
Matlab function reference manual
for the PILATUS pixel detector
Surface Diffraction Station
X04SA Materials Science beamline,
Swiss Light Source

written by

P.R. Willmott, R. Herger, C.M. Schlepütz, S.A. Pauli, and D. Martoccia

Swiss Light Source

Paul Scherrer Institut

CH-5232 Villigen

CVS Version Tag: X_PILATUS_1_2

November 2008

ii

Contents

1 Introduction 1

1.1 Software requirements 1

1.2 Conventions 1

2 Atomic functions 3

2.1 imageread.m 3

2.2 imagewrite.m 4

2.3 medianfilter.m 5

2.4 histmask.m 7

2.5 setroi.m 8

2.6 roimanip.m 10

2.7 fillstack.m 13

2.8 makeffcorr.m 14

2.9 imagebin.m 14

2.10 pixangles.m 15

2.11 intcorr h.m . 15

2.12 intcorr v.m . 16

2.13 hklcalc h.m . 16

2.14 hklcalc v.m . 17

2.15 imagetohklinth.m . 18

2.16 imagetohklintv.m . 19

2.17 scantohklint.m 19

3 Beamline-specific functions 23

3.1 readscanlog.m 23

3.2 fftest.m 24

3.3 imageviewer.m 26

–iii–

iv CONTENTS

Chapter 1

Introduction

1.1 Software requirements

Most of the software described in this document was created using MATLAB R2006a. In most (if not all) cases,

using the older MATLAB release 14 will suffice, though the authors guarantee no backwards compatability.

Most of the functions here require the MATLAB image processing toolbox, while the (as yet incomplete)

functionsurffit.m uses the optimization toolbox.

It is stressed that the functions described here and also downloadable from the Surface Diffraction website

of the Materials Science beamline at the Swiss Light Source have been developed primarily for in-house appli-

cations. The modular nature of these routines was conceivedfor easy transfer to other applications and needs, so

other users can profit, without having to re-invent the wheel. However, we provide no software support or debug-

ging services, nor can we guarantee the correctness of these routines. Responsibility for any use or adaptation of

these routines therefore lies entirely with the user.

1.2 Conventions

To use this document efficiently, there are some conventionsone should be aware of.

1. Matlab code is cited in theverbatim style.

2. The output of functions is given in square brackets, e.g.,[output].

3. Input arguments are specified in parentheses, e.g.,(input).

4. Optional arguments are enclosed by bra-kets, e.g.,<option>.

5. String variables are held within single quotes, e.g.,’string’.

6. Scalars or vectors start with a lower case letter, e.g.,dim.

7. Multidimensional arrays start with a capital letter, e.g., Im.

–1–

2 INTRODUCTION

8. Scalar variables in equations are written asa or A.

9. Vectors in equations are bold faced, e.g.a or A.

10. Matrices in the math mode are written in the caligraphic alphabet, e.g.,A .

Note please that by typinghelp myfunction.m in MATLAB, you can get help about the arguments, usage, etc.,

on that particular function.

Chapter 2

Atomic functions

This chapter describes the following MATLAB functions:

1. imageread.m – reads an image (img, tif or tiff, ff)

2. imagewrite.m – writes an image (tif or tiff, jpeg or jpg, ps or eps, ff)

3. medianfilter.m – performs a median or mean filter in the plane of the image

4. histmask.m – produces a mask based on two threshold values

5. setroi.m – selects a region of interest within an image

6. roimanip.m – manipulates regions of interest within an image

7. surffit.m – to be completed

8. immerge.m – merges a stack of images

9. fillstack.m – fills a stack of images

10. makeffcorr.m – creates a flatfield correction file

2.1 imageread.m

The functionimageread.m reads an image of typeimg, tif (or tiff), ff, or edf, and returns a 2-dimensional

data matrix.

[Im, <header>] = imageread(filename, format, dim, <colorDepth>)

• Im – returned matrix of dimensiondim

• filename – filename [+ path (absolute or relative)] of the file

• format – format of your input file

–3–

4 ATOMIC FUNCTIONS

– ’img’ – tvx .img format

– ’tif’ – tif format with extension .tif

– ’tiff’ – tif format with extension .tiff

– ’ff’ – tvx flatfield tif format (= float tif) with extension .tif

– ’edf’ – ESRF data format with extension .edf

• dim – matrix dimension as vector, e.g.,dim = [xdim, ydim]

• colorDepth – Color-depth of the .img file in number of bits (default is 32 bit, for PILATUS 2 images)

Values can be 8, 16, 32, or 64 for integer arrays (e.g., 16 mustbe used for a 16-bit PILATUS 1 image),

or use -1 if you want to load floating points of format ’double’, e.g., if you want to load an image that is

already flatfield corrected.

2.2 imagewrite.m

The functionimagewrite.m writes an image to disk. Supported formats are img, tif, and edf. This routine is not

meant to create graphical output of pixel data for presentatin purposes (e.g., jpg or eps). The intention is, rather,

to write data in a specific data format, with the precision needed (up to 64 bits per pixel are supported) where, in

case of tif and edf, you also can store information in the header, e.g., information on the scan or the beamline,

etc.

[<status>] = imagewrite(Im, filename, format, <colorDepth>)

• <status> – Optional output parameter

– 0 – saving was not successful

– 1 – saving was successful

– 2 – file existed before, but was overwritten

• Im – Input matrix (= image) of size(n×m) to save. The elements of the matrix can be floating point

numbers

• filename – filename [+ path (absolute or relative)] of the file to be written

• format – format of your output file

– ’img’ – img format (without header) with extension .img

– ’tif’ or ’tiff’ – tif format with extension .tif with a header of 4096 bytes

– ’edf’ – edf format as .edf with a header of 1024 bytes (ESRF standard, but neither unique at the

ESRF, nor required by the data format itself)

• <colorDepth> – Color-depth of the image in number of bits (default is 32 bitfor PILATUS 2 images).

