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Abstract

Accurate estimation of aircraft fuel burn is essential for aviation climate impact
assessment, regulatory reporting, and sustainability benchmarking. Numerous
fuel-burn estimation models exist, ranging from statistical and reduced-order ap-
proaches to high-resolution closed-form models. However, a systematic, side-by-
side comparison of these model classes under consistent assumptions and identical
input conditions has not yet been established in the literature.

This thesis presents a systematic benchmarking of widely used aircraft fuel-
burn estimation models using operational flight plan (OFP) data from a major
European airline as reference. The analysis compares statistical, reduced-order,
range-equation, closed-form and machine learning models under a unified set of
assumptions, including a no-wind condition and consistent mission definitions,
across five representative medium- and long-haul routes.

The results reveal substantial differences in accuracy between models. In-
creased model complexity does not consistently yield better performance. Sev-
eral simplified models achieve competitive accuracy with significantly lower input
requirements. These findings highlight the trade-off between model fidelity and
data availability and provide guidance for selecting appropriate fuel-burn estima-
tion methods in research and applied sustainability contexts.
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Chapter 1

Introduction

Global air transport plays a central role in the modern, globalized economy by
enabling the movement of people and goods on an unprecedented scale. However,
this growth has come with a substantial and steadily increasing environmental
impact. Aviation has experienced sustained multi-decade growth in emissions,
with CO2 output rising at an average rate of approximately 2.2% per year be-
tween 1970 and 2012, and accelerating to around 5% per year between 2013
and 2018. In 2018, global aviation CO2 emissions exceeded 1 Gt, represent-
ing roughly 2.4% of total anthropogenic CO2 emissions [1, p. 4]. Remarkably,
half of all aviation CO2 since 1940 has been emitted in just the past 20 years
[1, p. 4]. Reliable estimates of aircraft fuel consumption are therefore essential
for understanding the sector’s climate impact and for assessing potential decar-
bonization pathways. Fuel burn directly determines CO2 emissions and serves
as a key indicator for operational efficiency, economic performance, and techno-
logical improvements. Although aviation produces significant non-CO2 climate
effects, such as impacts from nitrogen oxides, water vapor emissions, aerosol par-
ticles, and aerosol-induced cloud modifications (including contrail cirrus), these
effects do not scale linearly with fuel consumption. They are highly dependent on
altitude, atmospheric conditions, location and time, making them considerably
more complex to quantify in a consistent manner. In this work, we therefore
restrict the scope to fuel burn and its associated CO2 emissions because they are
the most consistently measurable and widely reported components of aviation’s
climate impact.

Aviation fuel consumption can be estimated using a broad range of modeling
approaches, each differing in complexity, data requirements, and intended appli-
cation. Traditional analytical formulations, such as the Breguet range equation,
offer simple, closed-form estimates but provide limited accuracy because they
cannot capture the distinct fuel requirements of different flight phases. More
sophisticated physics-based models, including those built on EUROCONTROL’s
Base of Aircraft Data (BADA), simulate detailed climb, cruise, and descent pro-
files using aircraft-specific performance tables. These models form the basis of
high-fidelity tools such as the Aviation Environmental Design Tool (AEDT)[2]
and the Advanced Emission Model (AEM)[3], which are widely used by regula-
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1. Introduction 2

tory bodies and researchers. However, their reliance on proprietary performance
data and their substantial computational cost constrain their applicability for
large-scale analyses.

To enable global or long-term assessments, several reduced-order and data-
driven alternatives have been proposed. These include regression-based distance–
fuel relationships, simplified mission models, and surrogate modeling approaches
such as the Fuel Estimation in Air Transportation (FEAT) framework proposed
by Seymour et al.[4], which leverages reduced-order flight dynamics to approxi-
mate fuel burn at a fraction of the computational cost of traditional performance
simulations. The primary advantage of these approaches lies in their substan-
tially reduced computational complexity, enabling large-scale analyses that would
otherwise be infeasible with detailed trajectory-based models. However, differ-
ences in underlying assumptions, such as payload estimation, atmospheric rep-
resentation, or trajectory abstraction, can lead to non-negligible discrepancies
in predicted fuel consumption. As a result, it remains unclear which modeling
approach provides the most reliable estimates under different conditions, high-
lighting the need for a systematic, side-by-side comparison to assess their relative
performance, limitations, and domain of applicability.

In this work, we conduct a systematic benchmarking of several established
fuel-burn estimation methods against airline operational reference data. All mod-
els are evaluated on an identical set of real-world example flights for which de-
tailed operational flight plans (OFPs) are available, ensuring a fair and controlled
comparison across approaches. To isolate structural differences between models,
all evaluations are performed under a consistent no-wind assumption. Airline
operational inputs from the OFPs are used consistently across models, but no
model is recalibrated or adapted to better match the airline reference values.
Rather than focusing on model-to-model comparisons alone, the analysis pri-
marily assesses how different levels of model abstraction approximate real airline
operational fuel-burn figures across short-, medium-, and long-haul missions. By
quantifying systematic deviations and relating them to model structure, input
requirements, and simplifying assumptions, the study highlights the trade-offs
between accuracy, data availability, and computational complexity. This thesis
does not propose a new fuel-burn model, but instead provides a transparent,
operation-focused evaluation of existing approaches, contributing to a clearer
understanding of their practical performance in real airline dispatch contexts.



Chapter 2

Theory

2.1 General Parameters that affect Fuel Burn

2.1.1 Aircraft Type

The aircraft type fundamentally determines baseline fuel efficiency through its
aerodynamic design, mass properties, and structural constraints. Key character-
istics such as wing aspect ratio, wetted area, and the resulting drag polar directly
influence the achievable lift-to-drag ratio. In steady cruise, this aerodynamic ef-
ficiency governs fuel burn through the specific air range relationship, which links
fuel efficiency to airspeed, lift-to-drag ratio, propulsion efficiency, and aircraft
mass [5, Sec. 13.2, Eqs. (13.3)–(13.9)]. As a consequence, different aircraft types
operate within distinct efficiency envelopes, constraining the extent to which fuel
burn can be reduced through operational measures alone.

2.1.2 Engines

Engine characteristics strongly influence aircraft fuel burn through the thrust
specific fuel consumption (TSFC), which is defined as the fuel flow rate divided
by the net engine thrust, or equivalently using a weight-based formulation, as dis-
cussed in [5, Sec. 8.4, Eqs. (8.30a)–(8.30b)]. TSFC provides a compact measure
of how efficiently a jet engine converts fuel into propulsive thrust and reflects
both thermodynamic efficiency and propulsive efficiency. Modern high-bypass
turbofan engines achieve low TSFC primarily by accelerating a large mass flow
of air at relatively low exhaust velocity, thereby improving propulsive efficiency,
while core cycle parameters such as overall pressure ratio and turbine entry tem-
perature govern thermal efficiency within material and durability constraints [5,
Sec. 8.3–8.4].

