The Mu3e experiment

Frederik Wauters on behalf of the Mu3e Collaboration

Johannes Gutenberg University Mainz

Search for Charged Lepton Flavour Violating ⊂ New Physics in the Lepton Sector ⊂ Beyond Standard Model Physics @ precision / intensity frontier

- Lepton Flavour is an accidental SM symmetry
- In the neutral/neutrino sector, Lepton Flavour Violation is experimentally observed → SM extended with PMNS \rightarrow

Many new Physics Models SUSY predict CLFV, in an EFT framework sensitive many operators at a mass scale beyond LHC Composite Higgs

> For example, a systematic effective-field-theory approach presented in arXiv:1702.03020v3 New particle in the loop

Muons are great for CLFV:

- They are leptons with 100% leptonic decay modes very well described in the SM
- > SM background free
- \triangleright BSM contributions can be described by EFT <u>arXiv:1702.03020</u> as $m_{mil} \leq \Lambda_{NP}$
- We can make a lot of them at p-accelerator facilities
- > They live long enough to production → experiment

Three golden channels

$\mu^{\scriptscriptstyleT} \rightarrow \mathrm{e}^{\scriptscriptstyleT} \gamma$	$MEG < 4.10^{-13} \qquad \Rightarrow$	MEGII < 5·10 ⁻¹⁴
$\mu^{-}N \rightarrow e^{-}N$	SUNDRUMII < 7 ·10 ⁻¹³ ⇒	DeeMee, Mu2e, COMET < 10 ⁻¹⁶
$\mu^+ \rightarrow e^+ e^+ e^-$	SINDRUM < I·I0 ⁻¹²	Mu3e $< 2 \cdot 10^{-15}$ ($1 \cdot 10^{-16}$ in a second phase)

How to look for $\mu^+ \rightarrow e^+e^-$?

3 particle decay at rest

- → Common vertex
- → Time coincident
- \rightarrow $\sum E = m$
- $\rightarrow \overline{\sum} p=0$

How to look for $\mu^+ \rightarrow e^+e^-e^-$?

3 particle decay at rest

→ Common vertex

- → Time coincident
- \rightarrow $\sum E = m_{\mu}$
- $\rightarrow \sum \mathbf{p} = 0$

DC Beam **PSI**

2 particle decay at rest, very clear signal

- \rightarrow Mono-energetic e⁺ and γ
- → back-back coincidence

Pulsed beam at FNAL, J-PARC

Only one particle in final state

- → Mono-energetic e⁻
- → No coincidence

How to look for $\mu^+ \rightarrow e^+e^-$?

3 particle decay at rest

- → Common vertex
- → Time coincident
- \rightarrow $\sum E = m_{\mu}$
- **→** ∑p=0

Accidental Background

Internal conversion

The Mu3e apparatus needs:

- > Excellent momentum resolution
- Good time and vertex resolution
- High rate capability
- > Large acceptance

Mu3e detector concept

Stop muons on hollow cone target

Mu3e detector concept

- Stop muons on hollow cone target
- Two layer Vertex Detector + 2 Outer Pixel layers
- > Two more Si Pixel layers tracking (see our dedicated fast track fitter: https://arxiv.org/abs/1606.04990)
- > Scintillating Fibre detectors to differentiate electrons and positrons

Mu3e detector concept

- Stop muons on hollow cone target
- ➤ Two layer Vertex Detector + 2 Outer Pixel layers
- Two more Si Pixel layers tracking (dedicated fast track fitter: https://arxiv.org/abs/1606.04990)
- Scintillating Fibre detectors to differentiate electrons and positrons
- > Recurling tracks to get the optimal momentum resolution
- > Scintillating Tiles to get the optimal time resolution

Momentum resolution dominated by multiple scattering

 \rightarrow Ultra-thin Si pixel tracker, \mathcal{O} (0.1% X_0), with decent time resolution, \mathcal{O} (10 ns)

HV-MAPS pixel tracker

Lightweight pixel tracker build from MuPIX sensors*

- ☐ Commercial HV-CMOS process
- ☐ Fast Charge collection
- ☐ Integrated analogue and digital RO, I.25 Gb LVDS link
- \Box Can be thinned to 50 μ m
- □ 256x250 pixels, 2 x 2 cm matrix

10

HV-MAPS pixel tracker

Lightweight pixel tracker build from MuPIX sensors*

- Commercial HV-CMOS process
- ☐ Fast Charge collection
- ☐ Integrated analogue and digital RO, I.25 Gb LVDS link
- **Can be thinned to 50 μm**
- \square 256x250 pixels, 2 x 2 cm matrix
- ☐ 174 ladders with 2844 2x2 cm² MuPiX chips
- 2 Vertex layers
- → 3 x 2 Outer Pixel layers
- 1 3060 1.25 Gb/s data links
- 50 g/s, 10m/s 5kW gaseous helium cooling

