BOA meeting, PSI, February 22, 2013

Neutron spin filtering with polarized protons

using photo-excited triplet states

P. Hautle

Paul Scherrer Institut CH-5232 Villigen Switzerland

Outline

WHY

Neutron spin filtering with polarized protons

HOW to polarize protons : DNP using photo-excited triplet states

RESULTS 2 beam times @ BOA

FUTURE

Neutron Nuclear Scattering

Concept of a spin filter – polarized protons

Polarized protons are the ultimate broad-band spin filter

[Lushikov, Taran, Shapiro, Sov. J. Nucl. Phys. 10 (1970) 699]

Polarization Cross Section $\sigma_P(\lambda)$

P. Hautle, Triplet DNP Spin Filter, PSI February 2013

Opaque spin filters / A-power / Transmission

[Zimmer, Müller, Hautle, Heil, Humblot, Phys. Lett. B 455 (1999) 62]

Effective cross section

$$\boldsymbol{\sigma}_{\pm} = \boldsymbol{\sigma}_{0} \pm \boldsymbol{\sigma}_{P} \boldsymbol{P}$$

Intensity of beams behind the spin filter

$$N_{+} = \frac{I_{0}}{2} \exp\left[-(\sigma_{0} + \sigma_{P}P)Nd\right] \qquad \qquad N_{-} = \frac{I_{0}}{2} \exp\left[-(\sigma_{0} - \sigma_{P}P)Nd\right]$$

Choose opacity $x = \sigma_P PNd$ \longrightarrow $A \rightarrow 1$

Example: polarized naphthalene sample:

 $N=4.3 \ge 10^{22} \, \mathrm{cm}^{-3}$, $d=1 \, \mathrm{cm}$, $P=50 \ \%$

Transmission

$$T(\lambda) = \frac{N_{+} + N_{-}}{I_{0}} = \exp(-\sigma_{0}Nd)\cosh(\sigma_{P}Nd)$$

Proton spin filter @ $\lambda > 2$ Å

polarized naphthalene sample $N = 4.3 \text{ 10}^{22} \text{ cm}^{-3}$

³He spin filter

polarized ³He gas (optimum opacity)

Historical remarks

- 1953 **Overhauser** nuclear polarization via polarization of conduction electrons in metals (theory)
- 1958 Abragam and Proctor first experimental DNP in dielectrics (LiF)
- 1962 **Abragam Borghini** et al. polarized proton target for low energy particle beam (polarised!)(0.12 cm slab LMN, 2 mg, P = 20%)
- 1963 **Chamberlain** polarized proton target for high energy particle beam (1 inch cube LMN, 26 g, P = 20%)
- 1971 PSI (SIN) ... Salvatore Mango

Since then:

DNP @ PSI

- more than 70 particle physics experiment on pion, proton, neutron beams with polarized targets designed and constructed in our lab polarised nuclei: p, d, ⁶Li, ⁷Li, ¹⁰B, ¹³C, ¹⁵N, ¹⁹F, ²⁷Al, ¹³⁹La, ...
- more than 20 neutron scattering experiment with polarized targets
- developed dissolution DNP ("Hyperpolarization") for NMR / MRI
- DNP with photo-excited triplet states

Static Polarization

Components of a classical DNP system

Classical DNP system

6)

This is a compact system !!

SANS I @ SINQ, PSI

1 K ⁴He cryostat (~ 50 I LHe per day)

1000 m³/ h + 250 m³/ h roots blower pumping system

2.5 / 3.5 T magnet system

P. Hautle, Triplet DNP Spin Filter, PSI February 2013

"classical" DNP: electron polarization created thermally

→ low temperature (typically around 1 K)

→ high magnetic field (typically 2.5 – 5 Tesla)

an "exotic" DNP mechanism ...

Volume 165, number 1

CHEMICAL PHYSICS LETTERS

5 January 1990

HIGH DYNAMIC NUCLEAR POLARIZATION AT ROOM TEMPERATURE

A. HENSTRA, T.-S. LIN¹, J. SCHMIDT and W.Th. WENCKEBACH Kamerlingh Onnes and Huygens Laboratories, University of Leiden, P.O. Box 9504, 2300 RA Leiden, The Netherlands

Received 10 November 1989

The highly polarized photo-excited triplet state of pentacene in a naphthalene crystal is used for pulsed dynamic nuclear polarization at room temperature. Thus far an enhancement of 5500 of the naphthalene proton polarization has been reached. For this purpose, a newly developed technique, the integrated solid effect, performed while obeying the Hartmann-Hahn condition, is used to transfer the triplet polarization efficiently to the nuclear spin system.

create electron polarization with laser light which can be used for DNP

DNP using triplet states (pentacene in naphthalene)

Naphthalene – Pentacene Crystals

unit cell of pure naphthalene $(C_{22}H_{14})$

unit cell when a pentacene molecule $(C_{22}H_{14})$ has taken the position of two naphthalene molecules

large single crystal grown using a selective self-seeding Bridgman technique

Pentacene conc ~ 10^{-5} mol/mol

sample size: 5 ´ 5 ´ 5 mm³ mounted on KelF holder

Harware for triplet state DNP & neutron experiments

⁴He flow cryostat operates from 4 K < 7 < RT

typically operated at T = 100 K, ~ 100 I LHe / week

90% transparency for neutrons

Pulse X-band ESR spectrometer

combines pulse EPR with pulse DNP capabilities

(home built, design by J.J. van der Klink, EPFL)