Beyond design characteristics, in-service engine condition has a direct impact
on fuel consumption. Ageing mechanisms such as compressor fouling, turbine
erosion, and seal wear progressively increase TSFC over time, leading to mea-
surable increases in mission fuel burn, particularly during cruise. Depending
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2. Theory 4

on operating conditions and maintenance practices, these effects can result in
fuel-burn penalties of several percent over typical on-wing intervals [6].

Furthermore, a given aircraft type may be offered with multiple engine op-
tions from different manufacturers, each exhibiting distinct baseline efficiencies,
deterioration behaviour, and maintenance profiles. Accounting for both engine
selection and in-service degradation is therefore important when estimating fuel
consumption, as neglecting these effects may introduce errors on the order of
several percent.

2.1.3 Distance Flown

Fuel burn does not scale linearly with flight distance because a significant por-
tion of energy is consumed during distance-independent phases, such as taxi,
take-off, and climb. For short-haul flights, these fixed components dominate the
total energy budget, resulting in high fuel consumption per kilometer. While
efficiency typically improves as the cruise phase becomes more dominant over
longer distances, this trend reverses for ultra-long-haul flights. For such flights,
the fuel mass penalty becomes significant; the massive fuel load required at de-
parture increases the aircraft’s total mass, which in turn induces higher fuel burn
during the initial hours of flight. This non-linear relationship is implicit in the
Breguet range formulation, which shows that required fuel mass increases expo-
nentially with distance. Consequently, the weight penalty of carrying additional
fuel eventually outweighs the aerodynamic advantages of a long cruise, leading to
diminishing efficiency at very long flight lengths [5]. Empirical analyses suggest
that fuel efficiency peaks at an intermediate stage length, though the exact opti-
mum distance varies significantly by aircraft type and operational assumptions.
For a representative long-range aircraft, Egelhofer et al. identified an optimal
stage length of approximately 4 300 km based on data from Airbus [7, p. 176].

In practice, realised fuel burn is further influenced by routing inefficiencies.
Actual flight trajectories are, on average, approximately 5% longer than the great-
circle distance between origin and destination airports, although this deviation
varies by region and flight distance [8]. Such deviations increase effective stage
length and therefore fuel consumption relative to idealised great-circle assump-
tions, particularly in congested airspace or regions with constrained routing.

2.1.4 Weight and Payload

Aircraft weight, comprising the airframe, payload, and fuel, serves as a funda-
mental driver of fuel consumption. During steady, level flight, the lift generated
must equal the aircraft weight; consequently, a heavier mass necessitates a higher
lift coefficient, which directly increases induced drag. Furthermore, as fuel is
depleted throughout the mission, the total mass decreases continuously. This
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creates an inherently coupled relationship where fuel burn and weight evolution
are mutually dependent on the specific flight profile.

2.1.5 Center of Gravity

The longitudinal position of the center of gravity (CG) affects fuel burn by in-
fluencing aircraft trim and stability requirements. Deviations from the optimal
CG position require additional control surface deflections, particularly of the
horizontal stabilizer, which generate trim drag and increase overall aerodynamic
drag [5, Sec. 7.5.3]. During flight, the CG typically shifts as fuel is burned and
redistributed across tanks, an effect that is especially pronounced in wide-body
aircraft. Maintaining the CG within an optimal range, typically toward the aft
end of the certified envelope, can therefore yield measurable fuel savings over
long missions [5, Sec. 19.5.1].

2.1.6 Altitude

Cruise fuel efficiency generally improves at higher altitudes due to reduced air
density and associated decreases in aerodynamic drag. For a given aircraft weight,
Mach number, and atmospheric condition, there exists an optimum altitude that
maximises the specific air range (SAR), and thus minimises fuel burn per dis-
tance flown. As fuel is consumed and aircraft weight decreases during flight, this
optimum altitude typically increases, motivating a gradual climb profile over the
cruise segment [5].

In practice, jet transport aircraft approximate this idealised cruise-climb by
executing discrete step climbs, as continuous climbs are constrained by air traffic
control procedures and airspace structure. On short-haul flights, operational
limitations may prevent the aircraft from reaching the altitude corresponding to
maximum SAR before descent is initiated. Additional constraints such as weather
avoidance, congestion, and operational policies further influence realised cruise
altitudes and can lead to deviations from the fuel-optimal profile.

2.1.7 Wind

Atmospheric wind conditions influence fuel burn primarily through their effect
on ground speed and, consequently, flight time and ground-referenced efficiency.
For a given airspeed and fuel flow, tailwinds increase the specific ground range,
reducing flight time and total fuel consumption, while headwinds reduce ground
range and increase fuel burn for a given mission distance. Importantly, wind does
not directly alter aerodynamic efficiency, but modifies the relationship between
air distance and ground distance through its impact on ground speed.
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Wind effects further interact with cruise altitude and speed selection. Be-
cause the altitude that maximizes still-air specific air range depends on aircraft
weight and Mach number, vertical wind gradients can shift the altitude at which
maximum ground-referenced efficiency is achieved. In practice, this leads to oper-
ational strategies such as step climbs and wind–altitude trade-offs, where aircraft
may deliberately cruise above or below the still-air optimal altitude to exploit
favourable wind conditions, provided that the resulting fuel savings outweigh the
additional climb or drag penalties. Modern flight planning systems therefore ex-
plicitly account for three-dimensional wind fields when optimizing cruise profiles
to minimize fuel consumption [5].

2.1.8 Cruise Speed

Cruise speed selection represents a trade-off between fuel efficiency and time-
related operating costs. The speed that minimizes fuel burn per unit distance
corresponds to the condition of maximum specific air range and is referred to as
the maximum range cruise (MRC) speed. Operating at this speed minimizes fuel
consumption in still-air conditions but results in longer flight times. In practice,
airlines typically cruise at higher speeds to reduce time-dependent costs such as
crew, maintenance, and aircraft utilization.

This trade-off is formalized through the cost index, which expresses the rela-
tive importance of time-related costs versus fuel costs [5, Sec. 18.3.2, Eq. (18.1)].
The resulting economy cruise (ECON) speed minimizes total operating cost
rather than fuel burn alone and is therefore generally faster than the MRC speed.
A commonly used approximation is the long range cruise (LRC) speed, which is
defined as the speed yielding a small reduction (typically around 1%) from the
maximum specific air range while providing a shorter flight time. Consequently,
commercial flights rarely operate at minimum-fuel conditions, instead selecting
cruise speeds that balance fuel efficiency and economic objectives [5, Sec. 18.3].

