User experiments

25. March 2014

teaserbild.jpg

X-rays film inside live flying insects – in 3D

Media Releases Biology Research Using Synchrotron Light User Experiments

Scientists have used a particle accelerator to obtain high-speed 3D X-ray visualizations of the flight muscles of flies. The team from Oxford University, Imperial College, and the Paul Scherrer Institute (PSI) developed a groundbreaking new CT scanning technique at the PSI’s Swiss Light Source to allow them to film inside live flying insects. The movies offer a glimpse into the inner workings of one of nature’s most complex mechanisms, showing that structural deformations are the key to understanding how a fly controls its wingbeat.


17. October 2013

teaserbild.jpg

Why lithium-ion-batteries fail

Storage Research Using Synchrotron Light Materials Research User Experiments

Materials in lithium ion battery electrodes expand and contract during charge and discharge. These volume changes drive particle fracture, which shortens battery lifetime. A group of ETH and PSI scientists have quantified this effect for the first time using high-resolution 3D movies recorded using x-ray tomography at the Swiss Light Source.

16. October 2013

teaserbild.jpg

Die Ursprünge der ersten Fische mit „Zähnen“

Media Releases Research Using Synchrotron Light User Experiments Biology

Mit Hilfe von Röntgenlicht aus der Synchrotron Lichtquelle Schweiz des PSI ist es Paläontologen der Universität Bristol gelungen, ein Rätsel um den Ursprung der ersten Wirbeltiere mit harten Körperteilen zu lösen. Sie haben gezeigt, dass die „Zähne“ altertümlicher Fische (der sogenannten Conodonten) unabhängig von den Zähnen und Kiefern heutiger Wirbeltiere entstanden sind. Die Zähne dieser Wirbeltiere haben sich vielmehr aus einem Panzer entwickelt, der dem Schutz vor den Conodonten, den ersten „Raubtieren“, diente.


23. January 2013

teaserbild.jpg

Excitement that rivals a moon landing

Matter and Material User Experiments Research Using Synchrotron Light

Interview with Thomas Huthwelker
The Paul Scherrer Institut makes its research facilities available to scientists from all over the world. To ensure these scientists are exposed to optimal conditions when they arrive is the hard work of many PSI staff. An interview with one of these scientists provides a glimpse behind the scenes. This interview is taken from the latest issue of the PSI Magazine Fenster zur Forschung

17. October 2012

teaserbild.jpg

The evolutionary origins of our pretty smile

Media Releases Biology User Experiments Research Using Synchrotron Light

Until recently, it was not obvious whether the earliest vertebrates (animals with a backbone) which had jawbones already possessed teeth or not. Now, an international research team has shown that the jaws of the prehistoric fish Compagopiscis already had teeth. This means that teeth appeared at the same evolutionary time as jaws – or at least shortly afterwards. The leaders of this project were scientists from the University of Bristol, England, who carried out their decisive experiments at the SLS at PSI.

16. October 2012

teaserbild.jpg

X-rays provide insights into volcanic processes

Media Releases Research Using Synchrotron Light Environment User Experiments

Experiments performed at the Paul Scherrer Institute (PSI) investigate processes inside volcanic materials that determine whether a volcano will erupt violently or mildly. In the experiments, scientists heated small pieces of volcanic material similarly to conditions present at the beginning of a volcanic eruption. They used X-rays from the SLS to observe, in real time, what happens to the rock as it goes from the solid to the molten state.

16. February 2012

teaserbild.jpg

How the body distinguishes between self and non-self – important structures explained

Media Releases Biology User Experiments Research Using Synchrotron Light

Like a shredder, the immunoproteasome cuts down proteins into peptides that are subsequently presented on the cellular surface. The immune system can distinguish between self and non-self peptides and selectively kills cells that present non-self peptides at their surface. In autoimmune diseases, this mechanism is deregulated. However, inhibition of the immunoproteasome may alleviate disease symptoms and progression. With the help of measurements taken at the Paul Scherer Institute, scientists have now succeeded in determining the first structure of an immunoproteasome.

