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A simple reflectivity experiment 
 

Data: G. Warr, A. Blom, Dept. of Chem., Univ. Sydney

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Elastic scattering and scattering vector 
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The scattering of an incident wave is the same as the scattering of the 
scattered one and called elastic scattering when no energy is transferred in 
the scattering process. The momentum transfer in the elastic scattering event 
is given by   
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for  if θθ =  

izq θλπ sin/4 =  

 
zq  is the wave vector transfer or scattering vector perpendicular to the 

direction of the scattered wave given by the incoming and outgoing 
wavevector  and , respectively. The wavevector is given by the 
wavenumber     

ik fk

λπ /2 =k  
 

describing the wave propagating along x over π2  with wavelength λ . The 
incident wave is a sine wave given by the real form as )sin( zka iii =Ψ  or in 
the complex form as  zik

ii
iea =Ψ .

 
For equivalence of the incoming and outgoing scattering angle if θθ =  the 
reflected beam from the surface is called specular, and its intensity specular 
reflectivity.  
 
Variation of the incoming scattering angle iθ  changes . Experimentally 
this happens either changing 

zq
iθ  of the incoming beam or by tilting the 

surface towards the incoming beam.  
If by these changes if θθ =  is not kept equal, i.e. if θθ ≠  the wave vector 
transfer is split into a component along z and along x. The wavevector  
then describes the scattered wave off-specular in-plane of the scattering 
plane, in our case the plane of the paper.     

fk

 4



 5

 

)cos(cos/2     
)cos/2()cos/2(    

if

if

fix kkq

θθλπ
θλπθλπ

−=
−=

+=
 

 
for if θθ =  

0=xq  

 
 
Refractive index and Snell’s law 
 
If the incoming wave is not totally scattered part of the beam is refracted 
into the medium below the interface. 
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If the material at which the wave is refracted is of the same optical density as 
the material of the incoming wave the incoming and the refracted wave-
vector are equal, i.e. there is no change of the wave velocity parallel to the 
surface and the ratio between  and  is unity ik fk
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Usually this is not the case and the refracted wavevector is different from the 
incoming wavevector by n , which is called refractive index. 
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with the amplitude of the wavevector  rfi aaa =+  
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which is Snell’s law. It follows 

 
for ri θθ =   follows  1=n
for ri θθ >   follows  1<n
for ri θθ <   follows   1>n
 
Usually the refractive index is smaller than 1 as the phase velocity of a 
refracted beam in a medium is higher as in vacuum. Thus  can be 
expressed as deviation from 1 

n
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Describing the relationship between the refractive index of a material and its 
scattering properties as either a phase shift in the refracted wave or as a 
superposition of spherical waves the total wave is given either as  
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This leads to the following relationship with  to express n δ  
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Here  is the thickness of the material, Δ bρ  is the scattering length density 
with the coherent scattering length ρ  and the number density b .   
 
For 0=rθ , the remaining angle θ  is the critical angle of total reflection 

cθ  
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The corresponding critical wave vector  is cq
 

πρbkkq cc 4 222 === δθ  
 
 
Reflectivity of a bare interface 
 
The reflectivity intensity R  is defined as the product of the amplitude 
reflectivity  with its conjugate complex  expressed by the ratio of 
incident and outgoing amplitude  

r r*
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The incident, outgoing and refracted waves 
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which is the Fresnel equation of reflectivity, and 
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which is the Fresnel equation of transmittivity. The resulting reflectivity 
intensity R  then is  
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With fffz kkq θθθλπ 2sin2sin/4 ≈==  it can be written  
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For  the reflectivity intensity leads to 22

ci qq >
 

4

)( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈

i

c

q
q

qR  

 
 

Penetration depth 
 
A wave propagating in a medium has its amplitude according to 
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where  is the dispersion of the wave in the material and  the 
adsorption of the wave in the medium. Then the refractive index is given by 
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with the real part giving the dispersion 
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bρ  is the scattering length density, and the imaginary part giving the 

adsorption 
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μ  is the linear absorption coefficient. The penetration depth of the beam in 
the medium depends on the imaginary part of the refracted wave 
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i.e. the penetration depth is 
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Reflectivity of a homogenous slab 
 