Values can be 8, 16, 32, or 64. Note: 16 is required for 16-bit PILATUS 1 images.

2.3. MEDIANFILTER.M 5

Example: You successfully write a.tif file from an image matriximage_12345 generated byimageread.m.

[1] = imagewrite(image_12345, image_12345, tif)

2.3 medianfilter.m

The functionmedianfilter.m filters an image in the plane of that image. This is normally required for the

substitution of dead or hot pixels. In the first model of the pixel detector (PILATUS I), this facility was essential

to obtain reliable data. The second generation model (PILATUS II) has essentially no hot pixels, and typically

less than 0.1% dead pixels. Median or mean filtering has therefore becomemuch less critical.

You can either choose a median (the default setting) or a meanfilter. In the standard operating mode, the

filter only operates on pixels that are more thannσ standard deviations away (above and below) from the median

or mean of their neighbours. The default value forn (matlab argumentnsigma) is 5. The number of neighbours

around any given pixel is defined by a box (“kernel”) of size(l ×m), and is hence equal to(l ×m)−1. Because

the median filter selects the em middle value [i.e., the(l ×m + 1)/2th element ofl ×m elements selected in

ascending order], bothl andm must be odd integers. The default (and minimum) size of the kernel is(3×3).

The default setting is to median filter a complete image. If you intend to filter only specified pixels from

your image, a value ofn =−1 must be entered for the argumentnsigma and a mask image of the same dimensions

as those of the image being filtered, consisting of a set of zeros and ones, must be provided. Those mask image

pixel positions with value 1 are filtered (median or mean).

Internally, the filter creates a 3D-stack, each layer consisting of a circularly shifted image (see Fig. 2.1),

i.e., for a given matrix elementA(i, j) all neighbouring elements specified by the kernel (e.g. for 3×3 :A(i−

1, j−1) . . .A(i+1, j +1)) are stored in the 3D-stack (see Fig. 2.1). The filter (medianor mean) and the standard

deviation are applied to the third (vertical) dimension of the stack. The selected pixels (be they from a mask filter

or by exceeding thenσ-criterion described above) are then replaced by the medianor mean calculated from the

stack.

The edge pixels are treated specially. An “edge” pixel is defined as one which has less than(l − 1)/2

[(m− 1)/2] pixels between itself and the edge of the image in thex- [y-] direction, and therefore for which

the kernel spills over the edge of the image. In order to make filtering possible, the image is symmetrically

expanded by replication of the edge pixels. The size of this expansion depends on the kernel size – for an

l ×m(l,m = 3,5,7, . . .) kernel,(l −1)/2 pixels are added at both ends in thex-direction and(m−1)/2 pixels in

they-direction. Please note that due to the replication of the border elements, hot pixels in the border region may

not be filtered1.

An associated array of the same dimensions as the image can beoptionally output, in which the standard

deviations are written. These are calculated from all the neighbouring pixels specified by the kernel, but not the

pixel itself, in case it is hot or dead, which would result in very large standard deviations.

[ImOut, <SigmaOut>, <noCorrPix>, <CorrPixMask>] = medianfilter(ImIn, <kernel>, <nsigma>,

1We tried to circumvent this problem by adding NaN’s as extension, but MATLAB’s median filter routine cannot deal with themcorrectly.

But since the signal is usually somewhere around the center of the image, this limitation should not have a significant influence.

6 ATOMIC FUNCTIONS

Figure 2.1: A simplified schematic of how the medianfilter works. A kernelof neighbours of size(l×m) around each selected

pixel is defined [here,(3×3)], and a stack ofl×m images high is generated. The position of each image shiftedso that every

neighbour within the kernel appears once along a vertical line (highlighted here with light yellow spots). Because edgepixels

do not have neighbours to all sides, the image is padded out with a border of(l −1)/2 in thex-direction and(m−1)/2 in the

y-direction, in order to permit their filtering. In this example, the(6×10)-pixel image has been padded with a border of width

1 pixel. The intensities of the padding pixels are set equal to the real edge values (Note here that all the pixels in the 1-pixel

padding border have the same color as their internal neighbours).

<SigmaIn>, <Maskimg>, <method>)

• ImOut – Filtered image

2.4. HISTMASK.M 7

• <SigmaOut> – Matrix containing the statistical errors associated witheach element ofImOut

• <noCorrPix> – Gives the number of matrix elements (pixels) that have beenreplaced. This provides

information about the quality of the raw image, or, more importantly, the performance of the detector

• <CorrPixMask> – Returns a mask (containing either 0s or 1s) of all the modified matrix elements. The

number of 1s is equal tonoCorrPix

• ImIn – Image to be filtered

• <kernel> – Vectorkernel = [xkernel ykernel] specifying the amount of neighbouring pixels. Mini-

mum and defaultkernel = [3 3], only odd numbers allowed for bothxkernel andykernel

• <nsigma> – Pixels are only filtered if they are more thannσ standard deviations away from the median or

mean within the given kernel, defaultnσ = 5.

Special option:nσ = −1 replaces each pixel selected by Maskimg with the median or mean value of its

neighbours for a given kernel

• <SigmaIn> – Matrix containing the errors associated with each elementof ImIn

• <Maskimg> – If a mask image is supplied, only pixels contained in the mask are filtered by choosing

nσ = −1

• <method> – selects the filter

– ’median’ – median filter (default)

– ’mean’ – mean filter

The function can be used with several optional arguments, for example:

Example 1: You want to specify a bigger kernel.

[MyImOut] = medianfilter(MyImIn, [5 5])

Example 2: You want to perform a mean filter.

[MyImOut] = medianfilter(MyImIn, [], [], [], [], ’mean’)

Example 3: You want to know the number of corrected pixels, use a standard kernel, but only filter pixels that

are more than 15 standard deviations away from their neighbours. You have to specify also a dummySigmaOut,

because MATLAB only allows you to process output arguments sequentially.