2.1.9 Operational and Allocation Effects

When fuel burn or emissions are expressed on a per-passenger basis, additional
allocation effects become relevant. Per-passenger emissions depend strongly on
the seat load factor, which influences both the total fuel consumption, through
increased payload mass, and the number of passengers over which emissions are
distributed. As a result, higher load factors can simultaneously increase absolute
fuel burn while reducing emissions per passenger. Furthermore, the apportion-
ment of fuel burn between passenger transport and belly cargo introduces addi-
tional uncertainty, particularly on routes with significant freight demand. These
factors make per-passenger emissions inherently more sensitive to operational
assumptions than aircraft-level fuel burn estimates.
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2.2 Different Fuel Burn Models

The highest fidelity fuel burn estimation model would account for all parameters
listed in section 2.1. In practice, however, many of these parameters are only
partially known or entirely unavailable, and must therefore be approximated or
neglected. Fuel-burn modeling thus inherently involves a trade-off between model
complexity, data availability, and achievable accuracy, which strongly depends on
the intended application context.

A wide range of fuel-burn estimation approaches has been proposed in the
literature. These methods can be broadly grouped into four distinct categories,
which differ substantially in their underlying assumptions, data requirements,
computational complexity, and predictive fidelity.

Wherever possible, the models evaluated in this study are implemented using
JetFuelBurn, an open-source Python package for aircraft fuel-burn estimation.
The package is primarily designed for environmental impact assessments of air
transport and provides a unified framework for atmospheric calculations, mission
modeling, and fuel-burn allocation across different cabin classes. It implements
a diverse set of fuel-burn models derived from established textbooks, regulatory
methodologies, and peer-reviewed scientific literature, thereby enabling a consis-
tent and transparent comparison across modeling approaches [10].

2.2.1 Statistical Models

Statistical fuel-burn models estimate aircraft fuel consumption based on aggre-
gate, empirically derived relationships, such as fuel per distance flown or per
seat-kilometre. These models do not simulate detailed flight dynamics or tra-
jectories. Instead, they rely on large-scale datasets that collect fuel uplift and
passenger transport statistics reported by airlines. Using these datasets, the mod-
els can produce statistically averaged fuel-burn values, making them well suited
for high-level emissions inventories or comparisons across large numbers of flights
when detailed performance or trajectory data are unavailable.

US DOT

The JetFuelBurn US DOT statistics model uses Form 41 Schedule T–100 data
reported by large, certified U.S. air carriers1. This dataset includes total fuel con-
sumption, passenger-distance, and weight-distance flown for each aircraft type.
From the T–2 summary tables, the model derives average fuel-per-passenger-
kilometre and fuel-per-weight-kilometre factors by dividing annual fuel use by
the corresponding distance metrics. These coefficients are then combined with a

1https://www.transtats.bts.gov/Tables.asp?QO_VQ=EGD&QO

https://www.transtats.bts.gov/Tables.asp?QO_VQ=EGD&QO
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Figure 2.1: Conceptual overview of common fuel-burn modeling approaches used
in aviation studies. Statistical models estimate average fuel use at the route
or network level, typically normalizing total fuel consumption by passenger-
kilometers. Machine learning models infer fuel flow directly from high-resolution
flight data, such as time histories of altitude, speed, and aircraft state, requir-
ing large volumes of operational data for training. Closed-form models compute
fuel burn from first-principles relations based on the equations of motion and
engine performance characteristics, linking thrust demand, aircraft weight, and
fuel flow through aerodynamic and thermodynamic models. Reduced-order mod-
els approximate higher-fidelity models using regression techniques, enabling fast
evaluation of fuel consumption as a function of distance or mission parameters.
Hybrid approaches may combine elements from multiple model classes depending
on data availability and application scope. Reproduced from Weinold et al. [9].
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user-specified flight range (and payload weight, if applicable) to estimate repre-
sentative fuel burn for that aircraft type in a given reporting year [10].

EU Flight Emissions Label

Created under Article 14 of Regulation (EU) 2023/2405 (ReFuelEU Aviation)
[11], the EU Flight Emissions Label (FEL) is a forthcoming voluntary programme
that will disclose the CO2-equivalent emissions of each flight from take-off to land-
ing for commercial flights departing from or arriving at EU airports. Participat-
ing operators must consistently apply the label across all eligible flights, following
the methodology outlined in Implementing Regulation (EU) 2024/3170 [12]. This
methodology primarily relies on verified operational data, such as reported fuel
burn, passenger load, freight share, and the life-cycle carbon intensity of uplifted
Jet A–1 and sustainable aviation fuel (SAF). Each label corresponds to a unique
combination of operator, aircraft type and configuration, route, season, and year,
and reports metrics such as CO2e per passenger and per passenger-kilometre, as
described by EASA [13].

Although conceptually related to statistical fuel-burn models, the EU FEL
has not yet been launched publicly and is therefore not benchmarked or evaluated
in this thesis.

ICAO Carbon Emissions Calculator

The ICAO Carbon Emissions Calculator is a statistical emissions estimation
model developed by the International Civil Aviation Organization to provide
standardized CO2 emissions values per passenger for commercial flights. The
methodology is based on aggregated airline operational data, including aircraft
type, stage length, typical load factors, and cabin configuration, and applies aver-
age fuel burn values derived from global traffic statistics rather than flight-specific
trajectories or aircraft performance models [14]. Emissions are reported directly
as kg(CO2) per passenger and are differentiated by cabin class using predefined
allocation factors that account for seat density and the space occupied by each
class.

2.2.2 Reduced-Order Models

Reduced-order models approximate aircraft fuel burn by representing the essen-
tial behaviour of high-fidelity performance simulations in simplified mathemat-
ical forms. They are typically constructed by running large sets of detailed,
physics-based mission simulations, most commonly using the Base of Aircraft
Data (BADA) performance framework from EUROCONTROL or the Piano-X
aircraft performance model, and fitting surrogate relationships to the resulting
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fuel-burn data. By design, reduced-order models retain the dominant physical
dependencies of fuel consumption while remaining computationally efficient, mak-
ing them well suited for large-scale analyses or applications where full mission
simulations are impractical. Depending on their formulation, such models may
rely on a single predictor, such as flight range, or incorporate multiple variables,
including payload, cruise altitude, and the lengths of climb, cruise, and descent
segments.

This thesis benchmarks and compares the reduced-order models implemented
in the JetFuelBurn package as part of the overall evaluation framework.

AIM2015

The AIM2015 reduced-order fuel-burn model is derived from an extensive set
of mission simulations generated with Piano-X2. Fuel consumption in the climb,
cruise, and descent phases is represented through polynomial regressions where
coefficients are fitted to these high-fidelity simulations. The resulting model ex-
presses block fuel - defined as the total fuel consumed from engine start at the
departure gate to engine shutdown at the arrival gate - as a polynomial function
of mission distance and payload, scaled by an aircraft-size-specific inefficiency
parameter. AIM2015 provides calibrated parameters for eight representative air-
craft size classes, allowing the model to serve as a surrogate for a broad range of
commercial aircraft types [15].

