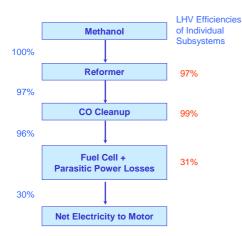
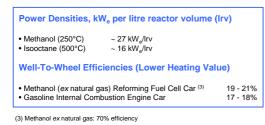
# Catalysis, Reaction Engineering and Systems Analysis to Produce Hydrogen From Liquid Energy Carriers by Partial Oxidation

E. Newson, F. Vogel, T.-B. Truong, K. Geissler, T. Schildhauer

Laboratory for Energy and Material Cycles, Paul Scherrer Institute CH-5232 Villigen-PSI, Switzerland

#### **Overview**


For stationary and mobile fuel cell applications, the catalytic partial oxidation of methanol or hydrocarbons to hydrogen in a fuel reformer is studied. Experimental data from laboratory pilot plants (6 kW<sub>th</sub>) with methanol feed, show that scaling up from microreactors leads to a loss of hydrogen yields and catalyst deactivation. Microreactor data with hydrocarbon refinery streams approach hydrogen yields with methanol. Systems analyses for well-to-wheel efficiencies provide targets for exceeding the efficiency of internal combustion engine systems.


Autothermal Steam Reforming and Partial Oxidation of Methanol<sup>(2)</sup> 4 CH<sub>3</sub>OH + 3 H<sub>2</sub>O + 0.5 O<sub>2</sub>  $\rightarrow$  4 CO<sub>2</sub> + 11 H<sub>2</sub>

Autothermal Steam Reforming and Partial Oxidation of Isooctane  $C_8H_{18} + 10 H_2O + 3 O_2 \rightarrow 8 CO_2 + 19 H_2$ 

(2) Gray, P. G.; Petch, M. I., Advances with HotSpot<sup>™</sup> Fuel Processing, *Platinum Metals Rev.* 44(3), pp. 108-111 (2000).

## The Efficiency Cascade (PSI Systems Analysis)





Comparison of hydrocarbons and methanol as hydrogen energy carriers.

|                                       | Hydrocarbons               | Methanol                           |  |
|---------------------------------------|----------------------------|------------------------------------|--|
| Infrastructure                        | In place, conventional     | Future, expensive                  |  |
| Properties                            | Flammable, water insoluble | Flammable and toxic, water soluble |  |
| Acceptance                            | Given                      | Questionable                       |  |
| H <sub>2</sub> potential (vol. basis) | 1.96                       | 1.0                                |  |
| Well-to-Wheel Efficiency (1)          | 27% (oil)                  | 24% (natural gas)                  |  |
| Sustainable?                          | No                         | Yes                                |  |

(1) Höhlein, B. L., IEA Advanced Fuel Cell Workshop, Wislikofen, Switzerland, p. 43 (1997).

### Methanol autothermal reforming in a dual reactor pilot plant with commercial catalysts.

|                           |                  | Com. Cat. C<br>(0.5-1.0 mm) | Com. Cat. B<br>(1.0-2.0 mm) |
|---------------------------|------------------|-----------------------------|-----------------------------|
| Run time                  | h                | 57                          | 50                          |
| MeOH conversion           | %                | 50                          | 64.5                        |
| H <sub>2</sub> production | kW <sub>th</sub> | 6.2                         | 5.5                         |
| CO content                | Vol%             | 0.39                        | 0.56                        |

### **Conclusions and Future Work**

- Hot spot control in the pilot reactor limited the power density by reducing the hydrogen yield obtained in microreactors.
- Methanol reforming catalyst deactivation by sintering was observed after 60 hours of continuous operation.
- Hydrogen yields from hydrocarbons approaching yields from methanol.
- Increase the lower heating value (LHV) reformer efficiency for the hydrocarbons to 80%.
- Optimization of the fuel reformer subsystem to exceed the system efficiency target of 21%.

### Acknowledgments

The project was supported by the Swiss Federal Office of Energy (BFE). Commercial catalysts were supplied by Johnson Matthey plc (UK) and Süd-Chemie (D) under confidentiality agreements. P. Binkert (PSI) was responsible for construction work.