocks
of molecules that contain magnetic centres, magnetic
interactions can be tuned and the aim is to synthesize
organic compounds that exhibit magnetic ordering at
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room temperature. To that end, as the number of
combinations offered by organic chemistry is almost
infinite, it is essential for the mechanism of magnetic
couplings originating from 2p electrons to be well un-
derstood (Kahn, 1993).

In contrast to ionic systems where the electrons
that carry magnetism are well localised around the
nuclei, the magnetic density of organic compounds is
distributed over all molecules due to covalency effects.
The effect of delocalisation is even more pronounced
when there is no magnetic ion in the molecule and
magnetism is due to 2p electrons only (Schweizer,
1997). Polarised neutron diffraction yields directly
the distribution of electrons responsible for mag-
netism in organic materials, which in turn can be
directly compared to theoretical calculations for the
electronic wave functions and the chemical bonds
(Ressouche, 1999). Spin density in molecular com-
pounds can also be used to trace exchange pathways
through the molecules, like when spin polarisation
is found on atoms that in principle are nonmag-
netic. This is for example the case in the free radi-
cal nitronyl nitroxides NitPy(C=C-H). NitPy(C=C-
H) builds zig-zag chains linked by C=C-~H- - -O pieces
where the hydrogen bridge two molecules. As shown
in Fig. 4, significant spin population is found at the
hydrogen positions (1~ 0.04ug), which indicates that
the hydrogen bond is involved in the ferromagnetic
exchange interactions between the molecules (Pontil-
lon et al., 1997).

A typical example of spin delocalisation is found
in the compound MnCu(pba)(H,0)3 - 2H,0, with
pba=1,3-propylenebis(oxamato). The Mn2* and
Cu?* ions are connected by oxamato bridges and
build ferrimagnetic chains. The Mn2* ions carry a
spin Sy = 3 and the Cu?* have an effective spin
Scu = % Therefore we have the situation where two
magnetic metals are linked by organic species. The
magnetisation, as obtained from polarised neutron

Figure 4 Spin density projection in NitPy(C=C—H). The contour
step for the pyridine cycle is 0.008ug/A2, whereas for the Nit cycle
a step is equal to 0.04.5/A2 (taken from Pontilion et al. (1997)).

Hi6

/

01+

diffraction (Baron et al., 1993, 1996), shows a pos-
itive spin population (i.e., the induced magnetisation
is aligned along the applied magnetic field) for the Mn
spins, whereas it is negative for the copper magnetic
moments. This reveals the antiferromagnetic nature
of the intrachain coupling. Interestingly, an impor-
tant contribution to the spin density map is found on
the neighbouring oxygen and nitrogen ions and on
the two central carbon atoms. Summing up the pos-
itive and negative spin polarisations individually, one
obtains 5.1up and —1.0up, respectively, which shows
that the metallic ions have distributed their spin densi-
ties on the molecule. The magnetic moment distribu-
tion for MnCu(pba)(H,O)3 - 2H, O is shown in Fig. 5.

Figure 5 also shows the theoretical spin density
for the “CuMn” molecule projected onto the oxamid
mean plane. The theory is based on the local

Figure 5 (a) Experimental spin-density map of MnCu(pba)
(H20)3 - 2H20. The contour step is 0.005u/A2. The continu-
ous line represents the positive spin distribution while the dotted
line describes the negative magnetisation. (b) Calculated spin
density map for an isolated molecule with the DMol® method
(after Baron et al. (1996)). The lowest contour is at 0.005u5/A2,

Mn o1

a)
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spin-density functional principles of Perdew and
Wang (1992). Calculations for the cation (2+) in vac-
uum are done with the DMol?® method (Delley, 1990,
2000). On comparing with experiment it is clear that
there is a disagreement with theory on the sign of
the spin density at the bridging carbon atoms. One
should remember, however, that the theory applies to
anisolated cation in vacuum. Calculations for smaller
than the formal charge reverse the spin density at the
bridging carbons. The crystal environment may also
change areas with small spin density.

Spin Susceptibility in the High-T; Superconductor
YBasCuszO7_yx

The discovery of the high-T, superconductor
Lay_,Ba, CuO4 with T, = 35 K by Bednorz and Miuiller
(1986) has been at the origin of an enormous amount
of work to understand the electronic (charge and spin)
correlations in these materials. Following the discov-
ery of the Lay_,Ba,CuO4 compound, other materials
exhibiting similar or higher transition temperatures
for superconductivity have been synthesised, like
Lay_»SryCuO4, Ndy_,CexCuOy4, YBayCu3O7_, and
others. All these materials share common features of
their crystallographic structure. They possess CuQO;
layers well separated from each other, so that they can
be considered as quasi-two-dimensional materials. In
this class of materials, superconductivity is achieved
by carefully tuning the amount x of Sr, Ce or O, which
results in doping the CuQO3 layers with charge carriers.
The important feature is that the cuprate materials
are either antiferromagnets and insulators o7 param-
agnetic metals and superconductors below a critical
temperature T.. Important antiferromagnetic corre-
lations and fluctuations persist in the superconduct-
ing phase. The role played by these fluctuations in
the formation of the superconducting state is still the
subject of an intense debate. A central piece of the
physics of the high-T¢ superconductors is the under-
standing of the charge and spin states in the CuQ;
layers as a function of doping both below and above
the transition temperature T,.

The intensity of the scattered neutrons can be di-
rectly related to the spin susceptibility at Q =0 and
o = 0 through the dissipation—fluctuation theorem. As
the signal is particularly small in the high-T, com-
pounds, use of polarisation analysis is required to
enhance the contrast and to isolate the weak mag-
netic contribution. The results obtained for the tem-
perature variation of the local susceptibility at the
copper sites in the CuO, layers is shown in Fig. 6.
A particularity of the temperature dependence of
the signal is the appearance of the so-called spin
pseudo-gap in underdoped YBa;CuOg sy for which

Figure 6 Local spin susceptibility as a function of temperature
on copper sites inthe CuOz layers in the high- T superconductors
YBapCuszOy_y (taken from Regnault et al. (1998)).
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the spin susceptibility drops above T.,. On the
other hand, the local spin susceptibility in optimal
doped samples decreases only upon cooling below the

superconducting temperature (Boucherle et al., 1993;
Henry et al., 1994).