EEA Emission Inventory 2009

The EEA Emission Inventory 2009 reduced-order model estimates aircraft fuel
burn using discrete fuel–range values provided in the 2009 EMEP/EEA Guide-
book [16]. These tables contain fuel-burn simulations derived from Piano-X for 19
representative aircraft types at a set of fixed mission distances. For a given flight
range, the model performs a linear interpolation between the nearest tabulated
points to obtain total mission fuel consumption, with climb, cruise, and descent
aggregated into a single flight-phase category. The approach does not model
payload variation, detailed flight-profile effects, or mass changes and is valid only
within the distance intervals covered by the tables. Because later EEA guide-
book editions rely on EUROCONTROL’s Advanced Emission Model (AEM),
which is not freely redistributable, the 2009 version is the only one suitable for
open reduced-order modeling [10].

2https://www.lissys.uk/PianoX.html

https://www.lissys.uk/PianoX.html
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myclimate

The myclimate fuel-burn model3 estimates aircraft emissions using a simple
quadratic approximation of cruise fuel consumption combined with a fixed landing–
take-off (LTO) component. For a given mission distance x, the model computes
fuel burn as a polynomial regression

f(x) + LTO = ax2 + bx+ c,

where the coefficients a, b, and c are fleet-average parameters published for a
limited set of aircraft or size categories. Aircraft payload is assumed to take an
average value, and climb and descent fuel consumption is implicitly accounted
for in the LTO term, which itself is not made public [17].

It should be noted that the implementation of the myclimate reduced-order
model in the JetFuelBurn package computes fuel burn only [10]. In contrast, the
official myclimate “CO2 Flight Calculator” reports total CO2-equivalent emis-
sions, including both direct and indirect effects, thereby accounting for non-CO2

climate impacts. As a result, numerical outputs from the two approaches are not
directly comparable.

Seymour et al.

The Seymour reduced-order model [4] combines detailed physics-based simula-
tions with a simplified, distance-based representation suitable for large-scale air
transportation modeling. High-fidelity fuel-burn data are first generated using
EUROCONTROL’s Advanced Emission Model (AEM), based on representative
trajectories derived from BADA-based performance modeling for specific aircraft–
engine combinations. These results are subsequently approximated by aircraft-
specific quadratic regression functions of great-circle distance, yielding an explicit
reduced-order relationship between mission fuel burn and stage length. The fit-
ted regression coefficients capture both fixed fuel components and non-linear
distance-dependent effects associated with fuel load. Fuel consumption for ar-
bitrary flight distances is then obtained by direct evaluation of the regression
model, enabling efficient estimation without explicit trajectory simulation.

Yanto et al.

The reduced-order fuel-burn model of Yanto and Liem [18] approximates aircraft
mission fuel consumption using flight range and payload as predictors. To con-
struct the model, a large fuel-burn database was generated using medium-fidelity
mission simulations: climb and descent segments were evaluated using EURO-
CONTROL’s BADA trajectory model, while cruise fuel burn was computed using

3https://co2.myclimate.org/en/flight_calculators/new

https://co2.myclimate.org/en/flight_calculators/new
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a Breguet-based formulation corrected with empirically derived factors. For each
aircraft type, simulated missions with varying distances and payloads were used
to fit a linear regression of the form

Wf = cRR+ cPPL + cC ,

where Wf denotes mission fuel burn, R the flight range, and PL the payload. The
model is designed for large-scale policy or fleet analyses, where the priority is the
computationally efficient evaluation of fuel consumption sensitivities to payload
and range.

OpenAP

OpenAP (Open Aircraft Performance Model and Toolkit) is an open-source
Python library developed at TU Delft for aircraft performance and emission
analysis [19, 20]. The framework provides data-driven, polynomial fuel-flow and
emission models derived from the ICAO Engine Emissions Databank4 and the
Acropole performance model.5 Although not a reduced-order model in the classi-
cal regression sense, OpenAP employs surrogate relationships that approximate
high-fidelity engine and performance behaviour and can therefore be interpreted
as a data-driven reduced-order approach.

Fuel consumption is computed using the FuelFlow module, which estimates
instantaneous fuel-flow rates for all flight phases as a function of aircraft mass,
true airspeed, and altitude. Pollutant emissions are obtained via the Emission
model, which converts fuel-flow rates into species-specific emission rates using
engine-specific ICAO data. Given a complete flight trajectory represented as a
time series, for example derived from ADS-B data or synthetically generated using
the FlightGenerator module, OpenAP integrates these instantaneous rates over
time to obtain total mission fuel burn and emissions.

In contrast to purely distance-based reduced-order models, OpenAP requires
detailed trajectory information. This makes it well suited for applications where
realistic flight paths are available and a balance between physical fidelity and
computational efficiency is required.

Google Travel Impact Model

Google’s Travel Impact Model (TIM) implements a reduced-order fuel-burn and
emissions estimation approach based on the EEA Tier 3 methodology (Annex 1.A.3.a,
2023) [21]. The Tier 3 methodology is a flight- and aircraft-type-specific "bottom-
up" approach that calculates emissions based flight-specific activity data. It

4https://www.easa.europa.eu/en/domains/environment/icao-aircraft-engine-emissions-databank
5https://github.com/DGAC/Acropole

https://www.easa.europa.eu/en/domains/environment/icao-aircraft-engine-emissions-databank
https://github.com/DGAC/Acropole
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segments flights into two distinct phases: Landing-Take-Off (LTO) for activi-
ties below 3000 ft and Climb-Cruise-Descent (CCD) for operations above that
altitude. In TIM, fuel-burn and emissions factors for these phases are derived
from detailed trajectory simulations using EUROCONTROL’s Base of Aircraft
Data (BADA) in combination with the Advanced Emissions Model (AEM). While
these high-fidelity simulations provide the granular data characteristic of Tier 3,
they are not exposed directly; instead, their results are provided as aircraft- and
distance-specific lookup tables.

TIM estimates fuel consumption by combining tabulated landing–take-off
(LTO) and cruise–climb–descent (CCD) fuel-burn values and applying linear in-
terpolation or extrapolation with respect to great-circle distance to obtain fuel es-
timates for arbitrary stage lengths. Additional processing steps then convert fuel
burn to CO2-equivalent emissions and allocate these emissions on a per-passenger
basis using assumptions on passenger load factors and cabin configurations.

At present, TIM is accessible through a free public API, but its use is limited
to future scheduled commercial flights. While the model conceptually aligns with
statistical and reduced-order fuel-burn approaches, its internal data sources and
aggregation procedures remain partially opaque. According to Google, future
versions of TIM are expected to integrate results from the EU Flight Emissions
Label for flights where such data become available. Overall, TIM provides a
scalable and operationally efficient framework for consumer-facing and large-scale
emissions reporting, albeit with limited transparency regarding its underlying
performance assumptions.

TIM outputs are provided exclusively as CO2-equivalent emissions per pas-
senger, which precludes a direct comparison of total mission fuel burn. Although
the model calculates these values internally, the intermediate fuel-burn data
are not publicly accessible. Furthermore, because TIM incorporates proprietary
data regarding seat load factors and the allocation between passenger and cargo
shares, the total mission fuel burn cannot be reliably back-calculated from the
per-passenger emissions.

