FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

IMPLEMENTATION OF ACCIDENT TOLERANT FUELS IN MELCOR: STABILITY, PERFORMANCE, AND LIMITATIONS

Lukáš Hamřík, Peter Mičian Brno University of Technology

8th April, 2025

EMUG

CONTENTS

- Introduction to ATF
- Implementation of ATF to MELCOR
- MELCOR behaviour and stability
- Limitations
- Simulations results
- Future plans

Lukáš Hamřík, Peter Mičian

Implementation of Accident Tolerant Fuels in MELCOR: Stability, Performance, and Limitations

INTRODUCTION TO ATF

• Short term - Coated Zirconium alloys (Framatome,

KNF,...)

• Separate coating material (component) not applicable in MELCOR • "hybrid" of Zirconium alloy and coating material with oxidation properties of the coating

• Long term - New cladding materials • **SiC** (Framatome, General Atomics) • **FeCrAI** (Oak Ridge National Laboratory)

Lukáš Hamřík, Peter Mičian

Implementation of Accident Tolerant Fuels in MELCOR: Stability, Performance, and Limitations

IMPLEMENTATION

ATF cladding implemented to MELCOR as a User Defined Material in pair of **material - oxide**

Thermophysical properties

Enthalpy, specific heat, thermal conductivity - models based on publicly available data - NIST JANAF, articles

02 Oxidation models

Oxidation models and kinetics defined under Generalized Oxidation Modelling

Reaction equations based on observed reactions with **steam**, oxidation kinetics parameters (Arrhenius correlation) derived from experiments in high-pressure environments

$$SiC + 3H_2O \rightarrow SiO_2 + 3H_2 + CO$$

$$\bullet 3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2$$

•
$$2Cr + 3H_2O \rightarrow Cr_2O_3 + 3H_2$$

$$\frac{\mathrm{d}W^n}{\mathrm{d}t} = k_{p,H_2O} \cdot \exp(-\frac{1}{h_2O})$$

•
$$2AI + 3H_2O \rightarrow AI_2O_3 + 3H_2$$

Implementation of Accident Tolerant Fuels in MELCOR: Stability, Performance, and Limitations

Lukáš Hamřík, Peter Mičian

	Material	k _{p,H2O}	Ea	п
$\frac{E_a}{R \cdot T}$)	SiC	0,03424	248000	1
	FeCrAl	0,5213	260000	2
	Zircaloy	87,9	138096	2

ASSUMPTIONS

01 SiC

Assumed as a fully dense material

• SiC cladding designs employ composite structures (SiC-SiC) - fibre winded rods with CVI method - improved mechanical properties over monolithic SiC, material properties are dependent on direction and location

Huge variance in thermal conductivity data

• design, production methods, purity and intended use

02 FeCrAl - C35M

C35M alloy is composed of 6 elements

Formation of FeCrAl-ox of 3 compounds

- Oxides formed from the alloy Fe_3O_4 , Cr_2O_3 and Al_2O_3
- Exact oxidation kinetics is not publicly available, replaced with Kanthal APMT kinetics

Implementation of Accident Tolerant Fuels in MELCOR: Stability, Performance, and Limitations

Lukáš Hamřík, Peter Mičian

BEHAVIOUR AND STABILITY DURING SINULATIONS

01 Encountered issues

ENERGY ERROR in COR package

Convergence problems - FeCrAl - complex oxidations and melting

• Time step reduction down to 0,5E-12, step cycling

02 Measures

Time step reduction

Multiple oxidation kinetics models

outside of MELCOR

Lukáš Hamřík, Peter Mičian

Implementation of Accident Tolerant Fuels in MELCOR: Stability, Performance, and Limitations

S)

- Interpolation and extrapolation of thermophysical properties

LIMITATIONS OF ATF MODELLING

Handling of complex oxidations - FeCrAl

- Thermophysical properties pre-defined with respect to oxidation kinetics
 - Each oxide formation depends on temperature and exposure time
 - Change in formation can't impact the defined OXIDE composition (FeCrAl-ox)
- Oxidation of complex alloys leads to formation of oxide mixture • FeCrAl oxidation leads to formation of multiple oxide layers that prevent further oxidation - protective mechanism

Oxides formed can't be further volatilized

- Limits the analysis of SiC oxidation
 - SiO₂ is further volatilized in steam environment to Si(OH)₄

Eutectic behaviour is not available for UDM

No sublimation modelling - SiC vaporizes at high temperatures

Lukáš Hamřík, Peter Mičian

Implementation of Accident Tolerant Fuels in MELCOR: Stability, Performance, and Limitations

PLANT MODEL

Based on APR1400 reactor design ~4000 MWt

Lukáš Hamřík, Peter Mičian

Implementation of Accident Tolerant Fuels in MELCOR: Stability, Performance, and Limitations

RESULTS - r2024.0.0 Unmitigated LB LOCA

Significant decrease of oxidation heat and hydrogen produced

• Slower oxidation kinetics of both ATF materials

Implementation of Accident Tolerant Fuels in MELCOR: Stability, Performance, and Limitations

Lukáš Hamřík, Peter Mičian

RESULTS - r2024.0.0

Unmitigated LB LOCA

Longest time to first clad failure of SiC

- Highest thermal conductivity and melting point (~3000 K)
- Fuel melts before clad cell failure from damage function
- Shortest time to first clad failure of FeCrAl
 - Lowest melting point (~1773 K)

Implementation of Accident Tolerant Fuels in MELCOR: Stability, Performance, and Limitations

Lukáš Hamřík, Peter Mičian

RESULTS - r2024.0.0

Unmitigated LB LOCA

Sensitivity study of oxide formation

- Defined oxide properties based on wt. % - adjusted kinetics to respect the preassumed formation
- Composition in plots is as: Al₂O₃ - Cr₂O₃ - Fe₃O₄

Increased Al₂O₃ formation leads to higher amount of oxidation heat and hydrogen released

Implementation of Accident Tolerant Fuels in MELCOR: Stability, Performance, and Limitations

Lukáš Hamřík, Peter Mičian

RESULTS - r2024.0.0

Unmitigated LB LOCA

Thermophysical properties of oxide formed close to those of Al_2O_3

• Higher thermal conductivity

Implementation of Accident Tolerant Fuels in MELCOR: Stability, Performance, and Limitations

Lukáš Hamřík, Peter Mičian

FUTURE PLANS

Materials models revision - implementation of recent findings and use of new MELCOR capabilities

APR1400 model revision

- Use of advanced B4C model
 - Issues with B4C oxidation (no heat release or combustible gases production) QUENCH 07-09
- Finer CORE nodalization

Modelling of "hybrid" cladding

Modelling of High density uranium

Lukáš Hamřík, Peter Mičian

Implementation of Accident Tolerant Fuels in MELCOR: Stability, Performance, and Limitations

THANK YOU!!