[MyImOut, MyDummySigmaOut, myNoCorrPix] = medianfilter(MyImIn, [], 15)

2.4 histmask.m

The functionhistmask.m produces a mask of an image based on a threshold analysis. It is commonly used to

identify bad (dead or hot) pixels in flat field data, though canbe used for any image.

8 ATOMIC FUNCTIONS

As a preparatory step in flatfield analysis, one can take a flatfield image, or indeed a stack of images (see

fillstack.m), and reshape it into a 1D array using the MATLABreshape function, then perform a histogram

on this array using the MATLABhist function. The displayed intensity distribution provides visual information

on the quality of the flatfield, from which thresholds forhistmask can be sensibly chosen.

This function sets all pixels that have counts between a lower and a higher threshold to 1, the others to 0.

[Maskimg, <noPix>, <noLowHigh>] = histmask(Im, thresh, <MaskimgIn>)

• Maskimg – Mask image for original imageIm. The arrayMaskimg contains

– 1 – for all pixels between or equal tolow andhigh;

– 0 – otherwise

• <noPix> – Returns the number of pixels within the thresholds

• <noLowHigh> – Two-element vector containing the number of pixels lower and higher thanthresh. The

return will benoLowHigh = [Low High]

• Im – Matrix to mask

• <thresh> – Vector containing both the lower (low) and higher (high) threshold,thresh = [low high]

• MaskimgIn – If MaskimgIn is supplied, only pixels contained in the mask are processed, e.g., if you want

to analyze a region of interest.

Note thatIm andMaskimgIn have to be of the same size

2.5 setroi.m

setroi.m is a function to select a region of interest (roi) in an image.

[BWout, <xi>, <yi>, <nlines>, <outparms>, <method>, <edgedetectionmethod>] = setroi(I/h,

<method>, <parms>, <edgedetectionmethod>)

• I/h – 2-D Image data input. If an imageI is chosen, the image data is read in and displayed, whereas ifh

is chosen, thehandle to an image object inside a figure is called.

• <method> – Optional input parameter defining how the roi is created (see Fig. 2.2):

– ’box’ – Default method, used if this optional argument is not given. If no parameters (<parms>)

are specified, the user draws a box by clicking on one corner ofthe desired region and dragging the

mouse to the diagonally opposite corner, where a second click completes the definition.<parms> and

<outparms> are 4-element vectors of the form[xmin ymin width height]. When using’box’,

the resulting ROI is guaranteed to be simply connected (i.e., a convex set with only one outside

boundary)

2.5. SETROI.M 9

’box’ ’polygon’

’threshold’’edgedetection’

Figure 2.2: The four different methods for defining a region of interest.

– ’polygon’ – A bounding polygon of arbritary form. If no parameters are specified, the user can draw

the polygon inside the image figure using the mouse. Each vertex is added by a single left-click on

the image. To finish the polygon use a double click. This vertex will then automatically join up with

the first defined vertex. Care must be taken to avoid intersecting polygon lines, which can produce

undesired results.<parms> and<outparms> aren-by-2 arrays with thex- andy-coordinates of the

bounding polygon vertices in the first and second column, respectively.<outparms> returns vertices

of a closed polygon (i.e., the firstxy-pair is equal to the last one). If the optional input<parms> is not

a closed polygon,setroi will close it by copying the first vertex to the end of the array.

– ’edgedetection’ – Finds the ROI by detecting edges (i.e., steep gradients) inthe image data. Inter-

nally, this method uses the EDGE function provided by MATLAB, followed by a sequence of manip-

ulation steps which improve the chances of finding filled regions rather than just the edges by which

they are enclosed.<parms> and<outparms> are directly passed to and from the EDGE function –

please refer to the EDGE documentation in the MATLAB help facility for more information about

valid parameter values. If<parms> is not supplied or is empty, the parameters for edge detection are

determined automatically by EDGE. Several algorithms for edge detection are available in EDGE,

all of which are also valid in SETROI: ’sobel’, ’prewitt’, ’roberts’, ’log’, ’zerocross’, and ’canny’

(default). These can be specified through the<edgedetectionmethod> optional input argument.

– ’threshold’ – Image data is transformed into a binary mask by comparison with a threshold level

(pixels with intensities above thethreshold parameter in<parms> produce ones, the others ze-

ros). If <parms> is not supplied or is empty, the threshold level is determined automatically by the

GRAYTHRESH function in MATLAB, otherwise the specified level is used for the conversion. A se-

ries of manipulation steps after the thresholding procedure is applied to remove noise and to produce

more reliably filled regions which can be used as sensible ROIs.

10 ATOMIC FUNCTIONS

• <parms> – Optional input defining the parameters for the chosen ROI-defining method. Refer to the de-

scriptions of the different methods above. (default = [], resulting in user interaction for methods ’box’ and

’polygon’ and automatic parameter adjustments with methods ’edgedetection’ and ’threshold’).

• <edgedetectionmethod> – Optional input string parameter only needed when specifying the algorithm

when using the method ’edgedetection’. The 6 different possibilities are listed above in the description of

’edgedetection’

• BWout – The logical mask output image of the same dimensions asI, with zeros outside and ones inside

the selected region. The original image is multiplied by themask, which effectively sets everything outside

the ROI to zero.

• <xi>, <yi> – Returns thex- andy-coordinates of the bounding polygon(s) for the region(s) in BWout. If

the region inBWout is simply connected (i.e., a convex set with only one outsideboundary),xi andyi are

vectors of size 1timesN, whereN is the number of vertices on the bounding polygon. If severaldistinct

bounding polygons are present,xi andyi are returned asM ×1 cell arrays, wherebyM is the number of

distinct boundaries. Each cell inxi andyi contains a vector of size 1×N i with thex- andy-coordinates

of theN i vertices of thei-th bounding polygon.