2.2.3 Machine Learning–Based Models

In recent years, there has been an increasing number of proposals for machine
learning-based fuel estimation models. Their development, however, typically
depends on access to high-fidelity operational datasets, such as Quick Access
Recorder (QAR) or flight data recorder time series, which are difficult to obtain
and often subject to strict confidentiality constraints. These approaches learn
data-driven mappings from aircraft state variables, commonly including altitude,
airspeed or ground speed, vertical speed, and in some cases aircraft mass, to
fuel-flow rates or total fuel burn, using recorded fuel-flow measurements as su-
pervision.
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Early neural-network-based approaches include the work of Baklacioglu, who
models aircraft fuel flow rates across individual flight phases using genetic-algorithm-
optimised neural networks trained on high-resolution operational flight data. [22]

Beyond standard regression architectures, authors have proposed a broad
range of modeling techniques, including classical statistical learning methods
such as Gaussian Process Regression and tree-based models, as well as neural
networks, including multilayer perceptrons, long short-term memory (LSTM) se-
quence models, and hybrid architectures. For example, Zhao et al. [23] propose a
radial basis function neural network trained on operational flight parameters to
predict total fuel consumption, demonstrating improved generalization compared
to conventional feedforward models. Model performance is typically evaluated us-
ing phase-dependent error metrics across climb, cruise or level flight, and descent
[24]. A key practical focus in more recent work is the transfer of such models to
data sources with reduced feature availability, such as ADS-B–based inference,
where parameters like aircraft mass and true airspeed may be missing and must
either be approximated or treated as latent during training [25]. Physics-guided
learning approaches have also been proposed to improve robustness with respect
to parameter variations and out-of-distribution operating conditions [26].

While numerous machine learning–based fuel estimation models have been
proposed, most rely on proprietary, high-resolution flight recorder data, which
limits their applicability for independent benchmarking. This study therefore
evaluates only the Acropole model, as it is explicitly designed to operate on
ADS-B–derived parameters and publicly available aircraft data, without requiring
confidential airline inputs.

Acropole

The Acropole model estimates engine fuel flow using supervised regression trained
on Quick Access Recorder (QAR) data, with the objective of producing a generic
model applicable to ADS-B trajectories [25]. During training, the model used a
set of input features that includes kinematic variables (altitude, ground speed,
true airspeed, vertical speed, and derivatives of ground speed and true airspeed),
aircraft characteristics (maximum operating speed, maximum operating altitude,
and engine type), and aircraft mass normalized by empty weight and maximum
take-off weight.

The model is trained to predict single-engine fuel flow, expressed in normal-
ized form using the take-off fuel flow from the ICAO Engine Emissions Databank
as a reference. It is implemented as a feed-forward neural network with four fully
connected layers and ReLU activation functions, followed by a sigmoid output
layer. To enable inference on ADS-B data, where aircraft mass and true air-
speed are frequently unavailable, the authors apply data augmentation during
training by replacing unavailable parameters with predefined default values. In
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particular, the mass input is set to an out-of-range value to force the model to
learn representations that do not rely on mass information, while true airspeed
is approximated by ground speed under a no-wind assumption.

Performance evaluations indicate that including aircraft mass substantially
improves prediction accuracy, particularly during the climb phase, while the
model remains functional, albeit with reduced accuracy, when mass informa-
tion is omitted. This design enables the Acropole model to operate under the
practical constraints of ADS-B–based fuel estimation while retaining reasonable
predictive performance.

2.2.4 Closed-Form Models

Closed-form fuel-burn models estimate aircraft fuel consumption using analytical
expressions derived from physical principles of aircraft performance and propul-
sion. In contrast to statistical or reduced-order models, closed-form approaches
rely on explicit governing equations that relate fuel flow to aerodynamic effi-
ciency, thrust requirements, flight conditions, and aircraft mass. These models
do not require large simulation datasets or numerical optimisation and are there-
fore computationally efficient, transparent, and independently verifiable. Their
applicability typically assumes that a representative flight trajectory or operating
condition is known a priori, allowing fuel consumption to be evaluated determin-
istically along the mission profile.

Poll–Schumann Model

The Poll–Schumann model is a physics-based, closed-form approach for estimat-
ing the fuel consumption and related performance characteristics of commercial
transport aircraft across all flight phases. It combines analytical aircraft per-
formance relations with a parametric representation of overall engine efficiency,
linking fuel flow explicitly to lift-to-drag ratio, thrust requirement, Mach number,
altitude, and aircraft mass through transparent governing equations. Once iden-
tified, aircraft- and engine-specific characteristic parameters are applied consis-
tently to cruise, climb, descent, and holding segments, enabling rapid evaluation
of complete flight profiles when the trajectory is specified.

The model was developed and validated across a series of three complemen-
tary studies. The first part establishes the fundamental quantities and governing
relations for aircraft performance in a general atmosphere [27]. The second part
focuses on determining aircraft-specific characteristic parameters during cruise
[28]. The third part extends the formulation to full-flight profiles, enabling fuel-
burn estimation for complete missions with prescribed trajectories [29]. Together,
these works demonstrate that the Poll–Schumann model retains sufficient physical
fidelity to reproduce observed fuel-flow trends and flight data recorder measure-
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ments across a wide range of aircraft types, while remaining open, computation-
ally efficient, and suitable for independent verification.

An open-source implementation of the Poll–Schumann methodology is avail-
able through the pycontrails Python library, which provides a modular frame-
work for modeling aviation fuel burn and climate impacts [30]. This implementa-
tion facilitates practical application of the model in large-scale studies and enables
reproducible benchmarking against alternative fuel-burn estimation approaches.



Chapter 3

Results

3.1 Benchmarking of Models

The fuel-burn estimation models considered in this study were benchmarked us-
ing five representative commercial passenger flights. The selected aircraft types
correspond to those operated by the airline that provided the reference data,
ensuring consistency between the modeled scenarios and real-world operations.
For each aircraft, a typical route commonly flown in commercial service was se-
lected in order to cover a broad range of stage lengths, from short-haul (994NM)
to long-haul (5601NM) missions. An overview of the selected aircraft, routes,
engine configurations, and mission characteristics is provided in Table 3.1.

Table 3.1: Overview of evaluated example flights. The great-circle distance
(GCD) deviation indicates the percentage increase of the actual mission distance
relative to the great-circle distance, where 0% corresponds to a direct great-circle
trajectory.

Aircraft type Engine configuration Route Mission distance [NM] GCD deviation [%]
Airbus A220-300 2× PW1524G-3 GVA–ARN 997 10
Airbus A320neo 2× PW1127G-JM ATH–ZRH 994 12
Airbus A330-300 2× Trent 772B-60 JFK–ZRH 3521 3
Airbus A340-300 4× CFM56-5C4 ICN–ZRH 5601 18
Boeing 777-300ER 2× GE90-115BL SFO–ZRH 5210 3

This selection enables the evaluation of model performance across different
aircraft classes and mission profiles, while maintaining a realistic and opera-
tionally representative context.

