

Center for Proton Therapy :: Paul Scherrer Institut :: #16_12/2018

Dear Reader,

therapy to a patient. This treatment unit has been by a Japanese group in the 1980s, the group of put. Congrats to all of my collaborators. Eros Pedroni conceptualized, designed and fi- The first article of this edition details the outcome

in the field of proton therapy and has been displayed in numerous papers, congresses and on December 4th, as planned, our Gantry 1 has symposiums (with or without the knowledge of delivered the last fraction of proton radiation PSI!) as the guintessence of the impact of PSI in this field. This gantry has been now replaced by used clinically during 22 years with no significant the Gantry 3 (collaboration between USZ-UZH), mechanical failures. As a reminder, Gantry 1 was which started successfully treatment of patients the first pencil-beam scanning Gantry in the this summer. The transition has been nearly world, which has been routinely used for the perfect and I must thank all CPT's collaborators treatment of cancer patients. Although the par- to have made the changeover as smoothly as over, the manually correction of these artefacts tion such mitigation strategies and/or 4D dose adigm of spot scanning delivery was described possible with no decrease in patient's through-

nally supervised the construction of this unit with of large sacral chordoma patients, most of them a non-isocentric design which makes it still treated on Gantry 1, after proton therapy and parenthetically in 2018 one of the most compact hyperthermia in the framework of a collaboration gantry in the world. It was also this unit that with the Kanton Spital Aarau (St. Bodis). With delivered the first ever intensity-modulated pro- this combined modality paradigm, a mean deton therapy planned by the team of Tony Lomax. crease of tumor volume of 50% was achieved, It has been the showcase of the knowhow of PSI quite a remarkable achievement for this slow ation issues.

third of patients presented with a partial radio- plan optimization with or without motion mitigalogical response. In the second article, Robert tion strategies for the delivery of pencil-beam Poel presents a dosimetric analysis using CFR- scanning proton therapy. Our group observed PEEK for proton therapy. Titanium surgical im- that 4D plan optimization could reduce the dose plants generate substantial artefacts on radio- to normal tissues. Incorporating rescanning into logical studies. This will substantially hamper 4D optimization was also beneficial for achieving the delineation process and corrupt the transla- dose optimization/robustness. At PSI we use for tion of Hounsfield units to stopping power. More- selected patients with target/organs at risk mois labor-intensive. PSI has shown that the use of optimization. carbon-based decreases by a factor of four the That being said, I wish you a merry 'Xmas and target volume receiving less than 95% of the Happy new year. Please stay tuned for our next prescribed dose (data not shown). As radia- edition in 2019 of our magazine for some results tion-oncologist, we need to convince our fellow stemming from our ongoing clinical/research surgeons that, when possible, polyetherether- program. ketone material should be used for radiotherapy delivered to extra cranial bone tumors, be it with protons or photons, the latter mainly for deline-

responding/radio-resistant tumor. Overall, two Lastly, Ye et al. has assessed the impact of 4D

Yours sincerely, Prof. Damien Charles Weber. Chairman of CPT **Paul Scherrer Institute**

Radio-Oncology News

3

Proton therapy and hyperthermia in large inoperable sacral chordomas

Objectives: Large inoperable sacral chordomas show unsatisfactory local control rates even when treated with high dose proton therapy (PT). Improving the efficiency of the primary treatment is therefore of paramount importance. As we commented in the December 2017 issue, the combination of hyperthermia and irradiation showed promising results in selected tumor types, including soft tissue sarcomas. The aim of this study is assessing feasibility and reporting early results of patients treated with Pencil Beam Scanning (PBS) PT and concomitant hyperthermia (HT).

Methods: Patients with inoperable, planning was carried out using Signon-metastatic, biopsy-proven chordoma in the sacral region received HT tion and creation of a grid model of in addition to definitive PT. PBS Intensitv Modulated PT was administered utilizing PSI's 250 MeV cyclotron. Target volume definition was performed on a 3D high resolution planning CT, matched with a planning MRI. Prescribed dose was 70 Gy(RBE) in 28 fractions of 2.5 Gy(RBE), delivered 5 times weekly over 5¹/₂ weeks. HT was delivered weekly at Kantonsspital sponse analysis was performed. Aarau, using either the Sigma 60 or the Sigma-Eye applicators of the deep hyperthermia unit. The HT treatment

maHyperPlan software by segmentathe various body tissues according to their dielectric properties (e.g. tumor. muscle, bone, fat) followed by simulation of the electric fields. Temperature during HT application was monitored on the skin, in the rectum, gluteal fold and the urinary bladder. CTCAE v4. A volumetric tumor re-

2017, five male patients referred from with the combined PT and HT approach tumor shrinkage below pre-treatment 67 years (range, 57–72) and median (range, 369–1142). All patients com- tients (67%) showed a partial radio-HT sessions (range, 2–6), either just resolved completely. One patient prepatient had to stop HT after 2 sessions ture. Another patient presented with sition during the hyperthermia treat- bleeding was observed in 1 case.