§5. Spherical Neutron Polarimetry

Spherical neutron polarimetry (SNP) has recently been
developed and successfully tested at the ILL (Brown
et al., 1993) as an alternative way of measuring mag-
netic structures. Moreover, this method makes it pos-
sible to determine form factors and spin densities in
antiferromagnets for which very few data are avail-
able. The classical technique discussed in §4 cannot
be applied in antiferromagnets with propagation vec-
tor Qg = 0 when the magnetic and nuclear structure
factors are in phase quadrature. For such cases, like
Cr;03 or even hematite, the neutron cross section 6
is polarisation independent (Brown et al., 1999) when
using that

Pio = Po(1—-7%)+2y2Q(Po - Q) +21(Po x Q),

with 6 = 1+7% and YQ = ID,(Q)/N. On the other
hand SNP gives access to the complete set of inde-
pendent correlation functions involved in the nuclear—
magnetic scattering process by a direct measurement
of the three components of the polarisation vector Pg
of the scattered neutrons. Equation (§) shows that
if the polarisation P; of the incoming neutron beam
is fixed, a measurement of Pf allows in most cases
an unambiguous determination of the direction of the
magnetic interaction vector D, . This is an alternative
way of determining magnetic structure factors to the
standard diffraction method that relies on a precise
measurement of neutron intensities. Measuring inten-
sities with unpolarised neutrons is the same as mea-
suring D, - D%, which leads to a loss of phase factors
and often magnetic structures cannot be unambigu-
ously resolved by diffraction. SNP has been success-
fully applied in problems involving complex magnetic
structures, like spiral structures, systems with mag-
netic domains and small magnetic moments, and frus-
trated antiferromagnets. It must be pointed out that
the method is sensitive to the direction of the magnetic

(17)
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interaction vector only and not to its magnitude. In
this case, finding the value of magnetic moments
requires, as usual, the comparison of magnetic and
nuclear cross sections. In contrast to standard single-
crystal diffraction, it is insensitive to secondary ex-
tinction and allows magnetic structure determination
of samples even in the presence of magnetic domains.
Namely, magnetic domains depolarise the neutron
beam according to their respective population. In
other words, the domain population is obtained by
measuring the amplitude of the neutron polarisation
vector Pr. In order to perform spherical neutron po-
larimetry a nonisotropic domain distribution is usu-
ally necessary. It can be induced for example by the
application of uniaxial pressure.

Spherical neutron polarimetry outperforms stan-
dard polarised neutron scattering as it makes it possi-
ble to measure both the longitudinal and transverse
components of Pr. Namely, if a magnetic field is
applied to the sample, as is the case for the longitu-
dinal polarimetry explained in §4, only the compo-
nent of the polarisation longitudinal to the field can
be measured. The transverse components depolarise
rapidly and are lost (Newton and Kittel, 1948). This
is the case in antiferromagnets with mixed nuclear—
magnetic Bragg reflections, where most information
is contained in the transverse components through the
nuclear-magnetic interference term.

Realisation of a Zero-Field Chamber: Cryopad

Following the introduction in the previous section it
is clear that the transverse components of the polari-
sation can only be measured if the sample is placed in
a zero-field chamber. Such a device (called Cryopad)
has been constructed at the ILL (Fig. 7) (Tasset et al.,
1999). It consists of two cylindric Meissner shields
in the superconducting state. The diameter of the
inner shield is large enough to accommodate a cryo-
stat and/or other devices to define the sample environ-
ment. Cryopad is centred on the sample table and its
orientation is fixed with respect to the wave vector k;
of the incident neutrons. Therefore, the sample can
be oriented independently from Cryopad in order to
access various Bragg reflections.

Figure 7 Schematic zero-field chamber Cryopad Il used for
spherical polarimetry at ILL (taken from Tasset et al. (1999)).
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The components of the polarisation of the incident
and scattered neutrons are defined independently by
means of two rotating solenoids (called nutators) that
are placed in the incident and scattered neutron beam.
They act as guide fields in order to orient the neu-
tron polarisation vectors Py (0 = incident, final) in
the plane parallel to the Meissner shields (transverse
to kq). Two spin-turning coils between the Meissner
shields apply a horizontal field transverse to ky and
allow the definition of the component of Py, along k.
The modulus of P; is determined by measuring the
flipping ratio of the scattered neutrons simply by re-
versing the field of the nutator after the sample. This -
can be accomplished quickly by reversing the current
in the solenoid. The combined use of the nutators
and of the spin-turning coils in Cryopad allows the
analysis of P¢ for any direction of P;. In practice,
the information is obtained by measuring the three
orthogonal components of the final polarisation P¥
(o0 = x,y,2) for the three orthogonal directions of the
initial polarisation P;. The direction x is defined as
being along the scattering vector Q, z is chosen per-
pendicular to the scattering plane and y is the last
orthogonal direction. For example, if the initial po-
larisation is chosen along the z axis, the component
of the final polarisation along the x direction is given
by Pi = (s — 1y ) /(1124 + my.), where n,, and My
are the number of neutrons with spins along or anti-
parallel to the x axis, respectively (Tasset et al., 1999).
Measuring the nine flipping ratios is sufficient for de-
termining the required information about the orien-
tation of the magnetic interaction vector D 1(Q) and
to obtain the value of the ratio between magnetic and
nuclear amplitudes [D, (Q)|/N. Geometrical relation-
ships between the direction of the final neutron polar-
isation relative to P; have been derived by Nunez et al.
(1991) and are of great help to determine the direction

of D,(Q).

Example: UPtGe

Heavy-fermion materials are characterised by a very
large linear coefficient of the specific heat and a
greatly enhanced Pauli susceptibility, correspond-
ing to effective masses of the quasi-particles of
about two orders of magnitude larger than the free
electron. Heavy fermions are therefore ideal sys-
tems for studying strong electron correlations and
the number of compounds showing heavy-fermion
behaviour is large. The ground state of these
systems varies from metallic (CeCug, Celnz) to
insulating (Ce3BisPt3) and from antiferromagnetic
(UzZny7, UPdyAl;, UNiAl3) to superconducting
(UPt3, UPd2A13, UNizAIg,, CeCquiz). In most of
these systems the magnetic ground state is determined
by the competition between the Kondo effect that tries
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to screen the magnetic moment and the RKKY inter-
action that tends to stabilise a ground state with long-
range magnetic order.