• <nlines> – Returns the number of distinct boundary polygons present in BWout. For a simply connected

set, <nlines> is therefore 1 andxi and yi are returned as simple vectors (see above). For multiply

connected sets,nlines is greater than 1 andxi andyi are cell arrays of sizenlines ×1 (see above).

• <outparms> – Returns paramters used by<method> in the same format as the corresponding input argu-

ment in<parms>, meaning that they can be used directly with the next function call to SETROI.

• —¡method¿— – Returns the string name of the method used in SETROI

• —¡edgedetectionmethod¿— – Returns the string name of the edge detection algorithm used in SETROI,

but only if the chosenmethod was ’edgedetection’.

2.6 roimanip.m

This function performs a palette of manipulations on the size, position, and orientation of a region-of-interest

mask. This function uses the atomic functionboundingpolygon.m, which is itself based on the MATLAB

functioncountourc, used to determine countour lines around 2-D features.

[BWout, <xi>, <yi>] = roimanip(BWin, <’method’>, <par>)

• BWin – The input ROI mask image to be modified, of the same size as theimage that is being processed.

You must convert the binary image into a label matrix before calling roimanip. There are two common

ways to convert a binary image into a label matrix in MATLAB:

a) Using the bwlabel function

L = bwlabel(BW);

2.6. ROIMANIP.M 11

original image

"bwlabel" "double"

ROIMANIP

Region interpretation:
bwlabel finds 3 regions,
double finds one

bounding box

convex hull

enclosing ellipse

rotate

scale

border

Figure 2.3: Schematic diagram showing how a region-of-interest mask (the “original image” on the left, also referred to as

BWin) is processed by region-of-interest manipulations. According to whether the mask has been processed usingbwlabel or

double, the resulting change in the ROI can be different.

b) Using the double function

L = double(BW);

Note, however, that these functions produce different but equally valid label matrices from the same binary

image. Consider FIg. 2.3. The two top images are how “bwlabel” and “double” interpret the original image

shown on the left of the figure. The output of double(BWin) is interpreted as one single (segmented) region,

while the result of bwlabel(BWin) is interpreted as an imagecontaining multiple (here, three) regions which

12 ATOMIC FUNCTIONS

are to be processed individually and are labelled differently (signified here by the three different colors).

• <’method’> – If no method is given,roimanip performs the default modification of adding a 10-pixel wide

border around the input mask imageBWin, and returning the resulting mask image inBWout. Otherwise,

one of the following methods can be given (see Fig. 2.3):

– ’boundingBox’ – finds the tightest bounding box around each region in BWin and scales it by a

factor<par> with respect to its center-of-mass coordinates.

– ’convexHull’ – finds the smallest convex enclosing polygon around each region in BWin and scales

it by a factor<par> with respect to its center-of-mass coordinates.

– ’enclosingEllipse’ – finds the smallest enclosing ellipse containing all the points for each region

in BWin and scales it by a factor<par> with respect to its center-of-mass coordinates.

– ’border’ – moves the border of each region outwards by<par> pixels. Negative values of<par>

move the border inwards. No scaling is applied. Sharp corners are rounded by this operation.

– ’scale’ – scales each region in BWin by a factor<par> with respect to its center-of-mass coordi-

nates.<par> must be positive. Values smaller than 1 shrink the regions.

– ’rotate’ – rotates each region in BWin anti-clockwise by an angle<par> with respect to its center

of mass.<par> is given in degrees.

• <par> – parameter which controls the manipulation process.

For<method> = ’border’, <par> specifies the number of pixels by which the border is moved outwards

(inwards for negative values). Default = 10.

For<method> = ’rotate’, <par> specifies the anti-clockwise rotation angle in degrees. Default = 5.

For all other methods,<par> controls the amount of scaling which is applied to the regions with re-

spect to their center-of-mass coordinate. If<method> = ’scale’, the default value of<par> is 1.2.

For <method> = ’boundingBox’, ’convexHull’, and’enclosingEllipse’, no scaling is applied by

default (i.e.,<par> = 1).

• BWout – Binary mask image (of type logical, not a label matrix) withthe modified region of interest.

• <xi>, <yi> – Coordinates of the bounding polygons of the regions inBWout. If more than one distinct

bounding polygon is present (for example in segmented images, or regions containing holes),xi andyi

are cell arrays of sizen-by-1, where each cell contains the coordinates for one of then bounding polygons.

For only one polygon,xi andyi are directly returned as standard vectors (1-by-k arrays). To obtain the

i-th bounding polygon coordinates, use the following syntax:

x = xii, y = yii

which returns the two vectorsx andy of size 1-by-k, wherek is the number of vertices of thei-th bounding

polygon.

2.7. FILLSTACK.M 13

2.7 fillstack.m

fillstack.m is a simple function to create a 3D stack of images. It usesimageread.m to read an image from

the disk. On a PSI test machine (pc4095),fillstack.m needed about 20 s to read 100 PILATUS 2 images

(consisting of 32 bit pixels). This function is very useful for handling sets of flatfield images (e.g., evaluating

their statistics), or performing averaging/statistical functions in the “vertical” direction (i.e., perpendicularto the

planes of the individual images), which is particularly important if your detector has a significant number of “hot”

or “unreliable” pixels.

[ImStack] = fillstack(path, filename, format, images, dim, <colorDepth>)

• path – String containing the filepath

• filename – String containing the filename without image number digits(e.g., without00173 in the file-

nameimage00173)

• format – Can be one of the following 5 string inputs

– ’img’ – tvx .img format

– ’tif’ – tif format with extension .tif

– ’tiff’ – tif format with extension .tiff

– ’edf’ – esrf data format with extension .edf

– ’ff’ – tvx flatfield tif format (= float tif) with extension.tif. This is the format of the output of

a flatfield generation produced, e.g., bymakeffcorr.m. It is not the format used for the input into

makeffcorr.m or fillstack.m. They use either.img or .tif extensions.

