The new $\mu \mathrm{E} 4$ separator

T. Prokscha, LMU, PSI

October 3, 2007

The deflection angles ϕ_{E} and ϕ_{B} by the electric field E and the magnetic field B of an idealized separator are given by (see Sec. 1 and [1])

$$
\begin{align*}
\phi_{E} & \approx \frac{e \cdot l \cdot E}{p \cdot v}=\eta_{E} \cdot \frac{E}{\beta p} \tag{1}\\
\phi_{B} & \approx \frac{e \cdot l \cdot B}{p}=\eta_{B} \cdot \frac{B}{p} \tag{2}
\end{align*}
$$

Here, e is the electric charge, l the effective length of the field ($\sim 0.8 \mathrm{~m}$ for SEP61 in $\mu \mathrm{E} 4$), v is the velocity of the particle, p the momentum, and $\beta \equiv v / c$. The electric field $E=V / d$ is defined by the voltage difference V between the electrodes and the gap $d=18 \mathrm{~cm}$. The parameters $\eta_{E, B}$ have for $l^{E}=0.803 \mathrm{~m}$ and $l^{B}=0.824 \mathrm{~m}$ values of

$$
\begin{align*}
& \eta_{E}=0.803 \frac{\mathrm{mrad}(\mathrm{MeV} / \mathrm{c})}{\mathrm{kV} / \mathrm{m}} \tag{3}\\
& \eta_{B}=24.70 \frac{\mathrm{mrad}(\mathrm{MeV} / \mathrm{c})}{\mathrm{G}} \tag{4}
\end{align*}
$$

The total deflection angle $\phi_{t o t}$ of a particle is then simply given by

$$
\begin{equation*}
\phi_{t o t}=\phi_{B}-\phi_{E} . \tag{5}
\end{equation*}
$$

The maximum fields of the new $\mu \mathrm{E} 4$ separator will be $22.22 \mathrm{kV} / \mathrm{cm}$ (400 kV voltage difference between the electrodes, $\pm 200 \mathrm{kV}$ at the electrodes) and about 415 G .
The following table gives a short overview on deflecting angles for muons and positrons at $28 \mathrm{MeV} / \mathrm{c}$ and $40 \mathrm{MeV} / \mathrm{c}$ ($\Delta \phi$ is the angle of muon spin precession):

$\mathrm{p}[\mathrm{MeV} / \mathrm{c}]$	particle	β	$\mathrm{E}[\mathrm{kV} / \mathrm{m}]$	$\mathrm{B}[\mathrm{G}]$	$\phi_{B}[\mathrm{mr}]$	$\phi_{E}[\mathrm{mr}]$	$\phi_{\text {tot }}[\mathrm{mr}]$	$\Delta \phi\left[{ }^{\circ}\right]$
28								
28	e	1	1666	210	185	185	0	10.6
28	μ	0.2562	2220	210	185	47	138	
28	e	1	2220	281	248	248	0	14.2
40	μ	0.354	2220	204	126	126	0	7.2
40	e	1	2220	204	126	44	82	

Figure 1: Illustration of deflection angles in homogeneous a) electric and b), magnetic fields of length $l_{\text {eff }}$.

1 Deflection angles of electric and magnetic fields

In this section we present the derivation of deflection angles in electric and magnetic fields. Figure 1 illustrates the deflection of charged particles in fields of effective lengths $l_{\text {eff }}$. For the electric field the particle moves on a parabola, and the deflection s in the electric field is given by

$$
\begin{align*}
s & =\frac{1}{2} a t^{2} \\
& =\frac{1}{2} \frac{e \cdot E}{m} \cdot \frac{l_{e f f}^{2}}{v^{2}} . \tag{6}
\end{align*}
$$

The slope of the particles trajectory is then given by

$$
\begin{align*}
\tan \phi_{E} & =\frac{d s}{d l}=2 \cdot \frac{1}{2} \frac{e \cdot E}{m} \cdot \frac{l_{e f f}}{v^{2}} \\
& =e \cdot l_{e f f} \cdot \frac{E}{p \cdot v} \tag{7}\\
& \Longrightarrow\left(\phi_{E} \ll 1\right) \\
\phi_{E} & \cong \frac{e \cdot l_{e f f}}{c} \cdot \frac{E}{\beta \cdot p}=\eta_{E} \cdot \frac{E}{\beta \cdot p} . \tag{8}
\end{align*}
$$

For the deflection in the magnetic field one obtains from Fig. 1b):

$$
\begin{align*}
\sin \phi_{B} & =\frac{l_{e f f}}{r_{B}} \\
& =e \cdot l_{e f f} \cdot \frac{B}{p} \tag{9}\\
& \Longrightarrow\left(\phi_{B} \ll 1\right) \\
\phi_{B} & \cong e \cdot l_{e f f} \cdot \frac{B}{p}=\eta_{B} \cdot \frac{B}{p} . \tag{10}
\end{align*}
$$

References

[1] R. Frosch, Beam Optics with Electrostatic Separators, TM-11-95-01, PSI (1995).

