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1D quantum Heisenberg AF

H = —JZSiSi+1+DZ(SiZ)2

F.D.M.Haldane, PRL. 50, 1153 (1983)
I. Affleck et al, PRL 59, 799 (1987)

*S=1/2 (or half-odd-integer)
Continuum excitation spectrum E(k)

1D S=1/2 Heisenberg AF

e.g. good 1D:
Sr2CuO3, Sr2CuO3

= Arbitrary weak

7o (energy units)

TNNJl, MNJI/J
e.g. SrCuF; Ty=40K,
H=0.5 Lp
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The spin-72 dimerized Valence Bond
states
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=Ground state is Resonating
Valence Bond /RVB:

QF restore translational symmetry
and mix in bounds of greater length

interchain J;suppress QF

=S=1 (or integer)
E(k)=[v(k-1)>+ A?]'/?
Haldane gap A~2Je ™
Singlet ground state
*The spin-1Valence Bond Solid /VBS

—O—O0—O0—0—O— e,=-4/3]

The spin-1 dimerized states
=6 =0 6= _
0=- -

ESR in Cu?*/Ni? substituted
[Ni(C,HgN,),(NO,)]CIO, (NENP)
shows spin-%; end states > VBS

=Energetics of a Haldane gap AF
from MC calculations

Ay A -(2/3)D; A, =~ A+(4/3)D
A=0.41J; v=2.49J; E= 2J/ A~5
Ey=ey + A exp(-L/ §); eyp=-1.4J
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Long range order in a Haldane-
gap S=1 quasi 1D-AFM

H=-J) SSi«1+D)> (S))’=J, D SSii
i i nterchain ordered (lsing-like)
= Interchain interactions J’ and ion ] / CaNiCl,
anisotropy D promote LRO /Phase 0.05- ’
diagram from T.Sakai, M.Takahashi -
PRB 42, 4537 (1990); A.Zheludev
et al., PRB 62, 8921 (2000)./ S

ordered (XY)

SrNi,V,0, (ordered)
® PbNi,V,0,

spin-liquid

YzBaNiO5 Agvpzs6 NENP

0.00 ~a - ' r . L .
-0.1 0.0 0.1 0.2 0.3

D/J
= External magnetic field suppress QF, restore gapless spectrum.

Ni(CsD4N,),N;3(PFs) /NDMAP/ (Pnmn, chains along ¢) LRO AFM at >5T
/Y.Chen et al., Phys. Rev. Lett. 86, 1618 (2001)

= Spin-vacancy induced LRO /Theoretically suggested: E.F.
Shender and S.A. Kivelson, Phys. Rev. Lett. 66. 2384 (1991) /

Experimentally observed only in Energetics of PbMg,V,0,
PbMg, A, V,04

/Y. Uchiyama, et al, PRL 83, 632 (1999); A,=35K, A=46K, J=-95K, J;=-2K
Physica B284-288, 1641 (2000)/

M g2+
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Crystal structure of PbN1,V,0q

a tetragonal crystal structure (a=b=12.2 A, c=8.4 A, space
group /4,cd ) isomorphous to SrNi,V,0Oq
(@)

Ni-Ni distances
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%.4.(T) and T-x phase diagram
of PbN1, Mg V,0Oq
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» Low-T (6<T<40K):
Xx(M= x(0) + C e 2T A xHaldaneGap =30.2(2) K.’

= High-T (160<T<300 K):
Xqc(T) = N(gu)?/KT f(J/T) “a series expansion for a S=1 1D-HAF”
> J=-90.4(3) K. A/| J]| =0.31

*In accord with Y. Uchiyama, et al, Phys. Rev. Lett. 83, 632 (1999)
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Suppressing of the AF transition
by external magnetic field
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Temperature dependence of the dc susceptibility of
PbNi, ,:Mg,,,V,0; for ZFC conditions in different
magnetic fields. Inset: y,. vs. T, measured under ZFC
and FC conditions in 0.1 and 1.1 Tesla.
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Metamagnetic behaviour of
PbN1, Mg V,0, (x=0.24)
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Magnetisation, M as a function of the applied magnetic field,
H for various temperatures above and below 7 =3.2K. Inset:
Full hysteresis loop for 7=1.8K.
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H-T phase diagram of
PbN1, Mg V,0, (x=0.24)
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Dc magnetic field (H) dependence of the real part of the ac
susceptibility, y"(H), measured (4,.=1 Oe, /=1 kHz) at
several temperatures below Ty. Inset: Phase diagram in the
H-T plane.
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Intensity (a.u.)

Neutron diffraction pattern.
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0.3303(7)
0.3303(7)
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0.689(1
]

)
)
)
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Space group: 14,cd. a=b=12.2448(7) A, c= 8.3592(7) A
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PbNi, Mg, V,0, (x=0.24), DMC %=2.567A

PbNiMgV208 Magnetic #6
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Intensity

Difference pattern “2K-4K”
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Spin Configurations

M sp.gr., 16 Ni**
\/I. AF-chains (spirals) 2. F-chains (spirals)

B B

A

e

(1) 2) 3)

e

III. Helix structure (90° spin rotation along the spiral)
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Intensity

Spin direction in AFM chains

Illustration of sensitivity to the
magnetic moment direction.

AF-chains, uy; || (ab) type 2.
Wrong direction = bad y2=2.05.
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Examples of “wrong”” AF-spiral configurations

Intensity (a.u.)

)

(a.u.

Intensity

Theoretical profiles calculated for the same moment (scale factor)

obtained from refinement to the “right” spin arrangement.
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FM-canting of spins
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. PbNiMgV208 T,2+canting along a-axis
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Integrated intensity [counts/4h]

T-dependence of the integrated
Bragg peak intensities
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Magnetic Structure of
PbN1, Mg V,0q (x=0.24)

Refined magnetic moment is 0.9(1) ug per Ni-site, at 2 K.

Local magnetic structure
*2xx(=0.48) spin-vacancies
send-chain Ni can carry
[1.76/0.48]%0.9= 3.3 ug.
*Spin-Y2 value 1.73 pg

Chain length <L> =(2/x) = 8

PbNi, Mg VO, ——x=0.24
x=0.0

ZF-u*SR spectra was a convolution of
more than one muon local fields (H,,).
These internal fields take a number of
values, < H,,, >~ 30, 120, 220 G.

/A.Lappas et al., unpublished (2001)/ o 1 2 3 4 5 & 7 8 9
Frequency (MHz)
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T=1.82 K, Zero Field p'SR
Fig. 2
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Conclusions

Phase diagram Ty(x) of PbN1, Mg V,04, 0.04<x<0.24
is confirmed: 7 is increasing rapidly, rising to a
maximum at an optimum Mg-doping level of x=0.12.

Neutron diffraction in the PbNi, ,.Mg,,,V,O, probes an
average ordered moment size of 0.9(1) pg per Ni-site, at
2 K. The moments are antiferromagnetically coupled
below 7=3.2 K, both in the chains along the c-axis and
within the same (ab)-plane for Ni-sites on nearest-
neighbour chains

Below Ty, the x=0.24 Mg-rich compound exhibits
metamagnetic behaviour. H (T=0K)=1.2T.

Published: 16 July, 2002
Magndata PbNi1.76Mg0.24V208 (#0.1035) BNS, Bilbao
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