Vertex tracker

Scintillating fibres and tiles

The Mu3e Scintillating Fiber Detector

Gentian Shatri

Central SciFi Tracker*

Scintillator fibres and tile detector readout by MuTRiG ASIC**

- Improve timing from 10-20 ns to 250 ps and 80 ps, respectively
- Resolve tracking ambiguities, deal with pile-up
- Differentiate between e+ & e-
- Thin 3-layer SciFi ribbons at < p.e. Threshold
 - Low mass
 - Efficient
 - Decent time resolution
- Upstream and Downstream tile station
- End of a track → Scintillating cubes for optimal time resolution
- Custom MuTRIG readout chip**
 - 50 ps TDC
 - High rate
 - 1.25 Gb/s readout link

Fibre ribbon

Tile Matrix

Mu3e detector design

Compact lightweight electron-positron tracker

Mu3e detector design

Compact lightweight electron-positron tracker **plus**

- Power, HV, and front-end readout services at the end-caps
- <10C liquid SiPM cooling</p>
- ☐ Ca. 5kW gaseous helium for the pixel detector
- ☐ Streaming >100 Gb/s steaming

 DAQ + online GPU event selection

- Common vertex
- → Time coincident
- → ∑E = m_L
- → ∑p=0

Mu3e DAQ

Reminder: the Mu3e event topology does not allow for a local readout trigger, every $e^{+/-}$ track could potentially be part of a $\mu^+ \rightarrow e^+ e^+ e^-$ event. Only the kinematics of the combined final state positrons/electron gives us an event selection criteria.

Mu3e = lightweight and fast Michel electron tracker + high throughput online reconstruction & selection DAQ system*

- ☐ Streaming DAQ
- Network of FPGA's and optical connections
- ☐ Collect time slices of the full detector on a single PC
 - Online reconstruction and event selection on a GPUs
- ☐ Write selected events to disk at max 100 MB/s (up to 100x reduction)

Custom readout board electronics inside the magnet

On-the-shelf solutions in the

counting house

Mu3e DAQ

The Mu3e Data Acquisition System

Alexandr Kozlinskiy

Mu3e Online Event Selection on GPU
Chen Xie

Achieving determinism and real-time in Mu3e experiment

Yifeng Wang

Reminder: the Mu3e event topology does not allow for a local readout trigger, every $e^{+/-}$ track could potentially be part of a $\mu^+ \rightarrow e^+ e^+ e^-$ event. Only the kinematics of the combined final state positrons/electron gives us an event selection criteria.

Mu3e = lightweight and fast Michel electron tracker + high throughput online reconstruction & selection DAQ system*

- Streaming DAQ
- ☐ Network of FPGA's and optical connections
- ☐ Collect time slices of the full detector on a single PC
- Online reconstruction and event selection on a GPUs
- ☐ Write selected events to disk at max 100 MB/s (up to 100x reduction)

Custom readout board electronics inside the magnet

On-the-shelf solutions in the

counting house

1.5 year ago:

- ☐ Detector modules in (pre)production
- ☐ Commissioned magnet + beamline
- ☐ Empty detector cage

Mikio Sakurai

June 2025: successful first Mu3e commissioning beamtime in π E5

1.5 year ago:

- ☐ Detector modules in (pre)production
- Commissioned magnet + beamline
- Empty detector cage

Fibre path diagram

Install DAQ hardware:

- Service support wheels with front-end FPGA boards
- Optical fibre network, including data merging
- Online GPU filter farm

Plus combining a lot of **firmware** and **software** achieve a complete data path

Data merging and construct time slices of the full detector

1.5 year ago:

- ☐ Detector modules in (pre)production
- ☐ Commissioned magnet + beamline
- Empty detector cage

Install Power and cooling plants

- Power supplies, DC-DC converters, electrical wiring
- Electronic cooling plant
- <10C silicon oil based detector cooling (SiPM radiation damage)

1.5 year ago:

- ☐ Detector modules in (pre)production
- ☐ Commissioned magnet + beamline
- ☐ Empty detector cage

Significant infrastructure installation in PIE5

Install Power and cooling plants

- Power supplies, DC-DC converters, electrical wiring
- Electronic cooling plant
- <10C silicon oil based detector cooling (SiPM radiation damage)
- Novel gaseous helium plant, > 10m³/min

1.5 year ago:

- ☐ Detector modules in (pre)production
- ☐ Commissioned magnet + beamline
- → Empty detector cage