Noncollinear magnetic structures in compounds
with localised spin densities can be explained on the
basis of the Heisenberg model to originate from com-
petition between exchange forces. In systems with Sf
electrons, like UsP4 or UyPdySn, it has been shown
by calculations based on the local spin-density func-
tional theory that a noncollinear arrangement of the
magnetic moments is the consequence of strong spin—
orbit coupling (Sandratskii and Kiibler, 1995). How-
ever, this theory does not favour the helicoidal type of
magnetic structures found in UPtGe.

As an example of a magnetic structure deter-
mination with the help of spherical neutron po-
larimetry we show results obtained from the ternary
compound UPtGe that orders below Ty ~ 50 K with
a propagation vector Qp = (0.554, 0, 0) (Robinson
et al., 1993). Measurements in single crystals using
unpolarised neutrons could not decide between an
amplitude-modulated spin-density wave and a cycloid
with unequal magnetic moments along the 2 and ¢
axes (ellipticity), respectively, yielding for the two
models similar agreement factors between observed
and calculated structure factors (Szytula et al., 1992;
Robinson et al., 1993).

It is seen from Eq. (5) that the direction and the
amplitude of the polarisation of the scattered neu-
trons depend upon the value of the chiral term. In
particular, the chiral component disappears, when
D.(Qp) is parallel to D%(Qq), as is the case for an
amplitude-modulated wave and the polarisation of
the neutron precesses by 180° around the scattering

vector (Nunez et al., 1991). In contrast, the chiral
term gives a contribution to Py if the magnetic struc-
ture is a cycloid. Hence, the direction of Py depends
on the scattering geometry. Spherical neutron po-
larimetry therefore makes it possible to distinguish
between an amplitude-modulated spin-density wave
and a helix (Paixdo et al., 2000). For UPtGe, the di-
rections of polarisation of the diffracted neutrons for
directions of P; perpendicular to the scattering plane
(2), along the scattering vector (x), and along a third
direction in the scattering plane but perpendicular to
x are summarised in Table 2. The results of spheri-
cal neutron polarimetry unambiguously show that the
magnetic structure of UPtGe is a cycloid with an axis
ratio ~1.24 (Mannix et al., 2000) as shown in Fig. 8.

§ 6.

Inelastic Neutron Scattering with
Polarised Neutrons

In analogy to the neutron cross section derived by
Blume (1963) for the elastic case, there are three con-
tributions to the inelastic cross section:

e apure nuclear one that gives rise to phonon scat-
tering,

e a pure magnetic one when neutrons are scat-
tered, e.g., by spin waves and

e a magnetic—nuclear interference term that is
present only in special cases, as, e.g., when the
spin-lattice interaction in a ferromagnet cannot
be neglected.

The inelastic neutron cross section and its rela-
tionship to the neutron polarisation have been de-
rived by many authors (see, e.g., Squires (1978) and

Table 2 Spherical Neutron Polarimetry Data Obtained with Cryopad in UPtGe (after Mannix et al. (2000)).

Pi Py Pcaic
hki X y z X y z X y z
0*00 0 0 0.9 0.01 -0.05 0.91 0 0 0.90
0 0.9 0 0.08 -0.91 —0.04 0 -0.90 0
0*20 0 0 0.9 0.94 -0.11 ~-0.12 0.97 0 —0.11
0 0.9 0 0.94 -0.02 0.03 0.97 0.11 0
2720 0 0 0.9 -0.91 0 0.16 -0.95 0 0.20
0 0.9 0 -0.91 -0.10 -0.01 ~0.95 -0.2 0
0-20 0 0 0.9 . —0.93 0.05 -0.14 -~0.97 0 -0.11
0 0.9 0 -0.92 0.13 -0.,02 -0.97 0.1 0
0 0 -0.9 -0.92 0.14 0.09 ~-0.97 0 0.1
0 ~0.9 0 ~0.93 0 -0.04 -097  —-0.11 0

Note. Pj, P; and Pgqic are the incident, scattered and calculated neutron polarisations. The polarisation axes are defined as Xbeing pérefllel to the
scattering vector Q, y being perpendicular to Q and in the scattering plane and z being vertical.
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Figure 8 Magnetic structure of UPtGe as determined by spher-
ical neutron polarimetry using the Cryopad device (after Mannix
et al. (2000)).

Lovesey (1984)). In the following we shall reproduce
the calculations of Maleyev (1999), which expresses
the time-dependent scattering amplitudes in terms of
the Van Hove correlation function

<A,B>y,

nSAB(®) = (18)

1—exp(—w/T)
where < A, B >, is the absorptive part of the gener-
alised retarded susceptibility

<A,B>y =n(l-exp (—o)/T))Z"] Zexp (—~E;F‘1)
a, b
XAahBpad(@+ Eqp). (19)

A and B are operators like N(Q) or D, (Q) from
Eq. (4); Z7! is the partition function and E, ;, are the
energies between eigenstates of the system. Expressed
in such terms, the inelastic neutron cross section is
given by

O = Oy + Oy + Oy (20)
with
kel 1 "
Oy = EEW < N(-Q),N(Q) >
- kfl 1 o ﬁ "
Om = EE mﬁ < D7 (-Q),Di(Q) >,
X(B[xl} +1‘E(xﬂ'}/1)ffy)
/{f 1 1 "
Onm = E - Wk N(-Q),DL(Q) >,
+< Dy (~-Q), N(Q) >,) - P;. (21)

{0, 8,7} = {x,y,z} in Cartesian coordinates. The po-
larisation vector Ps is accordingly given

o for nuclear scattering by Pso, = Pic,,

e for pure magnetic scattering by

ProGy o Pig(< DE(-Q), DY(Q) >4 + < D (-q),
DE(Q)>4)~8ag < D (-Q),
DY(Q) >{, ~ieapy < Di(-Q), DL(Q) >4,

o for magnetic-nuclear interference scattering by

PGy x < N(_Q)le<Q) >I(:) + < D_L(—Q):
N(Q) >4 +i[< N(-Q),D_(Q) >4 — < D, (-Q),
N(Q) >G] xP;.

