The new $\mu E4$ separator

T. Prokscha, LMU, PSI

October 3, 2007

The deflection angles ϕ_E and ϕ_B by the electric field E and the magnetic field B of an idealized separator are given by (see Sec. 1 and [1])

$$\phi_E \approx \frac{e \cdot l \cdot E}{p \cdot v} = \eta_E \cdot \frac{E}{\beta p} \tag{1}$$

$$\phi_B \approx \frac{e \cdot l \cdot B}{p} = \eta_B \cdot \frac{B}{p}.$$
 (2)

Here, e is the electric charge, l the effective length of the field (~ 0.8 m for SEP61 in μ E4), v is the velocity of the particle, p the momentum, and $\beta \equiv v/c$. The electric field E = V/d is defined by the voltage difference V between the electrodes and the gap d = 18 cm. The parameters $\eta_{E,B}$ have for $l^E = 0.803$ m and $l^B = 0.824$ m values of

$$\eta_E = 0.803 \frac{\text{mrad (MeV/c)}}{\text{kV/m}} \tag{3}$$

$$\eta_B = 24.70 \frac{\text{mrad (MeV/c)}}{\text{G}}.$$
(4)

The total deflection angle ϕ_{tot} of a particle is then simply given by

$$\phi_{tot} = \phi_B - \phi_E. \tag{5}$$

The maximum fields of the new μ E4 separator will be 22.22 kV/cm (400 kV voltage difference between the electrodes, \pm 200 kV at the electrodes) and about 415 G.

The following table gives a short overview on deflecting angles for muons and positrons at 28 MeV/c and 40 MeV/c ($\Delta \phi$ is the angle of muon spin precession):

p [MeV/c]	particle	β	E [kV/m]	B[G]	$\phi_B [\mathrm{mr}]$	$\phi_E [\mathrm{mr}]$	$\phi_{tot} [\mathrm{mr}]$	$\Delta \phi \ [^o]$
28	μ	0.2562	1666	210	185	185	0	10.6
28	e	1	1666	210	185	47	138	
28	μ	0.2562	2220	281	248	248	0	14.2
28	e	1	2220	281	248	63	185	
40	μ	0.354	2220	204	126	126	0	7.2
40	e	1	2220	204	126	44	82	

Figure 1: Illustration of deflection angles in homogeneous a) electric and b), magnetic fields of length l_{eff} .

1 Deflection angles of electric and magnetic fields

In this section we present the derivation of deflection angles in electric and magnetic fields. Figure 1 illustrates the deflection of charged particles in fields of effective lengths l_{eff} . For the electric field the particle moves on a parabola, and the deflection s in the electric field is given by

$$s = \frac{1}{2}at^{2}$$
$$= \frac{1}{2}\frac{e \cdot E}{m} \cdot \frac{l_{eff}^{2}}{v^{2}}.$$
(6)

The slope of the particles trajectory is then given by

$$\tan \phi_E = \frac{ds}{dl} = 2 \cdot \frac{1}{2} \frac{e \cdot E}{m} \cdot \frac{l_{eff}}{v^2}$$
$$= e \cdot l_{eff} \cdot \frac{E}{p \cdot v}$$
(7)

$$\implies (\phi_E \ll 1)$$

$$\phi_E \cong \frac{e \cdot l_{eff}}{c} \cdot \frac{E}{\beta \cdot p} = \eta_E \cdot \frac{E}{\beta \cdot p}.$$
 (8)

For the deflection in the magnetic field one obtains from Fig. 1b):

$$\sin \phi_B = \frac{l_{eff}}{r_B}$$

$$= e \cdot l_{eff} \cdot \frac{B}{p}$$

$$\implies (\phi_B \ll 1)$$
(9)

$$\phi_B \cong e \cdot l_{eff} \cdot \frac{B}{p} = \eta_B \cdot \frac{B}{p}.$$
(10)

References

[1] R. Frosch, Beam Optics with Electrostatic Separators, TM-11-95-01, PSI (1995).