Install Detector modules

- Micro twisted-pair bundes to get data out to the periphery
- Full MuPIXII based Vertex vI
- One SciFi and 3 Tile modules

The *flight* of Mu3e

Three week long Mu3e commissioning beamtime

- Tune and operate pixel (vertex), scintillating fibre and tile detector with beam
- □ DAQ and DQM commissioning, full datapath readout system
- πE5 services commissioned
- Stress test system > $10^7 \,\mu/s$
- ☐ Running online GPU selection

The Mu3e Commissioning Run at PSI in 2025
Mikio Sakurai

22

The *flight* of Mu3e

Three week long Mu3e commissioning beamtime

- Tune and operate pixel (vertex), scintillating fibre and tile detector with beam
- DAQ and DQM commissioning, full datapath readout system
- πE5 services commissioned
- Stress test system > $10^7 \,\mu/s$
- Running online GPU selection

The Mu3e Commissioning Run at PSI in 2025

Mikio Sakurai

Online DOM of MuPIX sensor

Beam rate versus detector rate

Vertex - Scintillator time coincidence

Further steps

The *flight* of Mu3e

Analysis ongoing.
But we see many tracks!

Three week long Mu3e commissioning beamtime

- Tune and operate pixel (vertex), scintillating fibre and tile detector with beam
- ☐ DAQ and DQM commissioning, full datapath readout system
- πE5 services commissioned
- \Box Stress test system > 10^7 μ/s
- ☐ Running online GPU selection

The Mu3e Commissioning Run at PSI in 2025
Mikio Sakurai

Momentum spectra

Full layer 2 hitmap

Towards physics

Mu3e Phase I aims for a $\mu^+ \rightarrow e^+ e^+ e^-$ S.E.S. of $2 \cdot 10^{-15}$. Next steps

- → Investigate and fix all failure modes observed in 2025
- → Construct Vertex v2 =
- → Outer pixel production.
 - \Box 6 \rightarrow 18 chips per ladder
 - \square 18 \rightarrow 156 ladders

Towards physics

Mu3e Phase I aims for a $\mu^+ \rightarrow e^+ e^-$ S.E.S. of $2 \cdot 10^{-15}$. Next steps

- \rightarrow Investigate and fix all failure modes observed in 2025
- \rightarrow Construct Vertex v2 =

- Outer pixel production.
 - \Box 6 \rightarrow 18 chips per ladder
 - \square 18 \rightarrow 156 ladders

Laver 2 Layer 1 C1 | C2 | C3 | C4 | C5 | Ladder 1 C1 | C2 | C3 | C4 | C5 | C6 Ladder 2 Ladder 1 Ladder 3 Ladder 2 Ladder 4 Ladder 3 Ladder 5 Ladder 6 Ladder 7 Ladder 8 Ladder 9 √: Link working; X: Link not working.

- Aim for central detector = first physics before the 2027 HIPA shutdown
- Mu3e Phase II at HIMB →
 - ☐ Need additional fast pixel layer (+ other stuff)
 - \Box Aim for $\mu^+ \rightarrow e^+ e^+ e^-$ S.E.S. of $1 \cdot 10^{-16}$

From note 113

Towards physics

Mu3e Phase I aims for a $\mu^+ \rightarrow e^+ e^-$ S.E.S. of $2 \cdot 10^{-15}$. Next steps

- → Investigate and fix all failure modes observed in 2025
- → Construct Vertex v2 =
- → Outer pixel production.
 - \Box 6 \rightarrow 18 chips per ladder
 - \square 18 \rightarrow 156 ladders

- → Aim for central detector = first physics before the 2027 HIPA shutdown
- → Mu3e Phase II at HIMB →
 - Need additional fast pixel layer (+ other stuff)
 - \Box Aim for $\mu^+ \rightarrow e^+ e^+ e^-$ S.E.S. of $1 \cdot 10^{-16}$

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Extra

Precision vs. Acceptance MS $\Omega \sim \pi$ 12 MeV/c 50 MeV/c 25 MeV/c

Mu3e Phase I Simulation

Mupix11 Quad Module

 Module with large active sensor area for beam monitoring and µSR detector prototype

Specifications:

- 2×2 grid of 50 μ m **Mupix11** sensors
- 25 μm Kapton foil for structural support
- Active area: $40 \times 40 \text{ mm}^2$
- Sensor spacing: 200 μm

Production:

alignment

DAQ:

- Minimal, Mu3e compatible DAQ setup
- Optional scintillator input for improved timing

3 particle decay at rest

- → Common vertex
- → Time coincident
- $\rightarrow \sum_{\mu} E = m_{\mu}$
- $\rightarrow \overline{\sum} \mathbf{p} = 0$

If we see a few events, we are sensitive to the type of NP interaction