Laser system + optical fiber

YAG/OPO (600 nm) / disk laser (515 nm)

sample

Multipurpose laser setup: YAG/OPO + <u>Disk Laser</u>

- 1: **IR disk laser** (1030 nm, 50 W, < 10 kHz, < 500 ns pulses),
- 2: LBO crystal for SHG to 515 nm with > 20 % efficiency => 1.2 mJ at end of fiber

DNP via ISE

Test of Principle - Experimental Scheme

- perform a *test of principle* for a triplet spin filter
- prove the spin filter effect
- measure the *polarization cross section*
- use the neutrons to characterize the target performance (DNP, relaxation etc..)
- long term stability of system under adverse conditions

Set up on neutron beamline I

BOA beamline @ SINQ (PSI), flux ~ 2 $\stackrel{<}{}$ 10⁷ /cm² s

P. Hautle, Triplet DNP Spin Filter, PSI February 2013

Set up on neutron beamline II

Sample positioning

Pentacene conc. = 2.0 ± 0.1 10^{-5} mol/mol

Neutron measurements – polarization cross section

Neutrons as local polarization probe

measure two neutron count rates

2 ~ 60 s

$$P = \frac{1}{\overline{\sigma}_{-1,P}} \cdot \frac{1}{Nd} \operatorname{artanh} \left(\frac{R_{p,F} - 1}{R_{p,F} \cdot f + 1} \cdot \frac{1}{\overline{p}} \right)$$

accurate polarization value of the sample

Triplet spin filter – proof of principle

Nuclear Instruments and Methods in Physics Research A 678 (2012) 91-97

Spin filtering neutrons with a proton target dynamically polarized using photo-excited triplet states

M. Haag^a, B. van den Brandt^a, T.R. Eichhorn^{a,b}, P. Hautle^{a,*}, W.Th. Wenckebach^{a,1}

^a Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland

^b Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

ARTICLE INFO

Article history: Received 12 December 2011 Received in revised form 24 February 2012 Accepted 4 March 2012 Available online 22 March 2012

Keywords: Neutron polarization analysis Spin filters Dynamic nuclear polarization Photo-excited triplet states

ABSTRACT

In a test of principle a neutron spin filter has been built, which is based on dynamic nuclear polarization (DNP) using photo-excited triplet states. This DNP method has advantages over classical concepts as the requirements for cryogenic equipment and magnets are much relaxed: the spin filter is operated in a field of 0.3 T at a temperature of about 100 K and has performed reliably over periods of several weeks.

The neutron beam was also used to analyze the polarization of the target employed as a spin filter. We obtained an independent measurement of the proton spin polarization of ~ 0.13 in good agreement with the value determined with NMR. Moreover, the neutron beam was used to measure the proton spin polarization as a function of position in the naphthalene sample. The polarization was found to be homogeneous, even at low laser power, in contradiction to existing models describing the photoexcitation process.

© 2012 Elsevier B.V. All rights reserved.

Martin Haag, PhD Thesis, ETHZ December 2012

Triplet spin filter + neutron optics

development of *focusing neutron guides* (elliptic, parabolic) *large gains in neutron flux* possible

 integration of small triplet spin filter into a focusing guide system close to focus

Primary polarizer set up: proof of principle experiment at PSI / BOA July 2012

Triplet spin filter + neutron optics

DNP results with disk laser & pentacene-d₁₄

Initial polarization build-up proportional to ISE repetition rate

ISE @ 4 kHz : dP/dt ~ 1.2 % / min

Limit is given by cooling power of the cryostat

Polarization measured with NMR and neutron transmission

P ~ 50 % enhancement ~ 160'000

> TE polarization P_{TE} = 3.1826 \checkmark 10⁻⁶

[T.R. Eichhorn et al., Chem Phys Lett 555 (2013) 296]

Output of BOA beam times

3 weeks in June 2011

- proof of principle of triplet spin filter
- M. Haag et al, NIM A 678 (2012) 91
- PhD Thesis Martin Haag

3 weeks in July 2012

- first experiment of focus / defocus concept with spin filter
- E. Rantsiou et al., NIM A, in preparation for NOP-2013
- so far highest polarization P ~ 0.5 achieved with triplet DNP system
- T.R. Eichhorn et al, Chem Phys Lett 555 (2013) 296

Outlook & Planning for SF itself

improve filter performance

higher polarization

=> better cooling, new liquid Argon cryostat

increase sample lenght (~10 mm)

simplify spin filter

- reduce the technical complexity and "footprint"
 permanent magnet, simple cryostat
- study optimum integration into focusing optics

fundamental investigations

- optimize ISE polarization process
- fully understand optical excitation

Experiment planning / requirements

Goal of next Spin Filter experiments

- 1. provide conclusive proof of the focus / defocus principle
- 2. demonstrate an efficient primary polarizer for large beam area
- 3. demonstrate polarization analysis with reference scatterer SANS on CuNiFe alloy

Prerequisites

- 1. spin flipper housing has been rebuildt, needs to be tuned and integrated
- 2. saphire cyrstals for background reduction
- 3. 2D detector for SANS
- 4. LN cooled Be filter for SANS cut spectrum below 4 A, checked at SANS I

Beam time request

- 1. spin filter experiment : 1 full block (= 4 weeks)
- 2. general preparation : 1 week at start of SINQ (Flipper, SANS test)

EPFL Lausanne

http://ltf.web.psi.ch patrick.hautle@psi.ch

P. Hautle, Triplet DNP Spin Filter, PSI February 2013

T. R. Eichhorn (PhD, SNF funded until April 2014, PSI – EPFL) M. Haag (PhD, FOKO funded, finished December 2012) X.X (PhD, SNF funded, PSI) B. van den Brandt

- P. Hautle
- W. Th. Wenckebach (academic guest)

Paul Scherrer Institut

Team

Swiss dup Initiative

