

High-resolution soft-X-ray beamline ADRESS at Swiss Light Source for resonant X-ray scattering and angle-resolved photoelectron spectroscopies

V.N. Strocov and T. Schmitt

Swiss Light Source, Paul Scherrer Institute, Switzerland

Swiss Light Source @ Paul Scherrer Institute: Aerial view

ADRESS (ADvanced RESonant Spectroscopies) beamline :

- soft-X-ray radiation with circular and 0-180° variable linear polarizations
- energy range 300 1800 eV
- high resolution $\Delta E \sim 30 \text{ meV}$ @ 1 keV
- collimated-light PGM optical scheme
- endstations:
- resonant inelastic X-ray scattering (RIXS): $\Delta E \sim 70 \text{ meV}$ @ 1 keV
- angle-resolved photoelectron spectroscopy (ARPES)

Beamline layout

Undulator

- Starting point: Apple-II type permanent magnet design

• 6 motors (*P*-shifts+gap), complicated design

Undulator: Concept

- Apple-2 permanent magnet design with fixed gap (concept by R. Car)

I full functionality (circular + linear 0-180° polarizations)
Simple and mechanically rigid design (4 motors)
polarization and *E* coupling requires complicated mathematical models

Undulator: Design (T.Schmidt's group)

- mechanically rigid C-like construction
- λ=44 mm (optimized for *hv* = 400-1800 eV), *L*=3.5 m

- world's first fixed gap undulator

Undulator: Performance

• gap reduced to 11 mm => no V-pol flux discontinuity around 1000-1200 eV (Zn,Ga,Ge $2p_{3/2}$; La,Ce $3p_{3/2}$)

• source @1000 eV: $\sigma_X \times \sigma_Z = 0.107 \times 0.014 \text{ mm}, \sigma'_X \times \sigma'_Z = 0.047 \times 0.014 \text{ mrad}$

Optical scheme : Collimated-light PGM

- high resolution
- no entrance slit: high flux
- wide energy range
- resolution, flux and HIOS optimization by $C_{\rm ff}$
- proven design and flawless operation @ SLS

Monochromator optics: Resolution optimization

- goal: $E/\Delta E > 30\ 000\ (a)\ 1\ \text{keV}$
- tools: ray tracing code PHASE (J. Bahrdt, U. Flechsig)

Slope errors optimization

- starting point: 4800/mm grating in 1st order, $f = 10\ 000\ mm$
- ideal optics $\rightarrow E/\Delta E = 65000$; real optics $(\Delta \omega / \Delta l)_{PO} = 0.5/5 \mu rad$, $(\Delta \omega / \Delta l)_{TO} = 2.5/25 \mu rad \rightarrow E/\Delta E = 16700$
- which are the most critical elements?
- most critical are $\Delta \omega_{\rm PG}$ and $\Delta l_{\rm FM}$

- vendors: $\Delta \omega_{PG} = 0.375 \ \mu rad$, $\Delta l_{FM} = 7.5 \ \mu rad$ possible $\rightarrow E/\Delta E \sim 30000$

Beamline geometry optimization

- (1) horizontal focussing schemes
- collimation by CM + focusing by FM
- cylinder CM, focusing by FM
- focusing by CM, cylinder FM
- $E/\Delta E$ improves by ~1000

• best $E/\Delta E$ @ stigmatic focus

(3) dispersion arm
saturation @ ~14 m (~10 m available)

Resolution with the optimized parameters

Gratings: Flux optimization

- Lamellar or blazed? if lamellar, *h* and *c/d*?
- Tools: Grating efficiency code REFLEC (Nevier+BESSY)

Blazed vs lamellar

- 2000/mm ideal blazed (ϕ_{blaze} =1.3° optimized @ 930 eV, C_{ff} =2.25) vs ideal lamellar (h=5.5nm, c/d=0.6 optimized @ 700-1100 eV, C_{ff} =2.25)

• the blazed betters on flux + flatness of the energy dependence

Gratings: Blazed vs lamellar

- 2000/mm realistic profile: $\alpha_{apex} \sim 170^{\circ}$ for blazed, 164° for lamellar

• advantages of the blazed on flux and flatness degrade

Gratings: Blazed vs lamellar

- 800/mm blazed ($\phi_{blaze}=0.8^{\circ}$) vs lamellar (h=11 nm, c/d=0.69), ideal and realistic