It turns out from these equations that, whereas
phonons do not change the neutron polarisation, scat-
tering by spin waves does. As we will see below this
feature is very useful for separating and identifying
the different magnetic modes in ferro- and antiferro-
magnets. For the particular cases of simple ferromag-
nets and of two-sublattice collinear antiferromagnets,
explicit expressions for the polarisation dependence
of the inelastic neutron cross section can be found
in the classic paper of Izyumov and Maleev (1962).
The magnetic-nuclear interference term gives rise in
particular to the so-called magneto-vibrational scat-
tering and is also important for a proper understand-
ing of magneto-elastic scattering. Their origins are
due to the fact that the cloud of electrons that car-
ries magnetism follows the nuclei when they oscillate
around their equilibrium position and that the mag-
netic moment is modulated by the lattice vibrations,
respectively. The magneto-vibrational scattering is in-
elastic in the nuclear system but elastic in the magnetic
one. It occurs at the same positions in reciprocal space
as the phonons but with a polarisation dependence.
It has been exploited, e.g., to measure the magnetic
form factor through the polarisation dependence of
phonons at general Q positions in Fe (Steinsvoll et al.,
1981).

Longitudinal Neutron Polarimetry

The first spectrometer that allowed the analysis of
the scattered neutrons was built by Moon, Riste and
Koehler by replacing the monochromator and analy-
ser of a triple-axis spectrometer with ferromagnetic
crystals that were saturated in a magnetic field (Fig. 9)
(Moon et al., 1969). In contrast to spherical neu-
tron polarimetry the polarisation is maintained by
means of guide fields throughout the instrument. As
a consequence, only the component of the neutron
polarisation parallel or anti-parallel to the field direc-
tion can be measured, whereas the transverse com-
ponents depolarise and are lost. In exactly the same
way as the magnetic-nuclear interference term can-
not be measured by standard diffraction, the same
effect happens for the inelastic counterpart. The
magnetic-nuclear interference contribution leads to
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Figure 9 Schematic arrangement of the three-axis spectrom-
eter for polarised neutrons used by Moon et al. (1969), at Oak
Ridge National Laboratory.
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a rotation of the initial polarisation, which averages
out if a magnetic field is applied. Such a contribu-
tion is only accessible if the sample is enclosed in a
zero-field chamber, like the Cryopad device. The stan-
dard triple-axis instrument with polarisation analy-
sis developed by Moon et al. makes it possible to
measure the energy, momentum and spin dependence
of cross sections with the restriction that only longi-
tudinal polarimetry can be performed. In practice,
two basic scattering geometries are commonly used:
Namely the spin-flip and non-spin-flip cross sections
are measured with the polarisation of the neutrons
either parallel or perpendicular to the scattering vec-
tor Q.

An immediate application of longitudinal po-
larimetry is that for P || Q all magnetic scattering in-
volves processes in which the spin of the neutrons
is flipped because D, = 0. We point out again (see
Eq. (3)) that this is a general rule valid for elastic and
inelastic as well as coherent and incoherent scatter-
ing. In contrast, if the scattering geometry is chosen
such that P; L Q and M || P; then the elastic magnetic
scattering (Dy = D, = 0) is non-spin flip, whereas the
inelastic scattering is spin flip (8D,, transverse exci-
tations) and non-spin flip (8D,, longitudinal excita-
tions), respectively.

Polarised neutrons in inelastic neutron scattering
are often used to separate the magnetic from the nu-
clear scattering or to distinguish magnetic fluctuations
perpendicular and transverse to the magnetisation or
scattering vector. When scattering by phonons dom-
inates a neutron spectrum an unambiguous determi-
nation of the magnetic contribution to the neutron
cross section can be accomplished by measuring the
scattering with P; || Q. A typical example for UFe;
is shown in Fig. 10, where the linear dispersion curve
of the acoustic phonons can be distinguished from the
quadratic dispersion curve of the spin-wave branch in
UFe; at low T'in the crossover regime (Paolasini et al.,
1996).

Figure 10 Constant-energy inelastic scan in UFe, using po-
larisation analysis showing that spin waves occur in the spin-flip
channel (black symbols), while scattering by phonons is non-spin
flip (open symbols) (taken from Paolasini et al. (1996)). The line
is simply to guide the eye. See text for details.
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Longitudinal polarimetry is not only an important
method for measuring magnetic and nuclear cross sec-
tions unambiguously; it is also very powerful in sep-
arating self- and collective dynamics in materials that
contain strong incoherent scatterers like hydrogen in
biological materials and polymers (Cook et al., 1990)
(see §7).

The XYZ Method

The longitudinal polarimetry method can be gener-
alised to polarisation analysis along the three Carte-
sian directions, the so-called XYZ method (that is,
however, to be distinguished from spherical polarime-
try). This method makes it possible to apply the
technique of polarisation analysis to time-of-flight
spectrometers with multidetectors. With the coordi-
nate system shown in Fig. 11, the non-spin-flip (NSF)
and spin-flip (SF) cross sections are given by (Scharpf
and Capellmann, 1993)

y 1 1 .
ONSE = FONS + 5 OM sin” 0.+ ON (22)

Figure 11 Geometry of the XYZ polarisation method. P; and
P; are the polarisations of the incident and scattered beams,
respectively. Q is the scattering vector.
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1
O.I{ISF = %CYNS*‘ i—GM cos® o+ ON (23)
1
ONiSE = 3ONS + 5 OM +ON (24)
2 1 2
(Y§F= '3"(5NS+§0'M(1 +Cos™ o) (25)
1 .
Odp = %oN5+EGM(1 +sin® o) (26)
2 1
ofp = FONs + 5 OM; (27)

where oy is the magnetic, oy is the nuclear spin inco-
herent and oy is the coherent plus isotopic incoherent
nuclear scattering cross section. The magnetic scat-
tering can be isolated by combining these equations
in the following way (independent of the angle o)

1

y
7 OM = 20%;sF — Oysr — OXsE (28)

= OgF + O3y — 2. (29)
The XYZ method has been applied successfully in de-
termining the dynamical magnetic response in met-
als with small magnetic moments like V504 (Taylor
et al., 1999) and in probing both atomic and spin cor-
relations, e.g., in spin glasses (Murani et al., 1999)
or magnetic defects in disordered alloys. A full ac-
count of the applicability of the XYZ technique to
this problem has been recently reviewed by Cywinski
etal. (1999, and references therein). Another impor-
tant application of the XYZ method is that it makes it
possible to separate incoherent and coherent atomic
motions, as presented in §7.

