
LIN: Laboratory for Neutron and Muon Instrumentation
Through a unique mix of technical and scientific staff the Laboratory for Neutron and Muon Instrumentation (LIN) is central to the operation and development of scientific instrumentation and methods for the SINQ and UCN neutron sources as well as the SμS muon source at the Paul Scherrer Institut (PSI). These efforts enable both PSI researchers as well as the international scientific user community to carry out state-of-the-art experiments that employ neutron and muon particle beams to solve topical scientific issues in fields ranging from particle physics to solid state physics to materials science.
Read more about LIN
News
A new small angle neutron scattering instrument arrives at SINQ from LLB
In 2018 an agreement between the Laboratoire Léon Brillouin (LLB) and Paul Scherrer Institut has been signed with the aim to jointly operate a new small angle neutron scattering (SANS) instrument at the Swiss spallation neutron source SINQ.
Marc Janoschek appointed Associate Professor ad personam at University of Zurich
Marc Janoschek, the head of the Laboratory for Neutron and Muon Instrumentation (LIN), was appointed as Associate Professor ad personam for experimental physics – correlated quantum materials at the University of Zurich starting February 1, 2021.
FALCON - a new instrument project at SINQ
Early 2020, an agreement between the Helmholtz-Zentrum Berlin and Paul Scherrer Institut has been signed, according to which the recently commissioned Laue Diffractometer Falcon (E11) would be transferred from HZB to PSI. The purpose of this agreement was to make state-of-the-art equipment from the recently closed research reactor BER-II at HZB work for scientific community at SINQ.
Scientific Highlights
Revealing Creep Motion of a Skyrmion Lattice at Ultra-Low Current Densities
Magnetic skyrmions are well-suited for encoding information because they are nano-sized, topologically stable, and only require ultra-low critical current densities jc to depin from the underlying atomic lattice. Above jc, skyrmions exhibit well-controlled motion, making them prime candidates for race-track memories. In thin films thermally-activated creep motion of isolated skyrmions was observed below jc as predicted by theory.
Using Uniaxial Stress to Probe the Relationship between Competing Superconducting States in a Cuprate with Spin-stripe Order
We report muon spin rotation and magnetic susceptibility experiments on in-plane stress effects on the static spin-stripe order and superconductivity in the cuprate system La2−xBaxCuO4 with x = 0.115. An extremely low uniaxial stress of ∼0.1 GPa induces a substantial decrease in the magnetic volume fraction and a dramatic rise in the onset of 3D superconductivity, from ∼10 to 32 K.
Colossal magnetoresistance in a nonsymmorphic antiferromagnetic insulator
Here we investigate antiferromagnetic Eu5In2Sb6, a nonsymmorphic Zintl phase. Our electrical transport data show that Eu5In2Sb6 is remarkably insulating and exhibits an exceptionally large negative magnetoresistance, which is consistent with the presence of magnetic polarons. From ab initio calculations, the paramagnetic state of Eu5In2Sb6 is a topologically nontrivial semimetal within the generalized gradient approximation (GGA), whereas an insulating state with trivial topological indices is obtained using a modified Becke−Johnson potential.