• images – Integer vector of the formatimages = [start end], giving the “from” and “to” image num-

bers, e.g.,[12115 12619]

• dim – Matrix dimension as vector, i.e.,dim = [xdim, ydim], which for the PILATUS 1 is[366 157]

and PILATUS 2[487 195]

• <colorDepth> – Color depth of the .img file in number of bits (default 32).colorDepth can be

– 8,

– 16 (for PILATUS 1 images),

– 32 (for PILATUS 2 images), or

– 64.

• ImStack – 3D output array containing the images having dimensionsxdim, ydim, start - end + 1

14 ATOMIC FUNCTIONS

2.8 makeffcorr.m

The functionmakeffcorr.m creates a flatfield correction image (2-D normalization file)for the PILATUS 2

detector to correct for the different sensitivities of the individual pixels.makeffcorr.m takes the median along

the third dimension of the input stack and calculates the standard deviation for each median merged pixel. Each

pixel of the median-merged and error matrices are normalized to their in-plane mean, (but omitting zeros), as

follows:

F =
I
I

, (2.1)

whereF andI are the resulting flatfield correction and median-merged input matrices, respectively, andI is the

in-plane mean ofI .

Note thatmakeffcorr.m does not perform any histograms or other statistical routines to get rid of hot

or unreliable pixels. In order to do so, you have to supply an appropriateMaskImg, for example created using

histmask.m.

[Im, <Sigma>] = makeffcorr(ImStack, <MaskImg>)

• Im – Flatfield correction image, normalized around 1 to correcta pixel’s different quantum efficiency for

incoming photons.

• Sigma – Standard deviation of each pixel ofIm (ideally, this reflects the counting statistics of each pixel,

normalized to the mean ofIm, i.e.,
√

ni, j/n.

• ImStack – 3D stack of all measured flatfield images.

• MaskImg – Binary mask to select the pixels on whichmakeffcorr.m acts.

2.9 imagebin.m

The functionimagebin.m performs a binning operation on image data. If the optional parameter<fun> is used,

the binned data has that function act on it. If this parameteris left out, the binned data is summed as the default

function.

[ImOut] = imagebin(Im, binsize, <fun>)

• ImOut – The returned binned image.

• Im – Input matrix (= image) of size(n×m) to process. The elements of the matrix can be floating point

numbers.

• binsize – Dimensions of the binning box [width height] expressed in number of pixels.

• fun – Optional parameter describing how the data within the binning box should be processed. This can

either be a string name of a function (e.g., ’sum’) or a function handle (e.g., @mean or @(x) mean(x) [no

quotation marks!]). Commonly used function string names could be ’sum’, ’mean’, or ’median’.

2.10. PIXANGLES.M 15

Example: You bin an image matriximage_12345 into (3×3) bins, and output the mean values of these bins:

[ImOut] = imageBin(image_12345, [3 3], ’mean’)

Notes:

1) The<binsize> argument is given as [width height]. However, the corresponding matrix would be of

size height-by-width. For example, a<binsize> of [2 3] corresponds to an array of size 3-by-2.

2) The binning process begins in the upper left corner of the matrix (i.e., the(1,1) element) and returns

only those values obtained from complete binning boxes. Pixels from incomplete binning boxes are dropped in

the final output. For example, a 26-by-15 matrix binned with a[23] binsize will only use the upper left 24-by-14

submatrix and return an ImOut of size 8-by-7. The information in the right and lower borders is lost.

3) As this function makes use of anonymous functions, MatlabR14 or higher is required.

2.10 pixangles.m

This function calculates gam and del values for each pixel inan image. It is equally applicable to the horizontal

and vertical geometries of the surface diffractometer at the Materials Science beamline.

[Gam, Del] = pixangles(Im, gam, del, nu, cen, dist, pixdim, binsize)

Note that all the input arguments are mandatory.

• Im – Image 2D data array.

• gam, del, nu – Diffractometer angles at the position where the image was recorded.

• cen – Coordinates expressed in pixels of the position of the direct x-ray beam on the pixel detector for a

well-defined diffractometer with all the angles set to zero.Input is a (1-by-2) array, e.g.,[176.287.5].

• dist – The distance between the sample and the detector, expressed in mm.

• pixdim – The dimensions of an individual pixel, expressed in mm in a (1-by-2) array. In the second

generation Pilatus detector, this is[0.1720.172].

• binsize – Size of kernel in pixels for binning of the image. A (1-by-2)array of [width height].

• Gam – Array of the same size asIm, containing the gamma values for each pixel.

• Del – Array of the same size asIm, containing the delta values for each pixel.

2.11 intcorr h.m

This function applies geometrical intensity corrections to each pixel of an image for thehorizontal diffractometer

geometry. These include corrections for the polarization factor and the intercept factor of the diffracted signal

with the Ewald sphere.

[Icorrh] = intcorr_h(Im, Gam, Del, phi, oh, pperp)

16 ATOMIC FUNCTIONS

• Im – 2D image data array.

• Gam, Del – 2D arrays of the same size as the image data, containing the gamma and delta angle values for

each individual pixel. Generated bypixangles.m.

• phi, oh – Diffractometer angles phi and omegaH for the sample in the horizontal geometry at the position

where the image was recorded.

• pperp – Perpendicular polarization factor, between 0 and 1.

• Icorrh – 2D data array of the same size as the image containing the corrected intensity values.

Note: This function only works for the horizontal s2d3 diffractometer geometry as implemented in the

x04h version of SPEC at the Surface Diffraction Station of the Materials Science Beamline at the Swiss Light

Source.

2.12 intcorr v.m

This function applies geometrical intensity corrections to each pixel of an image for thevertical diffractometer

geometry. These include corrections for the polarization factor and the intercept factor of the diffracted signal

with the Ewald sphere.

[Icorrv] = intcorr_v(Im, Gam, Del, ov, alp, pperp)

• Im – 2D image data array.