Paramagnetic Scattering

According to the Rhodes and Wohlfarth (1963)
theory, magnetic materials with d electrons can be
classified in localised and itinerant systems. While
for systems with localised spin densities, the magnetic
moment in the paramagnetic phase is temperature in-
dependent, the ratio between paramagnetic and or-
dered moments varies with temperature in the Stoner
model. The theory of spin fluctuations for localised
and itinerant magnetic systems is reasonably well de-
veloped in the paramagnetic phase (Moriya, 1985).
In that respect, inelastic scattering of neutrons pro-
vides direct experimental information on the spec-
trum of spin fluctuations on an absolute scale as it
gives access to the space and time variation of the
spin-spin correlation function S(Q, ®) that is related
to the imaginary part of the dynamical susceptibil-
ity x(Q, @) (Lovesey, 1984). Paramagnetic scattering
is usually very weak and difficult to separate from
coherent (phonons) and incoherent nuclear scatter-
ing. However, the signal can be uniquely identi-
fied in experiments by using the difference method,
namely, the difference between the s pin-flip scattering

as measured in a (small) field parallel to Q and that
perpendicular to Q contains only magnetic scattering
(Squires, 1978; Ziebeck and Brown, 1980), the rea-
son being that the inelastic scattering from phonons
is suppressed and nuclear incoherent scattering and
room background cancel. This statement is generally
valid as long as the nuclear magnetic moments are dis-
ordered, i.e., (I3) = (I2) = (I2) = }1(I+1), and (I,) = 0.
Nuclear ordering occurs only for extremely low tem-
peratures (Siemensmeyer et al., 1997).
Therefore one obtains, for example,
1] d*c ] [d?c"~ d2o* -
Z[dmdQJm - [da)dsz}” B [dconL
} [d20.+,+] _ [d20+,+] . (30)
dodQ |, |dodQ I

Once the intensity of the paramagnetic fluctuations
is measured, the E-integrated intensity can be put
on an absolute scale by comparison with an acous-
tic phonon measured close to a Bragg peak (Ishikawa
et al., 1985) or by using an incoherent scatterer like
vanadium. Hence, an effective, paramagnetic mo-
ment can be found, defined by

1 Troo 1/2
M(‘”zf—‘” S(q,o»dw] , (31)

(@) [Jo

where f(g) is the form factor (Ziebeck and Brown,
1980). Ishikawa et al. (1985) pointed out that
Eq. (31) overestimates the amplitude of spin fluctua-
tions at low temperatures when the energy range of
the spin fluctuations extends beyond ~kgT.. They
propose instead to use the Kramers—Kronig relation
to obtain first the static susceptibility that is linked via
the fluctuation~dissipation theorem to the amplitude
of the spin fluctuations through (M2(g)) = 3kaTx(q)
for hw < kT and

©° S(g,0)[1- —bhw/kpT
X(q)zgzyéj_m (g, ®)[ e;f)( w/kp )]dco.

(32)

Measurements of the paramagnetic fluctuations in
MnSi with a coarse energy resolution (so that the E
integration is automatically performed) with Eq. (31)
(Ziebeck and Brown, 1980) and Eq. (32) (Ishikawa
et al., 1985) show that the amplitude of the local
magnetic moment indeed increases with increasing
temperature, in agreement with self-consistent renor-
malisation theory (Fig. 12) (Moriya, 1985).

Using the difference technique, the scaling be-
haviour of many different itinerant ferromagnets has
been investigated in the paramagnetic phase and it
was shown that the scattering functions of Fe and Ni
can be modelled above T, by a simple Lorentzian scat-
tering function given by (Wickstead et al., 1984)

K2 r
(= !

S(g, 0) = —O)mw,

®
1—-exp(—0)/T)x 133)
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Figure 12 Temperature dependence of 4nq?(MZ) plotted
against g in MnSi as measured with polarised neutrons by
Ishikawa et al. (1985). It is apparent from the figure that the
mean-square amplitude of the spin fluctuations increases with
increasing temperature in agreement with the calculations of the
self-consistent renormalisation theory (Moriya, 1985).
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where the inverse correlation length « = xo(T/T, —
1)07. the line width Ty = Ag**fix/q) and f(x) is ap-
proximately given by the Résibois—Piette scaling func-
tion (Résibois and Piette, 1970).

To conclude, polarised neutron scattering is a pow-
erful method for measuring paramagnetic fluctua-
tions in particular when the signal is weak.

Transverse and Longitudinal Excitations in Ferro-
magnets
The magnetic properties of compounds with localised

spin densities are usually described by the Heisenberg
Hamiltonian

H==3 ]SS,
iy

(34)

where Jj; is the exchange integral between the spins
located at the 7 and j positions, respectively (Fazekas,
1999). Depending on the sign of the exchange inte-
gral, Eq. (34) favours either antiferromagnetic or fer-
romagnetic ground states. If exchange interactions
extend beyond nearest neighbours, competing effects
can occur that may lead to noncollinear or even in-
commensurate magnetic structures.

Because of its simplicity, the Heisenberg ferromag-
net is often taken as a model system for studying the
properties of phase transitions. Within the simple pic-
ture of localised spins, long-range order is lost due
to the thermal excitation of spin waves that evolve
into the critical scattering at T.. Using unpolarised
neutron scattering the spin dynamics close to T, has
been investigated in detail (Passell et al., 1978). It was
shown that the spin waves, i.e., the spin fluctuations

transverse to the magnetisation vector M, renormalise
close to T and that the susceptibility (g) as measured
at small angles diverges at small q for T — T.. Here, q
is the reduced momentum transfer with respect to the
nearest Bragg peak. The divergence of x(q) is due to
longitudinal fluctuations along M because the cross
section for spin waves does not contain a correlation
length that diverges at T.. Unpolarised neutron scat-
tering was not successful in detecting the longitudinal
fluctuations in ferromagnets in contrast to the situa-
tion in antiferromagnets (Horn et al., 1978; Coldea
et al., 1998), where they can be easily observed.

The longitudinal fluctuations can be isolated by
means of inelastic neutron scattering with polari-
sation analysis (Boni et al., 1990, 1991). The
experiment is performed by measuring the differential
spin-flip and non-spin-flip cross sections from a ferro-
magnetic sample, for example, EuS, that is saturated
in a vertical magnetic field B, that is perpendicular to
the scattering vector Q. Figure 13 shows three typical
measurements on EuS that have been performed lon-
gitudinal and transverse to the reciprocal lattice point
(200) at 0.93 T, (Boni et al., 1995, 1997).

The spin-flip data show the spin waves with po-
larisation vectors &S transverse and parallel to the
reduced momentum transfer q. The former are the
Goldstone modes of the system and diverge like x7, o
1/g* (Table 3). The longitudinal spin waves attain a
mass (Fisher and Aharony, 1973a,b) due to the dipo-
lar interactions and do not diverge, x%, o 1/(q* +q2D).