• for lower l/mm advantages of the blazed on flux and flatness preserve

=> blazed 800/mm (high flux, low res + HIOS) = **'flux'** grating; lamellar 2000/mm (low flux, high res + HIOS) = **'workhorse'** grating lamellar 4200/mm (lowest flux, highest res) = **'hi-res'** grating

Gratings: Optimization of lamellar gratings

- *h*, *c/d*, *C*_{ff} to optimize the flux, energy dependence flatness, HIOS interplay
 PM(*C*_{ff}) to be included
- realistic 2000/mm (α_{apex} =164°), *hv*=700-1200 eV

• optimal h, c/d, $C_{\rm ff}$ taken slightly shifted from the flux maximum towards better flatness + HIOS

Beamline flux performance with the optimized gratings

• flat energy dependence with all gratings including 800/mm blazed

• flux-optimal $C_{\rm ff}$ increases with l/mm and energy

• 3×10^{11} to 1×10^{13} ph/s/0.01%BW (experimentally confirmed): factor of 10 to 100 flux increase or ~2 improvement in $E/\Delta E$ compared to BL25SU@SPring-8

• excellent flux by virtue of (1) 2.4 GeV ring optimal for soft X-rays; (2) glancing angles on the mirrors; (3) minimal l/mm; (4) blazed/lamellar and profile optimization of gratings

Refocusing optics

• vertical spot size << 10 μ m required for slitless operation of the RIXS spectrometer

Toroidal vs Ellipsoidal mirror

- ray tracing: focused spot size at the exit slit 14.1µm, r+r' = 7000 mm, grazing angle 89°, $\Delta\omega/\Delta l$ slope errors 0.5/1.5 µrad for TM and 1.5/4.5 µrad for EM

TM: aberrations for large r/r'; minimal $s_v \sim 10 \ \mu m \ @ r/r' \sim 1.8 - \text{inacceptable} \ensuremath{\textcircled{\sc blue}}$ EM: decrease of s_v carries on towards $\sim 3.4 \ \mu m \ @ r/r' \sim 9 - \text{slitless operation of}$ the RIXS spectrometer possible $\ensuremath{\textcircled{\sc blue}}$

Refocusing optics layout

ARPES: moderate spot size and available $r/r' \Rightarrow TM$ • actual $s_v \sim 10 \ \mu m @ r/r' \sim 2$

• slope errors are crucial: EM from ZEISS with $\Delta \omega / \Delta l = 1.5/7.5 \mu rad$

Refocusing mechanics

- hexapod systems (OXFORD-DANFYSIK):
- 3 translational + 3 soft-axis angular DOFs
- high setability of 1 μm and 1 μrad
- soft axes: mirror center 100 mm downstream

Alignment tools: Horizontal beam profile monitor

Alignment strategies: Vertical focusing scheme

• Beam position at the slit + aperture matching constrains => R_v^{FM} , z^{FM} and R_v^{CM} are entangled in one *combined focalization motion* (CFM)

- 3 DOFs (R_y^{FM} , z^{FM} and R_y^{CM}) reduced to 1 DOF (CFM) parametrized by $z^{FM} =>$ fast and unambiguous focalization
- maximal transmission
- maximal resolution due center of the optical surface

Alignment strategies: Example of focalization

- Typical focalization curve (1-2 hrs)

RIXS endstation: Technique

- ΔE difference between hv_{in} and $hv_{out} \Rightarrow$ spectrum of low-energy excitations in correlated materials
- probing depth ~300 nm: bulk properties, buried nanostructures...
- element specific electronic structure

High-resolution RIXS endstation: Concept

- hv = 300-1800 eV:
- N K-edge, Ga,Ge,As L-edges: microelectronics...

- TMs *L*-edges, REs *M*-edges: correlated systems (superconductivity, CMR, metal-insulator transitions...)

