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Swiss energy strategy 2050 aims at gradually phasing out 

nuclear and promoting renewables and demand side 

efficiency: 

 Challenges for electricity system stability (also due to 

congestion) 

The Swiss electricity system, 2015 
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ELECTRICITY GENERATION & CONSUMPTION (TWh) ELECTRICITY NET CAPACITY 2015: 19 GW* 

* Nuclear: 3.3 GW, Hydro: 13.7 GW, Solar : 1GW, Thermal: 1 GW GRID CONGENSTION IN THE NORTH-SOUTH AXIS 



• We study integration measures for variable (and stochastic) renewable generation 

from wind and solar PV (VRES) in Switzerland for the horizon 2015 – 2050: 

 

 Reinforcing and expanding the grid network 

 

 Deploying local storage, complementary to pump hydro, like batteries and ACAES 

 

 Deploying dispatchable loads such as P2G, water heaters and heat pumps 

 

 

• The study was performed in the context of the ISCHESS project, which is a 

collaboration between the Paul Scherrer Institute and the Swiss Federal Institute of 

Technology (ETH Zurich), funded by the Swiss Competence Center Energy and 

Mobility (CCEM) http://www.ccem.ch/ischess  

 

 

Objectives of the research 

Page 3 

http://www.ccem.ch/ischess
http://www.ccem.ch/ischess


• Bottom-up, cost-minimisation model, used for assessing long term Swiss energy policies 

• High intra-annual resolution with 288 typical hours (3 typical days, 4 seasons, 24h/day) 

• For the current research, the model was modified to include:  

 Higher detail in the electricity sector at the expense of detail at the demand sectors  

(oil-based transport is excluded and industrial sectors have aggregate representation) 

 Variability in the RES generation, ancillary services and power plant dispatching constraints 

Methodology – The Swiss TIMES Energy 
Systems Model (STEM) 
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Swiss TIMES Energy system Model (STEM)
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• Different grid levels, with different set of power plants and storage options in each level 

• Each grid level is characterised by transmission costs and losses 

• Power plants are characterised by costs, efficiency, technical constraints and resource availability 

• A linearised approximation of the Unit Commitment problem is also formulated 

Representation of the electricity sector in STEM 
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+ 4 nodes for nuclear 

power plants 

• Based on a reduction algorithm from FEN/ETHZ that maps the detailed transmission grid to 

an aggregated grid with 𝑁 = 15 nodes and 𝐸 = 319 lines, based on a fixed disaggregation 

of the reduced network injections to the detailed network injections 

Representation of electricity transmission grid 
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MAPPING  

−𝐛 ≤ 𝐇 × 𝐃 × 𝐠 − 𝐥 ≤ 𝐛 

Where 𝐇 is the PTDF matrix of the detailed network, 𝐃 is the fixed dissagregation matrix,  

𝐠 is Nx1 vector with injections, 𝐥 is Nx1 vector of withdrawals, and 𝐛 is Ex1 vector of line capacities 

The matrix 𝑫 is not unique, since there are infinite ways in which an aggregate injection can be distributed between multiple nodes;  

here, it allocates power injections according to the original distribution  of generation capacity in the detailed model  



• The STEM model has the concept of the typical day. Hence the mean wind/solar production is 

applied, and the variance of the mean is needed to capture stochasticity through the variability of 

the mean 

• Bootstrap was applied to derive the variation of the mean for wind/solar generation and electricity 

consumption across the typical days of a 20-year sample data and then we moved ± 3 sd in the 

distribution of the mean for each our and typical day to obtain the variability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

• The storage capacity must accommodate downward variation of the Residual Load Duration Curve 

(RLDC) and upward variation of non-dispatchable generation 

• The dispatchable peak generation capacity (incl. storage) must accommodate upward variation of 

the RLDC and downward variation of non-dispatchable generation  

Representation of stochastic RES variability 

Page 7 

Bootstrapped Distribution of Mean Photovoltaic  

Capacity Factors: Summer (left), Winter (right) 



• Power plants commit capacity to the reserve market based on their operational constraints and 

the trade-off between: 

 marginal cost of electricity (covers generation costs)  

   dual of the electricity supply-demand balance constraint 

 marginal cost of reserve provision (covers capacity costs)  

  dual of the reserve provision – demand balance constraint 

 

• In each of the 288 typical hours the demand for reserve is calculated from the joint probability 

distribution function (p.d.f.)  of the individual p.d.f. of forecast errors of supply and demand. We 

assume that the forecast errors are following the normal distribution 

 The sizing is based on both probabilistic and deterministic assessment 

 We move ± 3 s.d. on the joint p.d.f of the reserve demand to estimate the reserve requirements 

Ancillary services markets – provision of reserve 
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𝑅 = 3 ∗ 𝜎2
𝑠𝑜𝑙𝑎𝑟 ∙ 𝐺𝑡𝑠𝑜𝑙𝑎𝑟 − 𝑆𝑡𝑠𝑜𝑙𝑎𝑟

2
+ 𝜎2

𝑤𝑖𝑛𝑑 ∙ 𝐺𝑤𝑖𝑛𝑑 − 𝑆𝑡 𝑤𝑖𝑛𝑑

2
+𝜎2

𝑙𝑜𝑎𝑑 ∙ 𝐿𝑡
2 + 𝑃𝑚𝑎𝑥 
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P W P-CO2 W-CO2 P-IMP W-IMP P-CO2-IMP W-CO2-IMP