• Gam, Del – 2D arrays of the same size as the image data, containing the gamma and delta angle values for

each individual pixel. Generated bypixangles.m.

• ov, alp – Diffractometer angles omegaV and alpha for the sample in the vertical geometry at the position

where the image was recorded.

• pperp – Perpendicular polarization factor, between 0 and 1.

• Icorrv – 2D data array of the same size as the image containing the corrected intensity values.

Note: This function only works for the vertical s2d3 diffractometer geometry as implemented in thex04v

version of SPEC at the Surface Diffraction Station of the Materials Science Beamline at the Swiss Light Source.

2.13 hklcalc h.m

This function calculates theh, k, andl-values for every pixel in an image for thehorizontal diffractometer geom-

etry.

[H, K, L] = hklcalc_h(Gam, Del, phi, oh, UB, k)

2.14. HKLCALC V.M 17

• Gam, Del – 2D arrays of the same size as the image data, containing the gamma and delta angle values for

each individual pixel. Generated bypixangles.m

• phi, oh – Diffractometer angles for the sample in the horizontal geometry, at the position where the image

was recorded.

• UB – Orientation matrix (i.e., the UB matrix, composed of the B matrix used to convert the crystal lattice to

an orthonormal coordinate frame, and the U matrix to accountfor sample miscut). It has a size of (3-by-3)

and can be copied from its listing when one enters the commandorientShow in the SPEC flavourx04h.

• k – Wavevector magnitude 2π/λ of the incident x-ray beam in reciprocal Angstroms.

• H, K, L – Output arrays the same size as the pixel image data, containing, respectively, theh, k, and

l-coordinate values for each pixel.

Note: This function only works for the horizontal s2d3 diffractometer geometry as implemented in the

x04h version of SPEC at the Surface Diffraction Station of the Materials Science Beamline at the Swiss Light

Source.

2.14 hklcalc v.m

This function calculates theh, k, andl-values for every pixel in an image for thevertical diffractometer geometry.

[H, K, L] = hklcalc_v(Gam, Del, ov, alp, UB, k)

• Gam, Del – 2D arrays of the same size as the image data, containing the gamma and delta angle values for

each individual pixel. Generated bypixangles.m

• ov, alp – Diffractometer angles for the sample in the vertical geometry, at the position where the image

was recorded.

• UB – Orientation matrix (i.e., the UB matrix, composed of the B matrix used to convert the crystal lattice to

an orthonormal coordinate frame, and the U matrix to accountfor sample miscut). It has a size of (3-by-3)

and can be copied from its listing when one enters the commandorientShow in the SPEC flavourx04v.

• k – Wavevector magnitude 2π/λ of the incident x-ray beam in reciprocal Angstroms.

• H, K, L – Output arrays the same size as the pixel image data, containing, respectively, theh, k, and

l-coordinate values for each pixel.

Note: This function only works for the vertical s2d3 diffractometer geometry as implemented in thex04v

version of SPEC at the Surface Diffraction Station of the Materials Science Beamline at the Swiss Light Source.

18 ATOMIC FUNCTIONS

2.15 imagetohklint h.m

This function calculates the H, K, L, and corrected intensity values for each pixel in an image taken in the

horizontal diffractometer geometry. It uses the other functionspixangles, intcorr_h, andhklcalc_h

[H, K, L, Icorrh] = imagetohklint_h(Im, gam, del, phi, oh, nu, cen, UB, k, dist, pixdim,

pperp, binsize)

• Im – Image 2D data array.

• gam, del – Diffractometer angles for the detector at the position where the image was recorded.

• phi, oh – Diffractometer angles phi and omegaH for the sample in the horizontal geometry at the position

where the image was recorded.

• nu – rotation angle of the pixel detector around its normal.

• cen – Coordinates expressed in pixels of the position of the direct x-ray beam on the pixel detector for a

well-defined diffractometer with all the angles set to zero.Input is a (1-by-2) array, e.g.,[176.287.5].

• UB – Orientation matrix (i.e., the UB matrix, composed of the B matrix used to convert the crystal lattice to

an orthonormal coordinate frame, and the U matrix to accountfor sample miscut). It has a size of (3-by-3)

and can be copied from its listing when one enters the commandorientShow in the SPEC flavourx04h.

• k – Wavevector magnitude 2π/λ of the incident x-ray beam in reciprocal Angstroms.

• dist – The distance between the sample and the detector, expressed in mm.

• pixdim – The dimensions of an individual pixel, expressed in mm in a (1-by-2) array. In the second

generation Pilatus detector, this is[0.1720.172].

• pperp – Perpendicular polarization factor, between 0 and 1.

• binsize – Size of kernel in pixels for binning of the image. A (1-by-2)array of [width height].

• H, K, L – Output arrays the same size as the pixel image data, containing, respectively, theh, k, and

l-coordinate values for each pixel.

• Icorrh – 2D data array of the same size as the image containing the corrected intensity values.

Note: This function only works for the horizontal s2d3 diffractometer geometry as implemented in the

x04h version of SPEC at the Surface Diffraction Station of the Materials Science Beamline at the Swiss Light

Source.

2.16. IMAGETOHKLINT V.M 19

2.16 imagetohklint v.m

This function calculates the H, K, L, and corrected intensity values for each pixel in an image taken in the vertical

diffractometer geometry. It uses the other functionspixangles, intcorr_v, andhklcalc_v

[H, K, L, Icorrv] = imagetohklint_v(Im, gam, del, ov, alp, nu, cen, UB, k, dist, pixdim,

pperp, binsize)

• Im – Image 2D data array.

• gam, del – Diffractometer angles for the detector at the position where the image was recorded.

• ov, alp – Diffractometer angles omegaV and alp for the sample in the vertical geometry at the position

where the image was recorded.

• nu – rotation angle of the pixel detector around its normal.

• cen – Coordinates expressed in pixels of the position of the direct x-ray beam on the pixel detector for a

well-defined diffractometer with all the angles set to zero.Input is a (1-by-2) array, e.g.,[176.287.5].