• $\Delta E \sim 100 \text{ meV}$ (*a*) 1 keV to go from *d*-*d* and *f*-*f* excitations towards magnons and phonons

11												He
Li [°] B	le'						B	c	1	1	F	Ne
Na	12 1g						AL	C1	P	S	CI	LR Ar
K C	a Sc	11 21 24 Ti V Cr	Mn Fe	Lo Ni	Cu	30 Zn	Ga	32 Ge	As	34 Se	Br	36 Kr
Rb S	T Y	Zr Nb Mo	Tc Ru	Rh Pd	Ag	cā	In	Sn	Sb	Te	1	S4 Xe
Cs B	a La l	H Ta W	Re Os	Ir Pt	Au	se Ha	88 TI	82 Pb	Bi	Po	At	Rn
Fr B	NN AC	Rf Dh Sa	Bh Hs	Mt Linn								
	Cal	59 60 61 Pr Nd P	62 60 Sep Eu	GA Th	De	Ho	Er.	69 1 m	20 Vh	71		
	Th	91 92 30	94 95	NO 10	38	39	100	101	102	103		
			ra an	CID DIK	Refer	1.	10.113	2012	1992	1.05		
honons												
/lagnons	; O	rbital e	xcitat	ions	C	Τe	exc	cita	tio	ns		
Snin-fling	s d	d_ovcita	tione		Μ	ott	a	ap				
, pin nipe							Ĵ	1				
							Τ					
100	me\/	1	2 6\/				Δ e	JV				

• variable scattering angle to study *q*-dependences

RIXS endstation: Super Advanced X-ray Spectrometer (SAXES)

- optics by Politechnico di Milano (group of G. Ghiringhelli and L. Braicovich)
- resolving power $E/\Delta E \sim 12000$ @1 keV

G. Ghiringhelli et al, Rev. Sci. Instrum. 77 (2006) 113108

RIXS endstation: Rotating platform/vacuum chamber

Vacuum chamber

- 20° steps in angle
- L-He₂ cryostat

Rotating platform on air cushions

• rigid I-shape (bending<7 µm)

Actuator • 5 DOFs, accuracy 5 μm

A case study: 'telephone number' compound $Sr_{14}Cu_{24}O_{41}$ by Cu L₃-edge RIXS

Kojima *et al*, JES **117** (2001) 237

Case study: q-dispersion of magnetic excitations in 'telephone number' compound Sr₁₄Cu₂₄O₄₁ by Cu L₃-edge RIXS

90°

• two-triplon excitations in the ladder subsystem (AFM exchange $J\sim100$ meV)

RIXS vs Inelastic Neutron Scattering (INS)

RIXS from Sr₁₄Cu₂₄O₄₁

flat cross-section over the full BZ
Δ*E*~100 meV and *E*-scale up to 3 eV
Δ*E*~10 meV and *E*-scale up to ~ 500 meV
Δ*E*~10 meV and *E*-scale up to ~ 500 meV

Design of spherical VLS grating spectrometers

- Dedicated ray-tracing software TraceVLS allowing fast optimization of the grating parameters and spectrometer geometry
- Example: Model spectrometer with $E/\Delta E=15000$ @ 930 eV

Step 1: Optimization of the grating parameters for reference *E***=930eV**

Groove density
$$a(\omega) = a_0 + a_1\omega + a_2\omega^2 + a_3\omega^3 + \dots$$

-*R* and a_1 : the focal distance r_1 and focal curve inclination γ (analytically) \Rightarrow inclination reduces the effective detector pixel size

- a_2 : profile asymmetry (coma) cancellation (numerically) – bug in SHADOW fixed in 2010!

- a_3 : reduction of symmetric broadening (numerically) \Rightarrow increase of aberration-free vertical acceptance by a factor of 5

Design of spherical VLS grating spectrometers

Step 2: Optimization of the spectrometer geometry away from reference *E*

• How do we adjust r_1 , α , r_2 to keep symmetric profile and thus best resolution?

Online software to determine the optimal spectrometer settings

• the focal and symmetric-profile focal α , r_1 and r_2 in a fraction of second

🛃 TraceVLS											
		CDA	TING								
Slope Err EWH	M /urod 4 47										
Siope En 1 Will		74 aU7	mm 3500	J R/mm	24690.4716						
a1	l /mm20.080)193 a2 /m	1m3 -0.0057	077 a3 /mm4	1.998e-005						
PARAMETERS											
Energy /eV 530 Diffr Order 1											
Source /um	2	Aperture /mm	1.7781	CCD Inclination /c	20						
Entr Arm /mm	275	Inc Angle /o	88.2081	Exit Arm /mm	6068.6067						
EQCUS MODE											
Focus Variable Inc Angle Coma-Free Fixed Entr Arm											
				Calculate							
		RES	ULTS								
Aberra Gauss	Geometry										
				Asymmetry = 2.67	56.2698 18e-015						
				Source /meV = 1	4.7208						
				CCD /meV = 11 Slope Errors /meV =	- 12.4013						
				Full Gaussian /me∀ Total /me∀ = 28	= 22.4266 .8081						
	529.9	95 530 530	05								