POM based energy service demands    

WWB based energy service demands    

Nuclear phase out by 2034        

Zero net annual electricity imports    

-70% CO2 emission reduction in 2050 from 2010    

Net electrcity imports are allowed    

Base case Climate change Imports Combined case

A range of “what-if” scenarios was assessed along three main dimensions: 

 

1. Future energy policy and energy service demands 

 

 

 

 

 

 

 

2. Location of new gas power plants and installed capacity as % of the total national capacity 

 

 

 

 

 

 

3. Grid expansion: allowing grid reinforcement beyond the plans announced for 2025 or not 

 

in total about 100 scenarios were assessed with the STEM model based on the Cartesian Product of 

the above combinations 

 

Long term scenarios analysed 
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Corneux (NE) Chavalon (VS) Utzenstorf (BE) Perlen (LU) Schweizerhalle (BL) 

Case 3 20.0 20.0 20.0 20.0 20.0 

Case 6 No grid constraints, so the location of gas turbines does not play a role 

Case 11 0.0 33.3 33.3 33.3 0.0 

Case 26 33.3 33.3 0.0 0.0 33.3 



• Electricity consumption increases 4 – 30% from 2015 ( 0.1 – 0.8% p.a) 

• New gas power plants replace existing nuclear capacity 

• Under climate policy VRES provides 28% of the supply (close to the current share of nuclear) 

• The requirements for secondary reserve almost double in 2050 from today’s level and peak 

demand shifts from winter to summer; hydro is still the main contributor to reserve 

Electricity consumption continues to increase and 
gas, VRES & imports replace nuclear by 2050 
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The results correspond to ranges among the 100 scenarios assessed 



• High shares of VRES require electricity storage peak capacity of ca. 30 – 50% of the installed 

capacity of wind and solar PV (together) 

• Above 14 TWh of VRES generation, significant storage deployment is needed 

• About 13% of the excess summer VRES production is seasonally stored in P2G (~ 1 TWhe)  

 

Storage needs increase with VRES deployment 
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wind and large scale PV and CHP  
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Each data point in the graph corresponds to a different long term scenario and year  



Contribution of each sector to electricity 
stored in water heaters and heat pumps 

Residential 
85-97% 

Industry 
<2% 

Services 
3-23%  

• Electricity storage in water heaters and heat pumps accounts for 8 – 24% of the total electricity 

consumption for heating  

• Above 13 TWh of electricity for heating there is an accelerated deployment of dispatchable 

loads to mitigate peak 

• Large potential for load shifting is in water heating (resistance heating) followed by space 

heating in buildings 

Dispatchable loads help in easing electricity 
load peaks in the stationary end-use sectors 
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Each data point in the graph corresponds to a different long term scenario 



• Restrictions in grid expansion lead to higher system costs of up to 90 BCHF (+10%) over the 

period of 2020 – 2050 because of congestion that results in: 

 non-cost optimal options for electricity supply and less VRES deployment  

 less electrification of demand and reliance on fossil-based heating 

• Much of the cost savings due to grid expansion result in the heating sectors, directly (e.g. 

technology change via heat pumps) and indirectly (e.g. less costs for imported fuels) 

The system-wide benefits from the electricity 
grid expansion outweigh the costs 
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• Without batteries and grid, there is 30 – 50% less deployment of wind and solar electricity 

compared to the case when both options are available 

 Batteries are important for the integration of VRES to cope with their variability 

 Grid expansion is important to integrate large amounts of VRES production ( >16 TWh) 

• Total system costs can be 10 – 14% higher if both batteries and grid expansion are unavailable 

 In particular climate policy costs could increase by more than 50% (from 103 to 160 BCHF) 

Storage and grid expansion are required to realise 
the VRES potential and lower climate policy costs 
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• Electricity consumption continues to increase by 0.1 – 0.8% p.a. and could reach over 70 TWh/yr by 2050 

 

• VRES can contribute up to 24 TWhe (or 28% of the domestic supply) but this requires: 

 Storage peak capacity investments  about 30 – 50% of the installed wind and solar PV capacity; beyond 

14 TWhe accelerated deployment of storage is inevitable 

 Grid reinforcement beyond the expansion plans anounced for 2025 

 

• About 13% of the excess electricity production from VRES in summer is seasonally stored in P2G pathways   

 

• Water heaters and heat pumps could contribute in easing electricity peaks and could shift 8 – 24% of the 

electricity consumption for heat 

 

• Grid reinforcement results in net economic benefits for the whole electricity and heat supply system of 

Switzerland on the order of 0.5 – 3.0 BCHF/yr. 

 

• When both electricity storage and grid expansion are unavailable, VRES generation could be up to 50% less 

and climate costs could increase by more than 50% compared to the opposite case 

 

• Further work is needed to overcome some important limitations: 

 Regional representation also for the heat supply and not only for electricity 

 Consideration of N-2 grid security constraints  

 More detail in technical representation of storage technologies (e.g. depth of discharge) 

 

Conclusions and further work 
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Wir schaffen Wissen – heute für morgen 

Thank you for your attention.  
Evangelos Panos 

Energy Economics Group 

Laboratory for Energy Systems Analysis 

Paul Scherrer Institute 

evangelos.panos@psi.ch 
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