The reflectivity of a homogenous slab, i.e. the reflectivity from two 
interfaces separated by a slab of thickness d , is derived as follows. Each 
reflectivity and transmittivity component is added up taking into account the 
corresponding phase factor , with  thickness of slab. iqdep =2 d
 

 12



 13

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data: P. Hartley et al., CSIRO Molecular Science, Clayton 
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The reflectivity intensity follows to 
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The oscillations in the reflectivity profile result from the interference term in 
the above equation and depend on the thickness of the slab regarding the 
position and the difference in scattering contrasts between the respective 
interfaces regarding the amplitude. The oscillations are often called Kiessig 
fringes. 
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The expression for the reflectivity can be further reduced with  to 1201 rr −=
 

)1(
)1(

22
01

2
01

pr
pr

r
−

−
=  

 
For a thin slab  and 1|| 01 <<r
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Using the Fresnel equation for  follows 01r
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Assuming  the equation can be reduced further to 1<<d
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Where )(zρ  is the scattering length density profile along z. In case of sharp 
interfaces a step function results.  is the intensity of the Fresnel 
reflectivity and the above equation is termed Master formula in the 
literature. 

)(qRF

 
 
Reflectivity from a multilayer system 
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Specular reflection from multilayers is obtained by the reflectivity of each 
interface according to the Fresnel relation 
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which leads recursively for all interfaces to 
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This method is called Parrat’s recursive method, who derived this method 
in 1954, or optical matrix formalism of stratified media. 
 
 

 
 
 
A similar expression is obtained within the kinematical approximation of the 
reflectivity from ν  layers comprising a multilayer. 
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In the kinematical approximation multiple reflections and refraction are 
assumed to be small and can be neglected. This is called Born 
approximation. It is valid at angles well away from the critical angle.   
 
If the system has repeating subunits with equal distance d  the reflected 
intensity superimposes giving rise to Bragg peaks in the reflectivity pattern 
which obey Bragg’s law θλ sin2dn = . 
 
 
Rough surfaces and interfaces 
 
Usually an interface is not ideally sharp and the reflectivity is damped by 
diffuse scattering due to surface roughness expressed as  
 

22

)()( σq
F eqRqR −=  

 
The damping of the diffuse scattering is the Fourier transform of the 

derivative of the error function ⎟
⎠
⎞

⎜
⎝
⎛=

σ2
)( zerfzf , which is a Gaussian.  

The error function describes the density distribution at the rough interface. 
Basically the ideally sharp density profile is convoluted with a Gaussian 
smoothing function or Debye-Waller factor. σ  is a measure of the width of 
the interface roughness given as rms roughness ><= 2hσ .  
Such a rough interface exhibits no correlation between the heights at 
different points of the surface. The scattering of the uncorrelated surface is 
confined to the specular direction.  
 

  
 
 
Correlated surface roughness, diffuse scattering 
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The roughness of a surface can also be expressed as height fluctuations 
which can be described with a height-height correlation function.  
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here ξ  is the cut-off length in the xy-plane of the surface. For ξ>R  the 
interface is smooth, for the ξ<R  interface is rough. The exponent  is 
known as Hurst parameter and is related to the fractal dimension of the 
surface with 

h

Dh −= 3  with 2=D  for smooth and 3=D  for rough 
surfaces, thus . The scattering of the correlated surface roughness is 
off-specular, i.e. information about lateral correlation length can be obtained. 
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The scattering function is given by 
 

)()()( qSqSqS diffspectot +=  
with 
 

rderqS iqr 3)()0()( ∫ ><= ρρ  
 
For the diffuse scattering one can develop the following expression 
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here the wave vector transfer  as well as  and the height-height 
correlation function 
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For small distortions with 1<σzq  
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Scattering of uncorrelated and correlated multilayers  

 
The scattering function is expressed as Fourier transform of the height-
height correlation function damped by the roughness.  
 
 
Coherence length 

 
A beam impinging on a surface is in reality not perfect monochromatic nor 
does it propagate in a perfect defined direction. This means that a wave 
propagating in a direction with wavelength λ  is accompanied by another 
wave in the same direction with λλ Δ− . At a certain point both waves are 
in phase and at a certain point away the two waves are completely out of 
phase. This difference in space between the two waves is called longitudinal 
coherence length . The transverse coherence length  is defined for two 
waves of equal wavelength but slightly different propagation directions and 
the difference in space to be completely out of phase defines .  