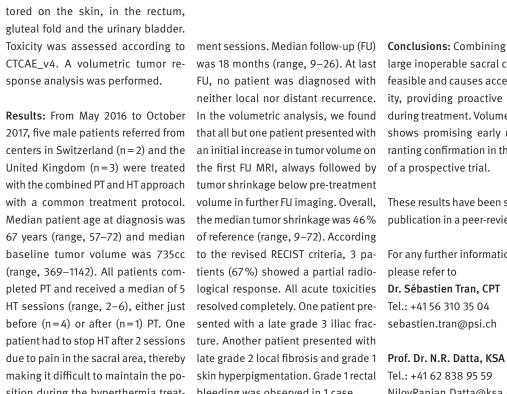


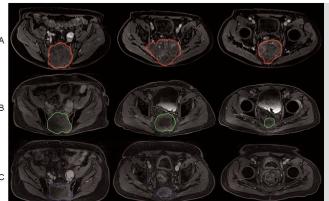
Figure 2:

Volumetric

relative to

tumor volume

at treatment start.


Volumetric Analysis -Patient - Patient 8 - Patient -Patient 4 Patient tumor response 30 20 12 16 20 Months after start of treatmen

> Conclusions: Combining PT and HT in large inoperable sacral chordomas is feasible and causes acceptable toxicity, providing proactive pain control during treatment. Volumetric analysis shows promising early results, warranting confirmation in the framework

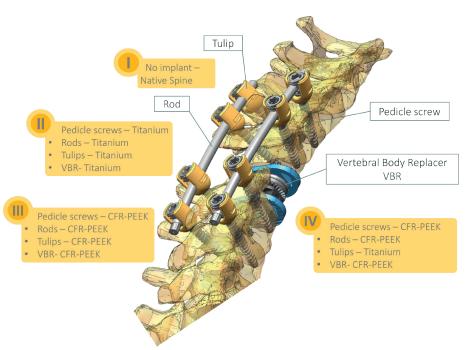
> These results have been submitted for publication in a peer-reviewed journal.

For any further information, please refer to Dr. Sébastien Tran, CPT Tel.: +41 56 310 35 04 sebastien.tran@psi.ch

Tel.: +41 62 838 95 59 NiloyRanjan.Datta@ksa.ch

2

Figure 1: Tumor response in patient 1. (A) baseline. (B) 9 months and (C) 27 months after treatment. Columns represent the (1) cranial, (2) middle and (3) caudal aspects of the tumor. Disease is no longer found in the caudal region 27 months after treatment due to tumor response.


Medical-Physics News

CFR-PEEK vs Titanium spinal implants in radiotherapy: A phantom study

Radiotherapy, including proton therapy, is often given adjuvantly after surgery. In diseases involving the bones, such as chordomas and chondrosarcomas which are often treated at our institute, the surgical resection might lead to instability, for example in the spine. In these cases the spinal instability is redressed by titanium implants.

Unfortunately, titanium is a hard and dense material which will lead to several difficulties in the planning and delivery of a radiotherapy treatment. Planning and dose calculation is based on the density mapping retrieved with a CT scan. For proton therapy these Hounsfield units (HU) are then correlated to proton specific stopping powers to correctly calculate the exact energy deposition of the protons. A titanium implant, due to its density, saturates the HU on a CT hence causing artefacts and thus comproin proton therapy where the majority of energy is deposited in the Bragg peak a correct representation of the stopping power is of utmost importance for correct dose calculation. As a consequence the artefacts have to be corrected manually which is time-consuming and subsethe dose calculation.

The second issue is the big difference in density between titanium and human tissue. Dose cal-

mising the correct density mapping. Especially lent densities and therefore specific proton interactions as multiple coulomb scattering and non-elastic interactions are not taken into account. The consequence is that the dose of proton beams shooting through these structures, especially distally of the metal, are not correctly simulated by the dose calculation. quently lead to a higher level of uncertainty in Besides, the large density difference makes the constructed plans less robust in case of setup errors and/or anatomical changes.

Nowadays, carbon fiber reinforced polyethculation algorithms are based on water equiva- eretherketone (CFR-PEEK) implant materials are

available. The advantage of this implant material is that it has a density equivalent to human tissue and therefore does not cause artefacts and there are no unaccounted proton interactions expected. Theoretically this would solve the challenges currently present with titanium implants. CFR-PEEK is therefore likely to be the ideal material to use for stabilization when radiotherapy is anticipated.

To show this theoretical advantages in a scientific way and to promote the use of CFR-PEEK implants we have set up a study together with

Design schematic of the interchangeable insert of the phantom. The 4 different inserts exist of: A native spine (case I), a full titanium implant (case II), an implant completely out of CFR-PEEK (case III) and a hybrid implant where the tulips are made of titanium (case IV).

> two collaboration partners: Icotec AG, a Swiss spin-off company of ETH and one of the two worldwide manufacturers of CFR-PEEK implants and Inselspital Bern covering the photon part of the research.