3.2 Airline Reference Values

To enable a detailed and consistent comparison of the different fuel-burn estima-
tion models, a suitable ground-truth reference was required. For this purpose,
Operational Flight Plans (OFPs) provided by the dispatch department of a ma-
jor European airline were used. An OFP is a comprehensive document prepared

17
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prior to departure that supports flight crew fuel decision-making by specifying
planned taxi, trip, reserve, and block fuel, along with the associated routing,
payload assumptions, and aircraft performance parameters.

The provided OFPs contained all relevant technical information for each ex-
ample flight, including aircraft type, mission distance, planned routing, and pay-
load assumptions representative of typical operations. All OFPs and the corre-
sponding reference fuel values were generated under a no-wind assumption. This
simplification does not represent an inherent limitation of the evaluated models
or of the comparison itself, but rather a deliberate methodological choice to en-
sure a controlled and consistent benchmarking framework. The same no-wind
assumption was therefore applied across all fuel-burn estimation models consid-
ered in this study. The OFP paramateres were then used as inputs to the various
fuel-burn models, for example in the specification of take-off weight, payload, and
mission distance. This ensured that differences in estimated fuel burn could be
attributed primarily to differences in model structure rather than to inconsistent
input assumptions or atmospheric effects.

Payload assumptions used in the OFPs and in the model evaluation were
aligned with realistic average load factors. Specifically, the average seat load
factor reported by the data-providing airline for the year 2024 was used as the
basis for passenger-related payload assumptions. This value is closely aligned
with the industry-wide average seat load factor of 83.5% reported by IATA for the
same year [31]. This comparison provides contextual validation that the adopted
payload assumptions are representative of typical commercial operations.

3.3 Methods for Flight Trajectory Data Acquisition
and Pre-processing

This section describes the data sources and processing steps used to construct
flight trajectories for use as inputs to the fuel-burn estimation models. Two com-
plementary approaches were investigated: empirical trajectories derived from
Automatic Dependent Surveillance–Broadcast (ADS-B) data, and planned tra-
jectories reconstructed from Operational Flight Plans (OFPs) provided by the
reference airline. While ADS-B trajectories offer insight into real-world aircraft
operations, the final evaluation in this thesis relies on OFP-based trajectories to
ensure consistency with the reference fuel-burn values used for benchmarking.

3.3.1 ADS-B Trajectories

To derive empirical flight trajectories as potential inputs for the fuel-burn es-
timation models considered in this study, ADS-B–based trajectory data were
initially collected for the five representative routes. The primary data source was
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Flightradar24, which provided largely continuous coverage over the full flight du-
ration across the considered routes. To ensure reproducibility, complementary
trajectory data were obtained from the OpenSky Network following approval of
academic access to its historical database.

A rigorous matching procedure was applied to ensure that all collected tra-
jectories corresponded to the specific aircraft types used in the benchmarking
analysis. For each city pair, five individual flight samples were collected. Data
quality assessment revealed pronounced geographic disparities in coverage within
the OpenSky dataset. In particular, significant gaps, extending over multiple
hours, were observed on the ICN–ZRH route over Central Asia and on the SFO–
ZRH route over the North Atlantic. These discontinuities are consistent with
the sparse ground receiver density in these regions, as documented by the global
OpenSky coverage map. While Flightradar24 provided more continuous trajec-
tories in such cases, its data are not openly licensed for research use.

Trajectory data from the OpenSky Network was accessed via the Python
pyopensky interface. Since historical OpenSky flight queries cannot be filtered
directly by aircraft type, an intermediate identification step was required. First,
the tail numbers of all aircraft belonging to the relevant fleets of the reference air-
line were collected. These tail numbers were then mapped to their corresponding
ICAO24 transponder addresses using the OpenSky aircraft database (snapshot
from August 2025). This mapping enabled indirect filtering by aircraft type
through explicit ICAO24 selection.

Data acquisition was performed by iteratively querying the OpenSky Trino
database for flights between 1 October 2025 and 30 October 2025, constrained
by specific origin–destination airport pairs and matching callsigns. The result-
ing raw state vectors were subsequently processed using a dedicated data-cleaning
pipeline. Records with missing or invalid geospatial and kinematic information—
including latitude, longitude, barometric altitude, or ground speed—were re-
moved. Altitude and velocity profiles were then smoothed to mitigate sensor noise
and sporadic measurement artefacts. The resulting dataset consists of cleaned,
temporally consistent ADS-B trajectories.

Despite this preprocessing, ADS-B trajectories represent realised operational
flights that are influenced by air traffic control interventions, weather avoidance,
and tactical speed or altitude changes. As a result, they do not necessarily
correspond to the planned trajectories underlying the Operational Flight Plans
(OFPs) used to generate the reference fuel-burn values. This mismatch ultimately
limited the suitability of ADS-B trajectories for the final benchmarking analysis.
Nevertheless, the ADS-B–based methodology is documented in detail to support
reproducibility and future extensions of this work. [32, 33]
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3.3.2 OFP ATC Flight Plan Trajectories

A key limitation of ADS-B–based trajectories is that real-world flown flights do
not necessarily follow the exact routing, altitude profile, or timing assumptions
contained in the Operational Flight Plans (OFPs) used by the airline to compute
the reference fuel burn. Since the primary objective of this study is to compare
fuel-burn estimation models against OFP-based ground truth values, a trajectory
representation that is fully consistent with the planning assumptions of the OFP
was required.

For this reason, the ATC flight plans contained in the provided OFPs were
used to reconstruct representative reference trajectories for the final evaluation.
The OFPs specify the lateral routing as a sequence of named waypoints, to-
gether with planned flight levels (FLs) at selected points along the route. The
geographic coordinates of all waypoints were retrieved using SkyVector, a pub-
licly accessible provider of worldwide aeronautical charts. The lateral trajectory
was then constructed by connecting successive waypoints using great-circle seg-
ments, which is considered an adequate approximation given the level of detail
typically employed in airline flight planning.

While the lateral path could be reconstructed directly from the OFP, the
vertical profile was only partially defined. Flight levels were specified at discrete
waypoints, whereas continuous altitude information during climb and descent
phases was not explicitly available. To address this limitation, a vertical profile
reconstruction method was implemented based on aircraft-type–specific perfor-
mance data from the publicly available EUROCONTROL Aircraft Performance
Database [34]. Using representative rates of climb and descent as functions of
altitude, missing altitude values were reconstructed by forward integration over
time. Hard altitude anchors were enforced at the departure and arrival airports
using their respective field elevations, as well as at all waypoints with numeric
flight level assignments. During climb and descent segments, the reconstructed
altitude was additionally constrained not to exceed (or fall below) the next known
flight-level anchor along the route.