23. December 2011

teaserbild.jpg

Fossile Vorläufer der ersten Tiere

Media Releases Biology Research Using Synchrotron Light User Experiments

Einzellige Organismen, die vor über einer halben Milliarde Jahre gelebt haben und deren Fossilien in China gefunden wurden, sind wohl die unmittelbaren Vorläufer der frühesten Tiere. Die amöbenartigen Einzeller haben sich in einer Weise in zwei, vier, acht usw. Zellen geteilt, wie es heute tierische (und menschliche) Embryonen tun. Die Forscher glauben, dass diese Organismen einem der ersten Schritte vom Einzeller zum Vielzeller in der Entwicklung richtiger Tiere entsprechen.
This news release is only available in German.

11. November 2011

teaserbild.jpg

Nanoforscher untersuchen Karies

Media Releases Biology Medical Science Research Using Synchrotron Light User Experiments

Forscher der Universität Basel und des Paul Scherrer Instituts konnten im Nanomassstab zeigen, wie sich Karies auf die menschlichen Zähne auswirkt. Ihre Studie eröffnet neue Perspektiven für die Behandlung von Zahnschäden, bei denen heute nur der Griff zum Bohrer bleibt. Die Forschungsergebnisse wurden in der Fachzeitschrift «Nanomedicine» veröffentlicht.
This news release is only available in German.

15. September 2011

teaserbild.jpg

Plants create a water reserve in the soil

Media Releases Research Using Neutrons Biology User Experiments

An international research team has now demonstrated in experiments at the Paul Scherrer Institute that the soil in the vicinity of roots contains more water that that further away. Apparently, plants create a small water reserve that helps to tide them over through short periods of drought. These results were obtained from experiments carried out with the benefit of neutron tomography.

18. August 2011

teaserbild.jpg

Getting inside the mind (and up the nose) of our ancient ancestors

Media Releases Biology Research Using Synchrotron Light User Experiments

Reorganisation of the brain and sense organs could be the key to the evolutionary success of vertebrates, one of the great puzzles in evolutionary biology, according to a paper by an international team of researchers, published today in Nature. The study claims to have solved this scientific riddle by studying the brain of a 400 million year old fossilized jawless fish – an evolutionary intermediate between the living jawless and jawed vertebrates.

18. January 2011

teaserbild.jpg

Understanding the nanomachines of life

Media Releases Biology User Experiments Research Using Synchrotron Light

Ribosomes are the protein factories of the living cell and themselves very complex biomolecules. Now, a French research group has for the first time determined the structure of the ribosome in a eukaryotic cell – a complex cell containing a cell nucleus. An important part of the experiments was performed with synchrotron light at the Swiss Light Source SLS of the Paul Scherrer Institute.

28. June 2010

Sazanov fig4.jpg

Proton pump generates energy from food and oxygen

Media Releases Biology Research Using Synchrotron Light User Experiments

A central feature of any living organism is that food reacts with oxygen and, in the process, energy is released and made available for a variety of reactions within the organism. Using investigations performed at the Swiss Light Source, SLS, researchers have now been able to explain a crucial part of this process at a molecular level.

7. October 2009

MM061025 sls web 0009 0003 tn.jpg

Winner of Nobel Prize in Chemistry is long-term user of Swiss Light Source at the Paul Scherrer Institute

Media Releases Research Using Synchrotron Light User Experiments Biology

The Paul Scherrer Institute congratulates Professor Venkatraman Ramakrishnan on the Nobel Prize in Chemistry. Ramakrishnan is a long-term user of the Swiss Light Source SLS at the Paul Scherrer Institut in Switzerland. He used this facility for his prize winning studies on the structure of the ribosome.

21. November 2007

MM071121 FrueheVerwandtesamen tn.jpg

The early relatives of flowering plants

Biology User Experiments Research Using Synchrotron Light

High-resolution phase-contrast X-ray images of fossil seeds

The emergence of flowering plants is regarded as a major botanical mystery. In the 22nd November edition of the scientific magazine “Nature”, an international research team with participation from the Paul Scherrer Institute (PSI) publishes results that shed fresh light on this controversial question. New three-dimensional non-destructive imaging procedures have been used to carry out investigations into fossilised plant seeds. As a result, it has been possible to confirm an earlier scientific theory, which had previously been cast into doubt by molecular genetic analyses.

Media corner

Information and contacts for media representatives

psi forum

The visitors' centre of the Paul Scherrer Institute

The iLab School Laboratory

Experience Science - Explore Research

Follow the PSI