Figure 13 Constant-Q scans probing magnetic fluctuations in
the ferromagnetic phase of EuS. The solid lines are fits to the
data using Lorentzian spectral weight functions convoluted with
the resolution function of the spectrometer IN14 at the ILL. The
longitudinal spin waves are reduced in intensity due to the dipolar
interactions. The parallel fluctuations are quasielastic.
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Finally the non-spin-flip data show the longitudinal
fluctuations that are quasielastic and diverge like %,
1/(g* +x2). Because the width I'; of %.(q, ®) is com-
parable to the spin wave energy E, it is clear why
the longitudinal fluctuations escaped detection with
unpolarised neutron scattering. The results are in
qualitative and quantitative agreement with a coupled
mode analysis (Lovesey, 1993) and mode-mode cou-
pling theory (Schinz and Schwabl, 1998).

Spin Waves and Phasons in Incommensurate, Anti-
ferromagnetic Cr

One of the outstanding features of antiferromagnetic
Cr is the occurrence of an incommensurate spin-
density wave below Ty = 311 K that is transversely
polarised (S perpendicular to Q*) with Q* = (1 +
8,0,0) being the incommensurate wave vector (for
a review, see Fawcett (1988)). The magnetic excita-
tions exhibit many unusual features that are not well
understood. In particular, the magnetic modes that
originate from the magnetic satellite peaks at Q* have
such a steep dispersion that the creation and annihila-
tion peaks cannot be resolved anymore. Using inelas-
tic scattering of unpolarised neutrons and analysing
the width of the peaks in constant energy scans led
to the conclusion that the velocity of the excitations

is Csw ~ 1020 meVA (Als-Nielsen et al., 1971). This
value deviates significantly from the theoretical value
of a random phase approximation (RPA) that is given

by cth = \/§UF ~ 1500 meVA, where vF is the Fermi

velocity (Fishman and Liu, 1996a,b). When unpo-
larised neutron scattering is used, it has been shown
that transverse (with respect to the staggered magneti-
sation) and longitudinal excitations contribute to the
inelastic scattering that emerges from the incommen-

surate Q* satellite peaks (Lorenzo et al., 1994),
In the absence of sizable magnetic-nuclear interfer-

ence contributions in the cross section, the most direct
way of separating the transverse from the longitudi-
nal fluctuations is the use of longitudinal polarimetry.
For such an experiment it is necessary to use a Cr sin-
gle crystal cooled through Ty in a large magnetic field
in order to induce a single-Q state. During the experi-
ment, a vertical field B = 4 T was applied along [0 0 1]

Table 3 Transverse and Longitudinal Susceptibilities of a
Heisenberg Ferromagnet with Dipolar Interactions in the Ordered
and Paramagnetic Phases for Different Directions of the Momen-
tum Transfer q and Accessible by One-Dimensional Polarisation
Analysis (taken from Boni et al, (1997)).

T<Te T>Te
Mg GFrada ot
q° fo z+4p G2 +K2 G2+ z+Qg

ML 1, 1 1 2 _,__1
9 L N P T @i

in order to enforce a single-domain spin-density wave
with the magnetic moments aligned along the [0 1 0]
direction. In this configuration, the spin-flip scatter-
ing is due to the longitudinal modes and the non-spin-
flip scattering due to the transverse modes.

Figure 14 shows constant energy scans for E = 4.2
meV measured in the transverse spin-density wave
phase at T'=230 K (0.74 Ty) (Boni et al., 1998). It is
clearly seen that the inelastic, incommensurate peaks
with transverse polarisation are significantly sharper
than the corresponding longitudinal peaks. There-
fore, the mode velocity of the spin waves, cgy, is
significantly larger than the mode velocity of the pha-
son modes, cph. These results are in qualitative agree-
ment with results of RPA theory (Fishman and Liu,
1996a,b). In addition, the data show that the en-
hanced magnetic scattering at [1 0 O] and E =4.2 meV
has a longitudinal polarisation. Without going into
further details the results indicate that a proper under-
standing of the magnetic excitations in Cr can only be
gained if polarisation analysis is used.

Figure 14 Constant-£ scans at 4.2 meV, probing the longitu-
dinal and transverse excitations along the [100] direction in the
transverse spin-density-wave phase of Crat T = 230 K. The inset
shows the intersection of the constant-£ scan with the dispersion
of the transverse (solid lines) and the longitudinal modes (broken
lines) and the Fincher—Burke modes.
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Magnetic Excitations in a Heavy Fermion Supercon-
ductor

The heavy fermion superconductor UPd;Al3 exhibits
the unusual coexistence of antiferromagnetism and
superconductivity below T, =2 K, i.e. the ordered
magnetic moments of the felectrons of U persist in the
superconducting phase (Geibel et al., 1991). This has
been taken as a sign that the interplay of magnetism
and superconductivity could be studied in this mate-
rial. Neutron (Krimmel et al., 1992) and X-ray scat-
tering (Gaulin et al., 1994) experiments have shown
that the magnetic structure of UPdyAl; consists of
ferromagnetic planes stacked along the ¢ axis with a
propagation vector Qo = (0, 0, 0.5). The magnetic
moments are confined within the hexagonal plane
and are found to have an unusually large value of
u=0.85up at saturation. First elastic (Krimmel et al.,
1993; Kita et al., 1994) and inelastic (Petersen et al.,
1994) neutron scattering experiments could not un-
ambiguously reveal any change in the magnetic prop-
erties of UPdy Alz upon cooling the sample below the
superconducting transition temperature.

Inelastic neutron scattering experiments (Sato
et al., 1997; Metoki et al., 1998) performed with an
improved energy resolution as compared to the work
of Petersen et al. showed that there exist two con-
tributions to the spectrum of magnetic fluctuations in
UPd; Al3. While the first one corresponds to the spin-
wave previously measured by Petersen et al. a second
mode localised around the antiferromagnetic wave
vector Qp is observed in the energy range 0 < E < 0.5
meV. This lower energy mode is heavily damped for
all temperatures in the antiferromagnetically ordered
phase and strongly sharpens upon passing into the
superconducting phase. At the lowest temperature
the low-energy mode develops an apparent energy
gap with a value comparable to T, (Bernhoeft et al.,
1998a; Metoki et al., 1998). Further evidence of a
strong interplay between magnetic fluctuations and
superconductivity in this compound originates from
the use of polarised neutrons as shown in Fig. 15.
Using a polarised beam, it was possible to show that
the two magnetic modes are both polarised transverse
to the magnetisation vector and hence are likely to in-
teract with each other (Bernhoeft et al., 1998Db).