The reconstruction relies on the planned time-to-waypoint information pro-
vided in the OFP. No explicit speed assumptions were introduced. Instead, the
known waypoint times were used to define the temporal evolution of the tra-
jectory, and intermediate positions and altitudes were interpolated linearly onto
a uniform one-minute time grid. This approach preserves consistency with the
planned mission profile while avoiding additional assumptions regarding airspeed
schedules or wind conditions.

The resulting trajectories constitute smooth, continuous four-dimensional
flight profiles that are fully consistent with the routing, timing, and planning
assumptions of the OFP. Although the reconstructed climb and descent segments
represent approximations of real aircraft behaviour, the cruise phase dominates
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total mission fuel burn for the considered routes. These simplifications are there-
fore not expected to materially affect the comparative assessment of the fuel-burn
models. Consequently, OFP-based trajectories were used exclusively in the final
evaluation for all models requiring complete four-dimensional trajectory inputs,
including the Poll–Schumann method, the OpenAP fuel model, and the Acropole
machine-learning model.

3.4 Input Parameters per Model

This section summarizes the required input parameters for the fuel-burn estima-
tion models considered in this study.

Table 3.2: Required input parameters for the different fuel-burn estimation mod-
els.

Model Aircraft Type Distance Payload / TOW Detailed Trajectory

US DOT Statistics ✓ ✓ ✓(Payload) –
AIM2015 ✓ ✓ ✓(Payload) –
EEA Emission Inventory 2009 ✓ ✓ – –
myclimate ✓ ✓ – –
Seymour et al. ✓ ✓ – –
Yanto et al. ✓ ✓ ✓(Payload) –
Poll–Schumann ✓ – ✓(TOW) ✓
OpenAP ✓ – ✓(TOW) ✓
Acropole ✓ – –(TOW optional) ✓
Google Travel Impact Model ✓ ✓ – –
ICAO Carbon Emissions Calculator – ✓ – –

Notes.

• Aircraft Type refers to an explicit aircraft or aircraft–engine combination.

• Distance denotes the use of mission or great-circle distance as a primary
input.

• Payload / TOW indicates whether payload or take-off weight must be
specified explicitly.

• Detailed Trajectory refers to time-resolved state information (e.g. ADS-
B or synthetic trajectories).

3.5 Aircraft Type Coverage by Model

This section summarizes the aircraft type coverage of the fuel-burn estimation
models that have previously been described in the theory section. Table 3.3 indi-
cates whether a given aircraft type is supported by each model for a representative
subset of narrow-body and wide-body aircraft.
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Table 3.3: Aircraft type coverage by fuel-burn estimation model.
Model A220-300 A320neo A330-300 A340-300 B777-300ER

US DOT Statistics (2024) ✓ ✓ ✓ – ✓
AIM2015 – – ✓ – ✓
EEA Emission Inventory 2009 – – ✓∗ – (A342) ✓∗

Lee et al. – – – (A332) – – (B772)
myclimate – – ✓∗ – ✓∗

Seymour et al. ✓ ✓ ✓ ✓ ✓
Yanto et al. – – ✓ ✓ ✓
Google Travel Impact Model ✓ ✓ ✓ ✓ ✓
Poll–Schumann (pycontrails) ✓ ✓ ✓ ✓ ✓
Acropole – – ✓ – –

Notes.

• ✓ indicates that the aircraft type is supported by the model.

• – indicates that the aircraft type is not supported.

• Values in parentheses (e.g. A332, A342, B772) denote the closest available
aircraft variant used as a proxy.

• ∗Exact subtype not specified in the underlying source data; model coverage
is provided at aircraft family or type level.

• The table shows only the subset of aircraft types benchmarked in this thesis;
most models support a broader set.

3.6 Results of Benchmarking

3.6.1 Total Fuel Burn Benchmarking

The uncertainty band shown around the airline reference values in Figure 3.1 is
derived from the contingency fuel component included in the operational flight
plans and is defined relative to the planned trip fuel. In airline dispatch practice,
contingency fuel is typically specified as a fixed percentage of trip fuel (com-
monly 2–5%) or, alternatively, as an equivalent amount of flight time, and is
added to absorb uncertainties arising from forecast wind errors, air traffic rout-
ing deviations, and other sources of operational variability. As such, it represents
a realistic dispatch-level tolerance rather than a statistical confidence interval.
In operational use, this fuel margin is applied only on top of the planned fuel
burn and therefore primarily acts as insurance against higher-than-expected fuel
consumption. For the purpose of visual comparison across models, the result-
ing uncertainty band is displayed symmetrically around the reference value, ac-
knowledging that it reflects planning uncertainty rather than a probabilistic error
distribution.
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Figure 3.1: Relative deviation of total mission fuel burn from airline oper-
ational reference values for five representative commercial flights, evaluated
across a range of fuel-burn estimation models. The reference flights correspond
to an Airbus A220-300 (GVA–ARN, 1846 km), Airbus A320neo (ATH–ZRH,
1841 km), Airbus A330-300 (JFK–ZRH, 6521 km), Airbus A340-300 (ICN–
ZRH, 10 373 km), and Boeing 777-300ER (SFO–ZRH, 9649 km), covering short-,
medium-, and long-haul operations. Fuel-burn deviations are reported as per-
centages relative to airline dispatch flight plan values (red horizontal line). The
shaded band around the reference indicates an uncertainty margin approximated
from the contingency fuel included in the operational flight plans, reflecting
typical dispatch-level allowances for operational variability and planning uncer-
tainty. Model estimates are shown for a selection of statistical, reduced-order,
closed-form, and machine-learning-based approaches, including Seymour et al.,
US DOT, Poll–Schumann, Acropole, myclimate, EEA 2009, AIM2015, Yanto
et al., and OpenAP. The figure highlights both systematic biases and inter-model
variability across aircraft classes and stage lengths, illustrating how differences
in model structure, calibration data, and underlying assumptions influence total
fuel-burn predictions.
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Table 3.4: Mean absolute error (MAE) and mean absolute percentage error
(MAPE) of fuel-burn estimates across all evaluated aircraft.

Model N MAE [kg fuel] MAPE [%]

Acropole 1 1 189.00 2.94
Poll–Schumann 5 788.80 3.63
EEA 2009 3 3 018.33 5.43
AIM2015 2 5 679.50 10.08
myclimate 2 8 607.50 13.69
US DOT 4 2 877.75 14.45
OpenAP 3 11 313.33 15.07
Seymour et al. 5 7 656.80 19.20
Yanto et al. 3 13 476.33 26.01

Table 3.4 summarizes the aggregate fuel-burn estimation errors for each model,
computed across all aircraft for which corresponding airline reference values were
available. The number of evaluated cases N varies across models because aircraft
type support differs between fuel-burn estimation approaches. As summarised
in Table 3.3, not all models are applicable to all aircraft types considered in the
benchmarking analysis. Consequently, error metrics for each model are computed
only over the subset of aircraft for which the respective model provides compatible
estimates. In particular, models with limited aircraft coverage, such as Acropole,
are evaluated on a smaller number of representative cases, whereas more general
models support a broader range of aircraft types and therefore contribute a larger
number of samples to the aggregated error statistics.

