The Mu3e Commissioning Run at PSI in 2025

Mikio Sakurai¹⁾ on behalf of the Mu3e collaboration²⁾

- Department of Physics and Astronomy, University College London
- 2) Universität Heidelberg, Karlsruhe Institut für Technologie, Johannes Gutenberg-Universität Mainz, Université de Genève, Paul Scherrer Institut, ETH Zürich, Universität Zürich, University of Bristol, University of Liverpool, University of Oxford and University College London

The Mu3e experiment a

- Searches for a charged lepton flavour violating (cLFV) decay µ+→e+e-e+
- Standard Model prediction: **BR** < **10**-54
- → Any observation is a new physics

The signal

Probe $\mu^+ \rightarrow e^+e^-e^+$ with a sensitivity of

BR < 10⁻¹⁶

Accidental background

Internal conversion

Commissioning Run 2025

- 3-week campaign at PSI πE5 beamline
- First full detector+infrastructure+DAQ integration
- Operation in He gas cooling, 1 T field and beam environment
- 1-week stable data-taking up to 6.5 x 10⁷ μ+/s with production modules

Important milestone achieved towards Physics Run in 2026

The Mu3e detector setup

Production modules commissioned

- Full vertex detector (108 Mupix11)
- SciFi: 2/12 ribbons
- SciTile: 3/14 modules on downstream

Scintillating fibres (< 0.2% X₀)

- ~250 ps time resolution
- Readout by SiPM arrays at both ends

28 MeV/c

μ+ beam

Pixel detectors (~1% X₀ per layer)

- 20 x 23 mm² HV-MAPS Mupix11 sensors
- Ultra-thin, down to 50 µm

Scintillating tiles

- The most precise timing ~80 ps
- Each tile couples to a SiPM

Services

- Gaseous helium cooling for vertex detector
- Liquid cooling for SciFi and SciTile
- Water cooling for readout electronics
- Powering system for all detectors

Final services installed and commissioned

πE5 area 104-6.5 x 107 μ+/s delivered

- Compact Muon Beam Line setup
- Mu3e solenoid fully operational at 1 T

DAQ

Streaming readout demonstrated

 High-rate capability with sub-detector synchronisation

Vertex - SciTile

GPU filter farm

 Online track reconstruction with
Online monitoring and control tools developed in MIDAS

Online event display

Ongoing analysis

- Michel spectrum
- Detector alignment
- ... and more

References

- a) K. Arndt et al., "Technical design of the phase I Mu3e experiment", Nucl. Instr. Meth., A 1014 (2021) 165679.
- b) I. Perić, "A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology", Nucl. Instr. Meth., A 582 (2007) 876.