> A unique anthropomorphic torso phantom was designed with an interchangeable spinal part that represents 4 different cases: No implant, an implant made totally out of titanium, a prototype implant made fully of CFR-PEEK and a clinically approved hybrid implant (see image). With this phantom we were able to mimic and compare treatment of these 4 different cases and subsequently verify the dose distribution within the target by means of GafChromic film. To compare the differences of the 3 different implant configurations and the reference case without an implant, we have performed a standard clinical workup of simulation, contouring, artefact correction, plan optimization and delivery. Our colleagues in Bern performed the same protocol for the clinical photon plans. Preliminary results show the potential of CRF-PEEK material use in radiotherapy. A meeting will take place soon with all collaboration partners to present and discuss first results.

For any further information, please refer to CPT Robert Poel Tel.: +41 56 310 34 11 robert.poel@psi.ch

Medical-Physics News

Towards a more robust 4D plan optimization for PBS-based moving tumor treatments

Plan quality can be compromised for mobile 4D plans by itself. In this presented study, we (PBS) proton therapy, due to the detrimental effects of intra-fractional motion on dose deposition. As a complement to the classic motion mitigation approaches, such as rescanning, gating, tracking or combinations of these, 4D plan optimization is a process that can inherently include motion into the pencil beam weight optimization in order to generate 'motion-robust'

tumour treatments using pencil beam scanning would like to evaluate this promising technique systematically using 4DCT-MRI datasets of liver tumour patients, as well as to investigate the possibility of increasing plan robustness by directly incorporating rescanning into the 4D plan optimization.

> Using nine 4DCT(MRI) datasets of liver tumors (PTV:100-400 cc), 3D plans were generated on the end-of-exhalation phase of the 4DCT using

3D opt gITV plan 3D opt gITV plan 3D opt gITV plan V (%) 4D opt CTV plan 4D opt CTV plan сти Liver-CTV 140 120

> Figure The effectiveness of 4D plan optimization (with and without rescanning) for mitigation organ motion (amplitude over 20mm) incl. respective dose-volume-histogram (DVH) plots. Colors in DVH plots are corresponding to those used by sub-figure of each scenario.

geometric Internal Target Volume (gITV: encapsulating PTVs at all 4DCT phases). 4D dose calculation was performed by considering regular and irregular motion patterns (range: 8-20mm; period: 3.3-6.3 s) with and without rescanning (x5 layered). In addition, 4D, directly optimized plans, which accurately take into account beam delivery dynamics and organ motion, were calculated to the PTV (on reference CT) without expanded gITV. The robustness of optimized 4D plans were assessed by recalculating the optimized 4D plans under variable 4D plan optimization can substantially minimize motion scenarios with motion phase delays up to 1s (in 50ms intervals). All re-calculated 4D plans were quantified and compared using homogeneity index (HI) of D5–D95 in the PTV as well as V10%, V20% and V60% in the healthy liver (liver-PTV).

Independent on the motion pattern (regular or This work was presented on the annual meeting irregular), amplitudes (up to 20mm) or periods of the European Society for Radiotherapy & (either fast or slow breathers), interplay effects could be effectively mitigated using 4D plan optimization alone, where HI in the PTV being <15% can be achieved. Furthermore, combining 4D optimization with rescanning, can additionally improve optimized plan quality, by reducing HI in the PTV to within 5% of static 3D plans. For ye.zhang@psi.ch the 'best-case' rescanned 4D plans, 4D optimization could be able to provide "zeromotion-margin" for 4D treatments (in Figure), resulting in pronounced reduction of dose to the healthy liver (median 5% for V10/20/60% indexes). However, optimized 4D plans, especially those without rescanning, have been shown to be extremely sensitive to variations of the presumed (during the optimization) and actual motion conditions during delivery. Nevertheless, the robustness of 4D optimized plans can be substantially increased by combining optimization with rescanning. The comparable plan quality (within 5%) can be achieved for rescanned 4D optimized plans, even allowing for motion phase shifts of up to 500ms between optimization and delivery. The resulted 4D plan robustness is in contrast to the less than 200ms motion phase shifts that were observed to degrade plan quality for 4D plans optimized without rescanning.

ITV margins, therefore reducing dose to normal issues. Incorporating rescanning into 4D optimization is beneficial for achieving such goals, thanks to the significantly increased 4D plan robustness with respect to motion variations.

Oncology (ESTRO) 2018. A full publication is in preparation.

For any further information, please refer to CPT Dr. Ye Zhang Tel. +41 56 310 5834

> Imprint Editor Dr. Ulrike Kliebsch Chairman Prof. Damien C. Weber **Chief Medical Physicist** Prof. Tony Lomax Design and Layout Monika Blétry

Contact

Center for Proton Therapy CH-5232 Villigen PSI protonentherapie@psi.ch www.protonentherapie.ch Tel. +41 56 310 35 24 Fax +41 56 310 35 15

Villigen PSI, December 2018