Overall, Table 3.4 indicates a clear ranking in aggregate fuel-burn accuracy,
which should be interpreted jointly with aircraft coverage (N) and model input
requirements. Among the models evaluated on multiple aircraft, Poll–Schumann
achieves the lowest MAE and a low MAPE, suggesting that trajectory- and
parameter-rich methods can match airline reference values well when sufficient
operational detail is available. EEA 2009 also performs comparatively well, but
with noticeably higher MAE than Poll–Schumann, consistent with a reduced-
order approach that relies on tabulated or simplified aircraft-performance infor-
mation rather than detailed flight-specific trajectories.

When considering simplicity and data availability, models such as EEA 2009
and US DOT are attractive because they can be applied with substantially fewer
and more readily obtainable inputs, but this comes at the cost of reduced accu-
racy and/or increased variability, as reflected in their higher MAPE values. By
contrast, models with higher parameterization or stronger physical detail (e.g.,
OpenAP in the present setup) do not necessarily improve agreement with airline
reference data, highlighting that additional complexity does not guarantee better
performance under the assumptions and inputs used in this benchmarking.
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The very low error observed for Acropole must be interpreted with care, as it
is based on a single evaluated example flight (N = 1). While the results indicate
strong agreement for the specific aircraft and operational context considered, they
do not yet allow conclusions about robustness or generalizability across different
aircraft types and mission profiles. Nevertheless, the close alignment observed for
the A330-300 suggests that machine-learning-based approaches such as Acropole
are promising and merit further validation against a broader set of flights and
models.

3.6.2 CO2 Emissions Benchmarking

In addition to benchmarking total mission fuel burn, the selected models are
further evaluated in terms of CO2 emissions per economy-class passenger. This
metric is particularly relevant in a consumer-facing and regulatory context, as
per-passenger CO2 values are commonly reported by airlines, booking platforms,
and environmental disclosure tools. To enable a consistent comparison, total mis-
sion fuel burn is first converted to CO2 emissions using the standard conversion
factor of 3.16 kg CO2 per kg of jet fuel, and subsequently allocated at the indi-
vidual passenger level following the recommended IATA and ICAO cabin-class
allocation methodology, in which fuel burn is distributed across cabin classes
based on relative seat area. This allocation approach, including aircraft-specific
cabin layouts and seating configurations, is implemented consistently using the
JetFuelBurn library [10].

A direct comparison of Figures 3.1 and 3.2 shows that, for models based on
identical underlying fuel-burn estimates, the relative deviations with respect to
the airline reference remain effectively unchanged when transitioning from total
mission fuel burn to per-passenger CO2 emissions. This is expected, as the CO2

figures are derived deterministically from the same fuel-burn values using a fixed
conversion factor and a consistent cabin-class allocation scheme. Consequently,
the per-passenger representation does not introduce additional model-dependent
variability, but rather preserves the relative ranking and systematic biases ob-
served at the mission level.

The main differences observed in the per-passenger CO2 comparison arise
from the inclusion of consumer-facing emissions tools, such as the ICAO Car-
bon Emission Calculator and the Travel Impact Model (TTW) integrated into
Google Flights, which rely on proprietary assumptions regarding load factors,
seating configurations, and operational parameters. These tools therefore intro-
duce additional layers of abstraction beyond fuel-burn estimation alone, leading
to deviations that are not directly attributable to fuel-burn modeling accuracy.
This highlights the importance of distinguishing between fuel-burn estimation
models and end-user emissions calculators when interpreting per-passenger CO2

values in both scientific and consumer-facing contexts.
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Figure 3.2: Comparison of CO2 emissions per economy-class passenger for the
same five representative commercial flights shown in Figure 3.1, estimated us-
ing different fuel-burn and emissions models and benchmarked against airline
reference data. The selected routes include an Airbus A220-300 (GVA–ARN,
1846 km), Airbus A320neo (ATH–ZRH, 1841 km), Airbus A330-300 (JFK–
ZRH, 6521 km), Airbus A340-300 (ICN–ZRH, 10 373 km), and Boeing 777-
300ER (SFO–ZRH, 9649 km), spanning short-, medium-, and long-haul oper-
ations. Emissions are reported in kg CO2 per economy-class passenger and are
derived from total mission fuel burn using a standard CO2 conversion factor of
3.16 kg CO2 per kg of jet fuel. The resulting emissions are allocated to individ-
ual passengers using the recommended IATA and ICAO cabin-class allocation
methodology, in which fuel burn is distributed across cabin classes based on rel-
ative seat area. The allocation accounts for the actual cabin layouts and seating
configurations of the reference airline’s fleet. Model estimates are shown for a
range of reduced-order, closed-form, statistical, and machine-learning-based ap-
proaches, including ICAO Carbon Emissions Calculator, US DOT, EEA 2009,
AIM2015, Seymour et al., Yanto et al., OpenAP, Poll–Schumann, Acropole, and
the Travel Impact Model integrated into Google Flights. For consistency with
the other models evaluated, the Travel Impact Model results shown correspond
to tank-to-wake (TTW) CO2 emissions only, representing emissions produced
by the combustion of jet fuel during takeoff, flight, and landing. While the
Travel Impact Model also reports well-to-wake (WTW) emissions by default in
consumer-facing interfaces, defined as the sum of well-to-tank (WTT) and TTW
emissions, the WTT component—covering emissions from fuel production, pro-
cessing, handling, and distribution—is excluded here to ensure methodological
consistency across models. The figure illustrates both inter-model variability and
systematic differences across stage lengths, highlighting the influence of model
structure, allocation assumptions, and underlying data sources on per-passenger
CO2 estimates.
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3.7 Limitations and Scope

The interpretation of the results should be considered in light of the following
limitations and scope choices:

• The analysis is based on operational data from a single airline, which may
limit generalizability across different fleets, operating practices, and net-
work structures.

• All reference fuel values and model evaluations were conducted under a no-
wind assumption, thereby excluding the influence of atmospheric variability
on fuel burn.

• The benchmarking dataset comprises five representative flights, selected
to span a range of aircraft types and stage lengths, but not to provide
exhaustive statistical coverage.

• Engine age, airframe deterioration, and maintenance state were not explic-
itly modeled and may contribute to residual deviations between models and
reference values.

• Aircraft center-of-gravity effects were not considered, as this information is
not explicitly represented in any of the evaluated models.

Despite these limitations, the results provide a consistent and transparent
comparison of commonly used fuel-burn estimation approaches under controlled
and identical input assumptions. To the author’s knowledge, this study represents
the first systematic, side-by-side benchmarking of statistical, reduced-order, and
high-resolution fuel-burn models against airline-provided reference data. As such,
the findings offer practical guidance on the relative strengths, limitations, and
appropriate application domains of these models.
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