To perform this experiment the sample was field-
cooled, so that the magnetic domains could be aligned
along the magnetisation vector M. Using a neutron
polarisation perpendicular to the scattering plane, it
turns out that magnetic fluctuations parallel to the
magnetisation are non-spin flip, while those perpen-
dicular to M appear in the spin-flip channel. Analysis
of the line shape of the inelastic neutron scattering
data suggests that f electrons located in a small energy

Figure 15 Experimental data from UPdzAl; at the antiferromag-
netic wave vector Qg = (0, 0, 0.5) and T = 150 mK. The data were
taken with a fixed outgoing neutron wave vector of k; = 1.15A-1.
Frames (a) and (b) are taken with polarised neutrons. For means
of comparison a scan measured with unpolarised neutrons is
shown in frame (¢). In frames (a) and (b), the transverse re-
sponse is shown as black symbols, whereas the longitudinal
component is represented by open circles. See Bernhoeft et al.
(1998b) for details.
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range around the Fermi surface play a significant
role in forming the superconducting state in UPd; Al;
(Bernhoeft et al., 2000).

Magnons and Solitons in Low-Dimensional Sys-
tems

The magnetic properties of low-dimensional com-
pounds have attracted a lot of attention as new effects
due to quantum fluctuations are strong. For one-
dimensional Heisenberg antiferromagnets the ground
states and energy excitations are different for integer
and half-integer spins (Haldane, 1983a,b). Antiferro-
magnetic chains with S = 1/2 spins have a disordered
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ground state. The low-lying excitations are charac-
terised by a continuum of excitations without energy
gap at the zone centre. On the other hand, for integer
spins a finite energy gap was predicted by Haldane
and obtained by numerical calculations (Haldane,
1983a,b; Affleck, 1989). Examples of materials ex-
hibiting a Haldane gap are NENP (Regnault et al.,
1994, and references therein), Y;BaNiOgs (Darriet
and Regnault, 1993), or CsNiCl; (Enderle et al.,
1999, and references therein). The characteristics
expected for a Haldane system have been observed
in these compounds by inelastic neutron scattering,
like (i) a periodicity of 21 in the magnon disper-
sion, (ii) linewidth broadening of the magnetic ex-
citations as a function of momentum transfer indi-
cating the presence of a two-magnon continuum and
(iii) a large field dependence of the magnetic excita-
tions (Regnault and Renard, 1997).

Polarised neutron scattering experiments have
shown that the energy gap in the spectrum of mag-
netic excitations in CsNiCl3 is a triplet (Steiner ez al.,
1987). In such quasi-one-dimensional antiferromag-
nets, weak interchain exchange interactions J' can
lead to a Néel phase at low temperatures. In fact
the ordering temperature depends on the ratio of
the intrachain interactions J to J'. Interestingly, for
such systems, where antiferromagnetic ordering is
close to disorder, linear spin-wave theory does not ac-
count properly either for the energy dependence of the
magnetic excitations or for the number of magnetic
modes. In particular, the existence of a longitudinally
polarised magnetic mode that cannot be predicted
by standard or modified spin-wave theory has been
proven by means of inelastic polarised neutron scat-
tering in CsNiCly (Enderle et al., 1999, and refer-
ences therein) and Nd>BaNiOs (Fig. 16) (Raymond
et al., 1999). The instrumental setup was chosen
so that magnetic excitations transverse to the mag-
netic moments could be separated from the fluctua-
tions along the spin direction. With such a geometry,
it could be shown that additional excitations with
longitudinal polarisation are present in the spectrum
of S(Q, ), in agreement with calculations based on
renormalisation-group theory (Affleck and Wellman,
1992).

The quasi-one-dimensional § = 1/2 inorganic com-
pound CuGeOj3 presents the particularity to undergo
a chemical phase transition below T'= 14 K to a phase,
called spin-Peierls phase, where the copper chain is
dimerised (Hase et al., 1993; Pouget et al., 1994).
Consequently, the exchange interactions along the
chain direction are not uniform anymore but alternate
with values J and J', respectively. The magneto-elastic
interaction is presumably responsible for this phase
transition characterised by a nonmagnetic ground

Figure 16 Temperature dependence of constant Q-scans mea-
sured in NdzBaNiOs with polarised neutrons. Open and black
circles refer to spin-flip and non-spin-flip scattering, respectively
(taken from Raymond et al. (1999)).
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state. For such a system, the spectrum of magnetic
excitations attains a gap at the zone centre, whereas
the first excited states are triplets. In CuGeQj the gap
has a value of A~ 2.5 meV (Nishi et al., 1996) while
away from the zone centre, the spectrum of magnetic
fluctuations is strongly dispersive along the copper
chain direction. High-resolution inelastic polarised-
neutron experiments, however, revealed that there is
a second energy gap in this compound that separates
the low-energy magnon-like mode from a continuum
of excitations extending to higher energies (Ain et al.,
1997; Lorenzo et al., 1997). The occurrence of two
energy gaps in the spectrum of magnetic excitations
in CuGeOj is clearly a signature of strong quantum
fluctuations in S=1/2 antiferromagnetic chains. This
behaviour differs drastically from one-dimensional
systems with large spin number S that in some cases
can be described by the classical sine-Gordon equa-
tion. The combined effects of nonlinearity and dis-
persion in these systems lead, in addition, to the linear
excitations, to a special class of excitations called
“solitons” (Steiner et al., 1987).

In a ferromagnetic chain, an excitation of soliton-
type can be viewed as a 2m turn of the spins over
a small distance, in a similar way to a domain wall
that would propagate through the crystal. These ex-
citations are accessible to inelastic neutron scatter-
ing and in particular to polarised neutrons that make
it possible to measure selectively the different space
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and time correlation functions $%*(Q, ), $*?(Q, ®)
and $*%(Q, w) (Steiner et al., 1987). Although exper-
iments with unpolarised neutrons have shown strong
evidence of nonlinear excitations in the chain com-
pounds CsNiF; and TMMC, a crucial test for the
existence of solitonic excitations is the measurement
of the components fluctuating along and perpendicu-
lar to an applied magnetic field (Steiner et al., 1983,
Mikeska and Steiner, 1991; Steiner, 1995).