Perspectives of RIXS instrumentation: hv^2 -spectrometer with simultaneous detection in hv_{in} and hv_{out}

ARPES endstation: Concept

• hole spectral function $A(E,\mathbf{k})$ resolved in *E* and **k**

- soft X-rays vs hard X-rays to keep angular resolution
- combining with PLD
- electronic structure of complex materials (perovskites...) with enhanced bulk sensitivity and resolution in 3-dim **k**-space

Why going from UV to Soft-X-Rays ?

Reason 1: Surface sensitivity

• 2-3 times increase in probing depth ⇒ through the distorted surface layer towards deeper atomic layers with bulk properties

Mott-Hubbard metal-insulator transition in V_2O_3 (Mo et al 2003)

• quasiparticle peak in the paramagnetic phase develops only in bulk

⇒ **soft-X-ray energy range** to increase bulk sensitivity

Reason 2: Improvement of the intrinsic resolution in k_{\perp}

 \Rightarrow soft-X-ray energy range to increase the resolution in k_{\perp}

Reason 3: Free-electron final states

- Final-state $E(\mathbf{k})$ is required to resolve valence band $E(\mathbf{k})$ in 3-dimensional \mathbf{k}
- How far in energy do the non-free-electron effects carry on?

multiband final states (different k_{\perp})

- failure of free-electron approximation despite the FE nature of Al and rather high $hv \Rightarrow$ soft-X-ray energy range for free-electron final states
- Further reasons: Simplified matrix elements ...

Problem: Photoexcitation crossection

• notorious problem of SX-ARPES: dramatic decrease of crossection, especially for *s*- and *p*-states

• the crossection problem is alleviated by 10 to 100 flux increase vs BL25SU @ Spring-8

Implementation of the SX-ARPES endstation

Experimental geometry concepts: Optimal light incidence angle

- photoelectron yield peak at glancing angles ~2.5°
- improvement of 2.1 @ 20° compared to standard 45°

Experimental geometry concepts: Alignment of the light footprint

- rotation around the horizontal axis to align the horizontal and vertical spot size
- 100 μ m slit => grazing incidence angle ~ 13.5°

Experimental geometry

- Grazing incidence at 20° // smaller vertical footprint with *horizontal* manipulator axis
- 2 operation modes:
- analyser slit // beam (selection rules)
- analyser slit \perp beam (k-space sampling)
- Photoelectron Display Analyser (PDA)
 ~ photon-excitation LEED

Technical realization

• analyzer PHOIBIOS 150 (SPECS)

manipulator with 3 translation (resolution 5µm)
+ 3 angular (resolution 0.1°)
DOFs and L-He₂ cooling to 10K

• analysis (AC) + transfer (TC) + preparation (PC) chambers + Load Lock (LL)

• sample preparation by cleavage, ion etching, thin film deposition

• only *one* sample transfer for cleaved samples

• compatibility with PLD

Status

- 10.5 K achieved
- 30 sec data acquisition @ hv=930 eV, combined $\Delta E=100 \text{ meV}$
- Expert user operation from the end 2010

Summary

High-resolution soft-X-ray ADRESS beamline operating in the energy range 300 - 1800 eV:

- Fixed-gap undulator
- circular and 0-180° variable linear polarizations
- Collimated-light PGM with stigmatic focus
- $\Delta E \sim 30 \text{ meV}$ (a) 1 keV
- flux up to 10^{13} photons/s/0.01%BW with optimized gratings (minimal l/mm, blazed/lamellar, optimized profiles, flux-optimal $C_{\rm ff}$)
- Ellipsoidal refocusing optics
- spot size below 4 μm
- RIXS spectrometer
- $\Delta E \sim 70 \text{ meV}@1 \text{ keV}$ (energy scale of magnetic etc. excitations)
- variable scattering angle (momentum dependences)
- high-resolution RIXS complementary to INS
- further developments to optimize the acceptance and resolution
- ARPES spectrometer
- optimized experimental geometry (grazing light incidence, horizontal manipulator axis)
- rotatable analyser (selection rules vs k-space sampling)