• UB – Orientation matrix (i.e., the UB matrix, composed of the B matrix used to convert the crystal lattice to

an orthonormal coordinate frame, and the U matrix to accountfor sample miscut). It has a size of (3-by-3)

and can be copied from its listing when one enters the commandorientShow in the SPEC flavourx04v.

• k – Wavevector magnitude 2π/λ of the incident x-ray beam in reciprocal Angstroms.

• dist – The distance between the sample and the detector, expressed in mm.

• pixdim – The dimensions of an individual pixel, expressed in mm in a (1-by-2) array. In the second

generation Pilatus detector, this is[0.1720.172].

• pperp – Perpendicular polarization factor, between 0 and 1.

• binsize – Size of kernel in pixels for binning of the image. A (1-by-2)array of [width height].

• H, K, L – Output arrays the same size as the pixel image data, containing, respectively, theh, k, and

l-coordinate values for each pixel.

• Icorrv – 2D data array of the same size as the image containing the corrected intensity values.

Note: This function only works for the vertical s2d3 diffractometer geometry as implemented in thex04v

version of SPEC at the Surface Diffraction Station of the Materials Science Beamline at the Swiss Light Source.

2.17 scantohklint.m

This function calculates theh, k, andl-values and corrected intensities for each pixel in all images recorded in a

scan, based on the information in the corresponding scanlogfile. This function is specific to those experiments

performed at the MS beamline, as there, the correctly formatted scanlog file is generated automatically.

20 ATOMIC FUNCTIONS

[H, K, L, Icorr, Gam, Del] = scantohklint.m(scanlogFile, imagePath, imageFmt, cen, k,

UB, imagedim, imagedepth, dist, pixdim, pperp, binsize, roi, geometry)

Note that all the input arguments besidesscanlogFile are optional. If not supplied or left empty (i.e.,[]),

the default values will be used.

• scanlogFile – The name of the scan log file including path.

• imagePath – Absolute or relative path to the image directory. If not supplied, the routine tries to find the

image based on the scanlog file namescanlogFile. This assumes a file format of’image_%05d.img’

and that the images are stored in the path’../../pixel/images/’ relative to thescanlogFile.

• imageFmt – File name format for the image files including extension. This must contain a formatting string

for the image number, i.e.,’myname_%05d.img’ (default =’image_%05d.img’).

• cen – Position of the direct beam on the pixel detector for all angles set to zero. (default =[24289]).

• k – Wavevector magnitude of the incident x-ray beam in reciprocal Angstroms (default = 2π).

• UB – Orientation matrix (i.e., UB matrix composed of the B matrix used to convert the crystal lattice to an

orthonormal coordinate frame and the U matrix to account forsample miscut). The default value if none

is given iskI , whereI is the(3×3) unitary matrix, which yields (hkl)-coordinates in units ofreciprocal

Angstroms.

• imagedim – Image dimension in pixels, a 1-by-2 array [width height] (default = [487 195]).

• imagedepth – Color depth of image, scalar (default = 32).

• dist – Distance from the sample to the detector, or detector-slits to detector, given in mm. (default =

1140.5).

• pixdim – Dimension of an individual pixel in mm. 1-by-2 array of [width height] (default = [0.172 0.172]).

• pperp – Perpendicular polarization factor, scalar between 0 and 1(default = 0.98).

• binsize – Size of the kernel, given in pixels, for binning of the image. 1-by-2array of [width height].

(default: no binning, binsize = [1 1]).

• roi – Rectangular region of interest (ROI) in the image. Only this ROI is analyzed and all output arguments

will be of the same size as this ROI. It is a 1-by-4 array specifying [x1 y1 x2 y2], where (x1,y1) is the upper

left corner and (x2,y2) the lower right corner of the ROI, given in pixel units of the image.

• geometry – String defining the diffractometer geometry, which was used when recording the scans: Can

be ’vertical’ or ’horizontal’ (default = ’vertical’).

• H, K, L – Arrays of the same size asIcorr, containing the H-, K-, and L-coordinate values, repsectively,

for each pixel.

2.17. SCANTOHKLINT.M 21

• Icorr – Image of corrected intensity. So far, we correct for the polarization factor, the intercept of the

signal with the Ewald sphere, exposure times and the filter transmissions.

22 ATOMIC FUNCTIONS

Chapter 3

Beamline-specific functions

This chapter describes functions that have been specifically developed for use with the in-house research program

of the X04SA Materials Science beamline surface diffraction station, and are also likely to be of use for many of

the external users. These include the following MATLAB functions:

1. readscanlog.m – reads the header and data of a scan log file

2. fftest.m – performs statistical analysis on a stack of flatfield images

3. imageviewer.m – an interactive GUI for viewing images

3.1 readscanlog.m

readscanlog.m is a function to read the scanlog files of the Materials Science Beamline (MSBL). These files

are routinely created for eachhklscan performed with SPEC. The scanlog files contain the most important

information of the scan. The exact contents of the file depends on when it was created – early scans produced

log files without the scan point numbers or corrected intensity, which are included in later versions. In other

words, the program is sufficiently flexible to handle the historical developments of the data thought necessary to

save. The log files can contain the following data: scan points, image numbers, monitor intensityI 0 (labelled

as “Opto”), raw intensity of the region of interest, intensity corrected for exposure times and filter settings,

exposure time, filter transmission, the Miller indices(h,k, l) for both surface and bulk coordinates, important

motor positions, and a timestamp. Hence, according to when the scan was recorded, the number of columns

containing the data may vary.

readscanlog.m returns two arrays. TheData array is a 2D matrix containing all the data, stored with

double precision. Theheader is a string array of the header information. It has the same number of columns as

Data and is used to assign the columns ofData.