LL TL

TL
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The two coherence lengths together define the upper limit on the separation 
of two objects to distinguish them in a scattering experiment. E.g. for x-rays 
the coherence values are in the range of μm. 
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X-ray and neutron reflectometry 
 
X-rays are an electromagnetic radiation. The photon energy is given by 

hckhchE === λν / , the charge is zero, the magnetic moment is zero and 
the spin is 1. X-rays show particle as well as wave properties. 
 
Neutrons are an elementary particle with a mass of =1.675 10nm -27 kg, 
charge is zero, spin is ½, the magnetic moment is mμ =-1.913 nμ , the 
nuclear magneton is pn meh πμ 4/= =5.051 10-27 JT-1, the kinetic energy is 

, with nBn mhkTkvmE 2/)2/(2/ 22 π=== λπ /2=k . It has particle as 
well as wave properties.  
 
Due to the pronounced differences in the neutron scattering length density of 
different isotopes neutrons often provide better contrast and don’t damage 
samples. On the other hand x-rays provide better Q resolution and higher Q 
values. In contrast to x-rays magnetic systems are easily probed by polarized 
neutron reflectometry due to magnetic dipole interaction with unpaired 
electrons.  
 
Example of a Si/Pt monolayer 
 
A nominal 15 nm thick layer of Pt has been magnetron sputtered on a 
Si(111) wafer and examined with x-ray and neutron reflectometry. The x-ray 
data are fitted with a single slab of Pt-layer of 16.05 nm thickness (grey 
curve) against air. 
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The neutron data show a two layer slab model with a Pt-layer of 14.80 nm 
and a SiO2-layer underneath the Pt-layer of 3.18 nm thickness (red curve). 
The SiO2 layer is not visible in the x-ray measure-ments due to the non-
distinguishable x-ray scattering length density of Si of 2.012 10-5 Å-2 and of 
SiO2 of 2.015 10-5 Å-2. 
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Meaasurement of the Pt-layer against liquid D2O reveals the presence of an 
layer of organic material of 2.48 nm thickness which is not visible against 
air due to the neutron scattering length density of close to zero. 
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Polarised neutron reflectometry 
 

 
 G. Felcher et al., Physica B, 297 (2001) 87-93 
 
 
The energy of a wave propagating in vacuum is 
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with λπ /20 =k . On interaction with matter an interaction potential is 
added, which is described as a Fermi pseudo potential 
 

bVF πρ2
2

2h
=  

 
Solving the Schroedinger equation for this interaction gives 
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with −〉++〉= −+ |)(|)()( rrr ϕϕϕ  for the two spin states of the neutron. 
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If the interaction of the neutron wave is with a magnetic material the 
interaction potential is modified with a magnetic interaction by 
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here, ||00 MBBeff μ+=  with  the magnetization parallel to the layer 
surface,  the external magnetic field and 
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which gives four wavevectors for the four spin states 
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and four reflectivities as 
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The reflectivity intensity for the ++ and +- spin state with external field  
and magnetization  parallel to the plane now looks like 
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The +- state is also called spin-flip state or orientation as the orientation  
of the outgoing neutron spin is flipped in comparison with the orientation  
of the incoming neutron spin. Similar expressions can be derived for other 
orientations of the magnetization. 
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Reflectometry at solid/solid interfaces 
 
- Transformation of Cross-Linked  Poly(dimethylsiloxane) after 
Irradiation 
 

         
 
[V. Graubner et al. Langmuir 21, 8940 (2005)] 
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- Iron self-diffusion in FeZr/57FeZr multilayers 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Decay of Bragg peak intensity in the neutron reflectivity pattern of 
[FeZr/57FeZr]20 isotopic multilayer after annealing and the diffusion 
length and Arrhenius behavior of the diffusivity.  
 
