

The Mu3e Data Acquisition System

Alexandr Kozlinskiy for the Mu3e collaboration

Institut für Kernphysik, Johannes Gutenberg-Universität Mainz

Summary

The Mu3e experiment is designed to search for the Charged Lepton Flavor Violating decay $\mu^+ \to \mathbf{e^+e^-e^+}$. The aim is to reach a branching ratio sensitivity of $\mathbf{10^{-16}}$. The experiment is located at the Paul Scherrer Institute. The detector utilizes thin High-Voltage Monolithic Active Pixel Sensors for precise position measurement and scintillating fibre and tile detectors for precise time measurement. In a first phase the total data rate will reach $\mathbf{100~Gbit/s}$. The stream of data is passed to $\mathbf{GPU~filter~farm}$ where full track and vertex reconstruction is performed to reduce data rate by factor of 100 for subsequent storage.

Mu3e Experiment

- Search for **CLFV** in the decay $\mu^+ \to e^+ e^+ e^-$
- Standard Model: BF $< 10^{-54} \rightarrow \text{new physics}$
- SINDRUM (1988): BF $< 10^{-12}$
- Phase I: $\mathbf{10^{-15}}$ sensitivity at $\pi E5$ beamline (10⁸ μ/s)
- Phase II: $\mathbf{10^{-16}}$ at upcoming \mathbf{HiMB} : $10^9~\mu/\mathrm{s}$
- Backgrounds: random combinations and internal conversion
 need good momentum and time resolution

Inside magnet

- 112 front-end boards
- Configuration and control
- Data alignment and time sorting
- Operated in magnetic field and helium
- Intel Arria V FPGA
- 36 LVDS inputs per FEB at 1.25 Gbit/s from detector ASICs
- 10 ps jitter clock from Clock System

Switching Boards

- Align data, forward to filter farm
- Detector configuration
- 4×PCIe40 boards
- (developed for LHCb and ALICE)
- Intel Arria 10 FPGA
- 48 6.25 GBit/s optical links
- PCIe 3x8 interface to PC

Filter Farm

- Terasic DE5a-Net DDR4 boards
- Data merging and data frame assembly
- Forward data to GPU via DMA
- Intel Arria 10 FPGA
- 16 10 GBit/s optical links
- PCIe 3x8 interface to PC
- NVIDIA GPU (3090 Ti and 4090):
- Online track finding and fitting
- 10⁹ track fits each second on a single GPU
- Vertex fit for $\mu \to 3e$ search
- 10 GB/s input from detectors at 32 MHz frame rate
- factor 100 rate reduction

Slow control and DAQ

- Maximum Integrated Data Acquisition System
- Web UI based DAQ control system
- 100 MB/s to disk (PSI Petabyte archive)

June 2025 data run: 16 us frame