The last six columns ofData contain the time information. The timestamp of the scanlog file is split up to

a MATLAB date vector of the form

[yyyy, mm, dd, HH, MM, SS] in order to simplify calculations. Often for a set ofhklscans, we record a

–23–

24 BEAMLINE-SPECIFIC FUNCTIONS

reference peak after each scan to monitor possible radiation damage. You can use the timestamp information of

your scanlog file to calculate the time dependence of the decrease in intensity of the reference peak, if radiation

damage has a significant influence. This date vector can be treated with the standard MATLAB date functions,

e.g.datestr, datenum, anddatevec. To return to a more user-friendly time information, you canuse something

like

mydates = datestr(datenum(Data(:,15:20)), ’yyyy-mm-dd HH:MM:SS’).

[Data, header] = readscanlog(filename)

• filename – Filename (+ path (absolute or relative)) of the scanlog fileto be read as string (i.e., surrounded

by single quotes (’).

• Data – Matrix containing the data of the scanlog file. All numbers are saved as doubles.

• header – Array of strings that contain the header information.header has the same number of columns

asData and correspond to the values inData.

All variables are mandatory.

3.2 fftest.m

fftest.m is a function for generating statistical information aboutflatfield data sets. It is user-interactive (i.e.,

the user is prompted as the analysis progresses).

[Im, <sigma> ,<info>] = fftest(ImStack, <fileOut>, <printer>)

• ImStack – Flatfield data in the form of a stack of images, created byfillstack.m.

• <fileOut> – Optional string output “mat” file, containing the fieldsff_dat.ff_mask andff_dat.ff_err,

corresponding toIm and<sigma>, respectively. The default name of this file if this optionalvariable is not

given isff_corr.mat.

• <printer> – Optional string argument specifying the printer for the print-out of the statistical analysis.

Default is WBBA˙005˙1.

• Im – Output flatfield correction image, normalized to unity.

• <sigma> – Optional output image showing the standard deviation for each pixel, normalized to the mean

value ofIm.

• <info> – Optional output argument containing information on the image stackImStack, including the

mean value, the lower and upper acceptable counting limits,the tolerance factor in percent, and number of

bad pixels, as defined by counting limits and tolerance factor.

Some guidelines to interaction with the program: The first action it does is generate a histogram of the

counting rate of all the pixels within the stacked images produced byfillstack.m, plus (for purposes of com-

parison) a theoretical Poisson distribution for a detectorwith a completely homogeneous counting efficiency and

3.2. FFTEST.M 25

1000 1100 1200 1300 1400 1500
0

5

10

x 10
4

#counts

#p
ix

el
s

Average counting−rate of each pixel
 over 100 images

020406080100
0

1000

2000

3000
Incidence of bad pixels vs. tolerance

total no. of pixels: 94965
Definition of tolerance:

e.g. 80% means 4 out of 5 times
the pixel lies within the

acceptable counting rates

Tolerance

B
ad

 P
ix

el
s

Standard Deviation (SD) of each Pixel

20

30

40

50

20 40 60 80 100
1100

1200

1300

1400

1500
20 40 60 80 100

1100

1200

1300

1400

The worst pixel and a typical pixel
0 50 100

0

5000

10000

15000

Histogram of the
SD error image (left)

1144 1252 1360
0

2

4

6

8

Typical Pixel

1152 1282 1412
0

2

4

6

8
Worst Pixel

Normalized, mean flatfield image

0.9

1

1.1

0 50 100 150 200 250 300 350 400 450
0.8

1

1.2

0

50

100

150

0.8 1 1.2

A flatfield−corrected, randomly chosen flatfield

0.9

1

1.1

0 50 100 150 200 250 300 350 400 450
0.8

1

1.2

0

50

100

150

0.8 1 1.2

Figure 3.1: Typical printouts generated byfftest.m.

26 BEAMLINE-SPECIFIC FUNCTIONS

an average counting rate equal to that found for the experimental data. Hence for Pilatus II, and 100 flatfield

images, a total of 195×487× 100= 9496500 pixels are included in the histogram. The program then offers

the user to change thex− andy−axis limits. It suggests±6 standard deviations as the upper and lower limits

for counts which are to be considered as being acceptable (i.e., over 99.9% of a perfect Poisson distribution).

These can be changed to suit the user. Based on these limits, it then calculates a so-called “tolerance graph”. The

quantity “tolerance” (perhaps better named “intolerance”) is defined in percent as the fraction of the time any

given pixel lies within the user-defined acceptable limits.Hence, if a value of 90% is entered, those pixels which

register counts outside the limits more than 10% of the time (so for 100 flatfield images, for more than ten of

those images), are deemed to be “bad” and are set to zero in theflatfield image file.

Once the tolerance value has been entered, a set of statistical output graphs are generated, and the user can

plot this out and/or generate an eps file of it. Then a second side of statistics are generated, showing the mean

and normalized image of the original images within the 3-D stack, plus a randomly selected flatfield image from

the stack, corrected using the final flatfield correction mask. For both of these images, typical spatial fluctuations

along the short and long axes are plotted. This second side can also be printed or saved as an eps file.

3.3 imageviewer.m

This is a graphical user interface (GUI) for interactive image browsing, and is the matlab file forimageviewer.fig

(see Fig. 3.2). It uses several other atomic functions described in this manual, including

imageread.m, medianfilter.m, pilatus.m, setroi.m, andreadscanlog.m, which must all be available

for imageviewer to run properly. Also,imageviewer was developed and tested using the version MATLAB

R2006a. Backwards compatibility is neither expected nor guaranteed.

The GUI is to a large extent self-explanatory. Two points worth noting are (1) the(x,y)-coordinates and

intensity of any given pixel can be determined by moving the mouse pointer across the “Zoom” window (but

not in the “Image Overview” window); and (2) the image is presented such that the photons are impinging from

above (i.e., it is viewed from upstream).

3.3. IMAGEVIEWER.M 27

Figure 3.2: A screenshot of theimageviewer GUI.