[M. Gupta et al. PRB 70, 184206 (2004)] 
 

 28



 29

 
- Nitrogen Diffusion in Amorphous Silicon Nitride Isotope Multilayers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[H. Schmidt et al., PRL 96, 055901 (2006)] 
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- Iron self-diffusion in FeZr/57FeZr multilayers 
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[M. Gupta et al., PSI Scientific Rep.2004,  Vol., 68, M. Gupta et al. Defect 
Diff. Forum, 237-240 (2005), 548-553] 
 

 
Variation of activation energy with the applied stre
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- Magnetic depth profiling of FM/AF/FM trilayers 
 

             
 
PNR of FeCoV/NiO (tNiO)/FeCoV trilayers measured at selected positions 
during the magnetization reversal. Experimental data are represented by 
Symbols, computed reflectivities are represented by lines. The insets show 
the average magnetization of individual FeCoV layers as obtained from 
modeling.  
 
[C. Schanzer et al., Physica B 356, 2005, 46–50] 
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- Antiphase magnetic proximity effect in perovskite superconductor / 
ferromagnet multilayers 

 
 

                      

                      
 
 
 
[J. Stahn et al., PRB 71, 2005, 140509R] 
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[J. Hoppler, Diploma Thesis] 
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- Polarised Neutron Reflectometry of Fe-Co-V Multilayers 
 

 

 

 
 
 
Fe-Co-V/Ti bilayer, 15 bilayers with a repeat distance of 136 Å  
[J. Padiyath, PhD Thesis, ETHZ, No. 16389, 2006]. 
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- Resonant X-ray Reflectometry  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[Phys. Rev. Lett, 95, 2005, 047201] 
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Reflectometry at solid/liquid interfaces 
 
- Neutron Reflectometry of Adsorbed Single Lipid Bilayer 
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[T. Gutberlet et al., J. Phys.: Condens. Matter 16, 2004, S2469–S2476] 
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[P. Callow et.al., Langmuir, 2005, 21, 7912-7920] 
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- Polymer Adsorbed Phospholipid Layers 
 
 

             
 

        
 
[J.Y. Wong  et al, Biophys. J. 77, 1999, 1445] 
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[M.B. Hochrein et al., Langmuir 2006, 22, 538-545] 
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- Polyelectrolyte cushions 
 

 
 
 
 

 
 
[M. Loesche et al., Macromolecules 1998, 31, 8893-8906] 
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- Swelling of a Polyelectrolyte Film 
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[R. Steitz et al., Colloids Surfaces A, 163, 2000, 63] 

 
- Phospholipid Adsorption to  Polyelectrolyte (PSS/PAH) Cushion 

 

 
 

[C. Delajon et al., Langmuir, 21, 2005, 8509] 
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- Protein Binding Capacity of PAA Brushes 
 

   
 
 

          
 
 
[C. Czeslik et al., Langmuir, submitted] 
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Reflectometry at liquid/liquid interfaces  
 
 

 
 

    
 

X-ray reflectivity measurements of 
the isobutane-glycerol interface at 
288K show an adsorption of liquid 
isobutane on the glycerol surface. 
The layer thickness and roughness 
increases with rising pressure.   

[courtesy M.Paulus, Uni Dortmund] 
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[Z. Zhang  et al, J. Phys Chem., 110, 1999, 7421] 

               

 
 
[A. Zharbaksh et al., EPSRC Report, 2001]
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Reflectometry at air/liquid interfaces 

 
 
 
- Layering of Spherical Particles at Air/Water Interface 
 

             
 

X-ray reflectivity profiles 
of the concentrated (blue) 
and dilute sample (red), 
and of the water solvent 
(green). 

  
[A. Madsen et al., Phys. Rev. E., 64, 061406 (2001) ] 
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- X-ray reflectivity of phospholipid monolayers on the surface of 
aqueous clay gels  
 

 
 

                                  
 
[B. Struth et al., Phys. Rev. Lett. 88, 025502 (2002)] 
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- S-layer protein coupling to a phospholipid monolayer 
 

            

 
 
[M. Weygand et al., Biophys. J., 76, 1999, 458] 
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- Neutron Reflectivity of Cholera Toxin Assault on Lipid Monolayers 
 

       

            
 
[C.E. Miller et al., Biophys. J., 86, 2004, 3700–3708] 
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- Formation of foam films 
 

              
 
 
 

 
 
 [R. Krastev et al., ILL Exp. Report, 9-10-744] 
 
 

 49



 50

- Protein/Lipid Newton Black Film 
 
 
 

         
 

 
[V. Petkova et al., Biophys. J., 82, 2002, 541–548] 
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