By separating the longitudinal part SI(Q, ®) of the
dynamic structure factor from the transverse part
$*(Q, ®) with longitudinal polarimetry analysis (see
Fig. 17), Boucher et al. (1986) were able to study
the wave vector and energy dependence of solitonic
fluctuations in the antiferromagnetic chain compound
(CD3)4NMnCl3(TMMC). This study led to the result
that amplitude and lifetime of the solitons are strongly
affected by collisions with magnons and by mutual
interactions. As a consequence, the lineshape and
the linewidth of the experimental dynamical suscep-
tibility differ from the actual theoretical calculations
based upon the low-density noninteracting soliton gas
model (Steiner et al., 1987).

§7. Self- and Collective Diffusive
Atomic Motions

Collective motions of light atoms in metals consist
of two different processes (Sinha and Ross, 1988).
The first one can be viewed as pure diffusion of ions
through the lattice while the second process involves
cooperative hopping of mutually interacting parti-
cles. Hence, the neutron scattering functions contain

Figure 17 Spectra of magnetic excitations measured in TMMC
with inelastic polarised neutron scattering showing that the trans-
verse and longitudinal fluctuations are different. See text and
Boucher et al. (19886) for details.
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incoherent and coherent scattering contributions that
are given within the random phase approximation
by Lorentzian functions centred around zero energy
transfer

1 D.Q?*
Sine(Q, ®) = - (“Et—Q-;_m
S D.O?
SenlQ o) = 2R =B (39)

S(Q) is the static structure factor and Dy and D, are
the coefficients of incoherent and coherent diffusion,
respectively.

To separate the two quasi-elastic scattering pro-
cesses that appear simultaneously in the neutron
spectrum, it is best to use polarisation analysis. In
analogy to paramagnetic scattering, coherent and in-
coherent processes can be isolated by calculatmg the
difference between non-spin- -flip and spin-flip scatter-
ing. In the case of different isotopes and disordered
nuclear spins, the matrix elements for non-spin-flip
and spin-flip scattering are given for the coherent
cross section by

O aherent = (N);

coherent =

ot =0 "=(

coherent

(36)
(37)

150

and for the incoherent scattering by (Squires, 1978)

Gineoherent = Sincoherent = (N7 Diso = (ND,
+§(BZI(I+1))iSO (38)
Oiroherens = Oisoharens = 3 (B2 + g, (39
where (---)iso refers to isotopic averaging and I to

the nuclear spin (Squires, 1978). In compounds that
contain scatterers with one isotope only, the coher-
ent cross section is obtained by dividing the spin-flip
scattering by 2 and subtracting the result from the
non-spin-flip intensity. In this case, all the incoher-
ent scattering is spin-flip scattering. Figure 18 shows

Figure 18 Coherent and incoherent scattering processes ob-
served and calculated in o-NbDg,7 by means of polarised neutron
scattering on the multicounter time-of-flight spectrometer D7 at
the ILL (taken from Cook et al. (1990)).
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the results of measurements of the self- and collective
dynamics of deuterium in a single crystal of Nb using
the time-of-flight spectrometer D7 at ILL (Cook et al.,
1990). It is clear that polarisation analysis gives an
unambiguous separation of the incoherent and coher-
ent quasi-elastic signals over a large range of momen-
tum transfers Q. Such a study makes it possible to
determine distance and direction of jump processes,
hopping and residential times through the analysis of
the Q-dependence and energy width of the Lorentzian
functions in Egs. (35).

§8. Conclusions

The examples given in the previous sections have
shown that neutron scattering with polarised neu-
trons has become a very important means for mea-
suring magnetic properties over a wide range of Q
and w and for distinguishing between coherent and in-
coherent excitations in materials. Most experiments
with polarised neutrons are being performed up to
now at sources providing continuous neutron beams.
The main reason being that most neutron polarisers
are more ideally suited for applications with constant
wavelength. The recent advances in the field of super-
mirrors and 3He filters have improved the situation.
These new devices make it possible to extend polar-
isation analysis to high neutron energies and to use
large area detectors. Therefore, we expect that po-
larisation analysis will also soon become a standard
technique at pulsed neutron sources.

Recently, new developments in the field of mag-
netism that rely strongly on new developments in
polarised neutron scattering have emerged. As a first
example, we mention systems that can be charac-
terised by sets of exponents that differ according to
the space and spin dimensionality and hence can be
grouped into universality classes. In frustrated spin
systems, the order parameter includes a term describ-
ing the spin chirality C =[S xS5]. A direct obser-
vation of the fluctuations of the chiral variable is,
however, impossible with unpolarised neutron scat-
tering as these are related to four-spin correlation
functions. Because the chiral part of the neutron cross
section is polarisation dependent (Maleyev, 1995) it
can be observed with polarisation analysis.

As a second example, we mention that the Cry-
opad technique opens the possibility of applying
spherical neutron polarimetry in inelastic neutron
scattering as it makes it possible to measure the
nuclear-magnetic interference term directly. Recently,
Maleyev (1999) has reconsidered the implication of
the nuclear-magnetic interference term (NMIT) for
inelastic scattering and has shown that in analogy
with elastic scattering, it leads to a dependence of

the neutron cross section upon P;, namely to a finite
polarisation of the scattered neutrons and to a rota-
tion of the initial polarisation. In particular, Maleyev
has shown that the part of the dynamical susceptibil-
ity due to the NMIT is nonzero if there is a spin-lattice
interaction characterised by an axial vector, as is the
case, e.g., for the Dzialoshinskii~Moriya (DM) inter-
action D [§; x §;]. Indications of the importance of
the DM interaction in the spin-lattice coupling and
hence of its accessibility through inelastic spherical
neutron polarimetry originates from recent inelastic
experiments performed in the spin-Peierls compound
CuGeO3 where a rotation of the final polarisation
P¢ has been detected when the incident polarisation
is chosen parallel to the scattering vector (Regnault
et al., 1999). Such measurements have shown that
spherical neutron polarimetry can be applied in the
field of inelastic neutron scattering, although count-
ing times are long due to poor statistics. A further
application may be the study of magneto-elastic cou-
pling, which plays an important réle in invar alloys
(Brown et al., 1989). Together with new theoreti-
cal interest in such problems, it is probable that this
method will contribute to an improved understanding
of phase transitions, where spin-lattice interactions
are important, as such effects cannot be studied by
standard polarisation analysis.
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